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ABSTRACT Problem Binary classifiers are widely used in medical research, especially for diagnoses.
They are usually evaluated via performance metrics computed based on confusion matrices. Accuracy and
F-measure are among the most frequently used performance metrics, but they make implicit assumptions
and do not take into account important characteristics of classifiers. As a consequence, evaluations based on
Accuracy or F-measure may turn out to be incorrect, unreliable, and inadequate for the specific application
context. The usage of Accuracy and F-measure is particularly critical in the medical domain, where selecting
a sub-optimal classifier may lead to incorrect diagnoses, with potentially serious or even fatal consequences.
Aim We investigated whether the improper or naive usage of Accuracy and F-measure can lead to partial
or incorrect evaluations. If this is the case, we need a procedure to reinterpret the conclusions reported
in research articles, whenever possible. Method After discussing a few important properties of Accuracy
and F-measure, we examine a set of representative research articles, to assess their conclusions, and
illustrate a procedure to reinterpret those conclusions. Results It appears that the examined research articles
yield conclusions that are largely affected by the used performance metrics, which in some cases lead to
very misleading conclusions. The application of the proposed procedure allows the retrieval of confusion
matrices and the derivation of reliable indications of classifiers’ performances. Conclusion F-measure and
Accuracy should be used with care, being aware of their characteristics and limits. We recommend that
future evaluations of binary classifiers be provided with the complete confusion matrices, so that users can
formulate evaluations based on specific contexts and priorities.

INDEX TERMS Accuracy, binary classifiers, F-measure, F-score, performance metrics.

I. INTRODUCTION
Binary classification is increasingly used in the biomedical
field to create new diagnostic models. Given the importance
of obtaining correct diagnostic indications, evaluating the
performance of binary classifiers is of paramount importance.

The performance of a binary classifier is fully represented
via a so-called confusion matrix (as discussed in the next
section), which is used to derive several ‘‘performance met-
rics.’’ Each of them is defined to provide a simple and direct
evaluation of performance, from different points of view and
for different purposes. Once a performance metric is chosen,
a binary classifier is considered ‘‘good enough’’ if its value
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for that performance metric is ‘‘high enough’’ according to
some predefined minimum level of performance above which
a classifier is considered satisfactory. Similarly, a binary clas-
sifier is considered better than another if it has a higher value
for that performance metric.

Among the proposed performance metrics, Accuracy and
the F-measure are widely used in medical research [1], [2],
[3]. However, as we show in the next section, both have
limitations and drawbacks, so that evaluations based on them
may be incorrect, partial, or valid only in a very specific
context.

To assess to what extent the naive usage of performance
metrics can be misleading, we analyze a set of research
articles dealing with diagnostic tests. We also propose a
procedure to reinterpret the results reported via Accuracy,
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TABLE 1. A confusion matrix.

F-measure, and other performance metrics. The procedure
involves retrieving the original confusion matrix from the
published values of the performance metrics. The knowledge
of the confusion matrix makes it possible to verify the consis-
tency of the published results and compute additional metrics,
which can shed new light on the published results.We applied
the proposed procedure to the aforementioned set of scientific
articles, to demonstrate its steps and the results it can provide.

Our article provides three main contributions.

• It shows the risks of improper usage of performance
metrics, thus increasing the awareness of the problem
and connected risks.

• It illustrates a method to evaluate the real performance
of published classifiers, so that many already published
results can be correctly reinterpreted.

• It provides suggestions concerning the proper evaluation
of binary classifiers.

The importance of this study also derives from the nature
of the biomedical field: misinterpreting classification results
can lead to preferring a diagnostic model that is actually
worse than another model that achieves better measures, with
possibly quite serious consequences for patients’ health.

The rest of the paper is organized as follows. Section II
provides some basic information concerning performance
metrics. Section III illustrates the proposed procedure to
derive confusion matrices from published performance met-
rics, to compute additional performance metrics as well as
retrieve characteristics of the used test sets. In Section IV
a set of six representative research papers is analyzed: our
analysis shows that inaccurate use of performance metrics
can lead to wrong conclusions. The application of the pro-
posed technique makes it possible to reinterpret the con-
clusions provided by published articles. Section V accounts
for related work and positions our study in the context of
ongoing research. Section VI discusses how the illustrated
work can be applied to situations not addressed in our study.
Finally, Section VII draws some conclusions and outlines
future work.

In this article, we address specifically the medical domain;
nonetheless, the proposed considerations and practices can be
applied to binary classifiers in any domain. In fact, there are
multiple domains where the consequences of bad classifica-
tions can have quite serious effects.

II. BACKGROUND
The performance of a binary classifier can be assessed based
on a confusion matrix, whose schema is shown in Table 1.

TABLE 2. Performance Metrics and Prevalence.

In Table 1, AP and AN are the numbers of actual positives
and actual negatives, respectively. EP and EN are the numbers
of estimated positives and estimated negatives, respectively.
It is AP+ AN = EP+ EN = n, where n is the total number
of subjects in the considered dataset.

TN is the number of true negatives, i.e., the number of sub-
jects that are correctly estimated negative; TP is the number
of true positives, i.e., the number of subjects that are correctly
estimated positive; FN is the number of false negatives, i.e.,
the number of subjects that are positive but are incorrectly
estimated negative; FP is the number of false positives, i.e.,
the number of subjects that are negative but are incorrectly
estimated positive.

We denote by ρ =
AP
n the prevalence of positive subjects

in a dataset. Note that prevalence is tightly linked to the
concept of data imbalance: ρ = 0.5 indicates a perfectly
balanced dataset, while ρ close to zero or one indicates a large
imbalance, in favor of negatives, or, respectively, positive
subjects.

Sometimes, the confusion matrix is populated with rel-
ative values, i.e., TN

n , FP
n , FN

n , TP
n . We denote such val-

ues as tn, fp, fn and tp, respectively. Similarly, ep =
EP
n ,

en =
EN
n , ap =

AP
n , an =

AN
n . Note that ap = ρ and

tn+ fp+ fn+ tp = 1.

A. PERFORMANCE METRICS
The performance of a given binary classifier applied to a
given dataset is always completely represented by the confu-
sion matrix. However, researchers quite often prefer to sum-
marize performance via a single number rather than report the
values of the four cells of the confusion matrix. So, several
performance metrics have been defined as functions of the
cells of the confusion matrix. Table 2 shows some of the most
widely used performance metrics.

Several performance metrics provide a focused but partial
view of performance. For instance, in Table 2, PPV takes
into account data from a single row of a confusion matrix,
while TPR is computed using the data from a single column.
FM depends on all cells except TN. Other performance met-
rics, like φ, take into account all four cells of a confusion
matrix.
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B. PROBLEMS WITH THE F-MEASURE
The F-measure was originally defined to evaluate the perfor-
mance of information retrieval techniques [4]. The informa-
tion retrieval domain is characterized by a huge (and often
unknown) rate of actual negatives. For instance, aWeb search
based on a typical query returns hundreds or thousands of
relevant pages, out of more than 1013 total pages. It is clearly
irrelevant whether the correctly ignored pages are 1013 or
1014, or even more. So, the F-measure does not take into
account the number TN (or rate tn) of true negatives.
Being the geometric mean of Precision and Recall, which

are also quite popular performance metrics, the F-measure is
often perceived as a convenientmeans for obtaining an overall
evaluation of binary classifier performance. Its value can also
be computed according to (1), which clearly shows that the
F-measure does not depend on TN.

FM =
2

1
TPR +

1
PPV

=
2 TP

AP+ EP
=

2TP
2TP+ FN + FP

(1)

The F-measure as an overall performance metric has
drawn a lot of criticisms, because of its numerous drawbacks
[5], [6], [7].

The first problem directly descends from the fact that FM
does not take into account TN. Let us consider confusion
matrices CMa and CMb shown below, obtained for two dif-
ferent datasets. CMa and CMb only differ in the number of
true negatives

CMa
TN=30 FN=10
FP=40 TP=50

CMb
TN=100 FN=10
FP=40 TP=50

Both have the same value FMa = FMb =
2·50

2·50+10+40 ≃

0.67. So, the fact that 70 more true negatives are correctly
classified in CMb than in CMa is ignored.
Take now a third confusion matrixCMc, concerning a third

dataset.
CMc

TN=5 FN=10
FP=39 TP=51

It is FMc ≃ 0.68; thus, according to FM, one should
conclude that the performance represented by CMc is slightly
better than those represented in CMa and CMb. However,
though onemore actual positive is classified correctly inCMc,
when it comes to classifying actual negatives CMc performs
quite poorly.

Based on these examples and (1), it appears that although
ignoring true negatives is acceptable and even useful in
domains like information retrieval, FM is not an adequate
metric for quantifying the overall performance of a binary
classifier, since it does not use all available information about
the classification results. This is one of the main criticisms
made to FM by previous studies [5], [6], [7].

Another important limitation of FM is that knowing the
value of FM is not sufficient to evaluate how good the per-
formance of the given diagnostic test is. A binary classifier is

typically assessed by comparing its performance against the
performance of a baseline model. The whole point of learning
a binary classifier is to take advantage as much as possible of
the information about the characteristics of each individual
subject with the goal of estimating whether he or she is actu-
ally positive or negative. An alternative is to blindly carry out
the estimations by random classification, which can be taken
as the simplest baselinemodel. Clearly, it makes little sense in
general to adopt a diagnostic test that performs not better than
a random classifier, where each actually positive subject has a
probability ρ of being estimated positive. A binary classifier
that instead uses information about the features of subjects
(e.g., the results of a diagnostic test) should estimate actual
positives with a higher probability than ρ and, conversely,
actual negatives with a lower probability than ρ. The expected
(i.e., mean) values of TPR and PPV for a random classifi-
cation are both equal to ρ [8]: by using these values in (1),
we obtain FM=ρ as well, so, when evaluating a classifier,
we should compare its FM against ρ. Thus, the knowledge
of the value of FM by itself is not sufficient to tell whether
a classifier performs better than even random estimation [7].
For instance, suppose that FM = 0.85 for a binary classifier.
Even though specific guidelines for the interpretation of the
values of FM do not exist, FM=0.85 can be considered a
high value for FM. However, in a dataset in which ρ=0.9,
FM=0.85 would denote a worse-than-random (hence unac-
ceptable) performance. Even with ρ=0.8, FM=0.85 should
be considered as a mediocre performance.

Comparing the performance of a diagnostic test with a
baseline is a commendable practice, regardless of the specific
performance metric used. However, with some metrics the
comparison is immediate: for instance, random classifiers
have φ = 0 on average, for any value of ρ.

Despite the problems described above, the F-measure is
widely used in the field of medical diagnostics. This is clearly
dangerous, since there is the risk that unwarranted conclu-
sions are drawn from otherwise correctly conducted studies.

C. PROBLEMS WITH ACCURACY
The main problem with Accuracy is that it penalizes false
positives and false negatives in the same way. As an example,
let us consider the following confusion matrices, obtained for
a dataset with AP=AN=100:

CMd
TN=80 FN=20
FP=20 TP=80

CMe
TN=70 FN=10
FP=30 TP=90

ACC =
160
200 = 0.8 in both cases: the fact thatCMe involves

fewer false negatives and more false positives than CMd is
not considered. However, when the consequences of incorrect
diagnoses are taken into consideration, we may find that the
relative importance of false negatives is much greater than the
importance of false positives. In fact, the cost associated with
false positives is usually due to some additional diagnostic
tests, which in general reveal that the subjects are actually
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negative, so that there are no further costs. Instead, the cost
of false negatives may be huge: when fatal diseases are
concerned, incorrectly diagnosing a subject as negative may
delay additional checks and treatments, possibly resulting in
longer andmore expensive therapies and even causing serious
harm to the subjects.

In conclusion, the binary classifier whose results are in
CMe is in most cases preferable to a binary classifier whose
results are in CMd . Note that costs vary depending on the
specific situations at hand: in some cases, it is also possible
that false positives cost more than false negatives. Therefore,
the only way to let people accurately compute misdiagnoses
costs is by supplying the confusion matrix, rather than an
overall performance metric.

Random classifiers that estimate a given subject positive
with probability ρ have ACC = ρ2

+ (1 − ρ)2, on average.
When ρ = 0.1, ρ2

+(1−ρ)2 is 0.82; hence, even a high value
of ACC like 0.85 would actually indicate a performance that
is barely better than random classification’s.

III. A PROCEDURE TO RE-INTERPRET PUBLISHED
PERFORMANCE METRICS
The proposed method is based on the derivation of confusion
matrices from published performance metrics.

As illustrated above, performance metrics are obtained by
combining elements of the confusion matrix. Therefore, if we
have enough performance metrics obtained from the same
confusion matrix, it is possible to write a system of equations
whose solution yields the elements of the confusion matrix.

We illustrate the procedure by means of an example. Sup-
pose that a paper reports that a given diagnostic test achieved
ACC=0.706, TPR=0.430, FPR=0.031, and PPV=0.930.
Using the definition of these metrics, we obtain the following
system of equations where tp, fp, tn, and fn are the unknowns

tp+ tn = ACC = 0.706
tp

tp+ fn
= TPR = 0.430

fp
tn+ fp

= FPR = 0.031

tp
tp+ fp

= PPV = 0.930

By solving the system of equations, we obtain the follow-
ing rates confusion matrix

tn=0.495 fn=0.279
fp=0.016 tp=0.211

Note that the knowledge of even three performance metrics
instead of four would have allowed us to derive the rates
confusion matrix, because tn + fp + fn + tp = 1, so one
cell of the rates confusion matrix can always be computed as
a function of the other three (e.g., tp = 1 − tn− fp− fn).
The knowledge of the rates confusion matrix makes it

possible to carry out a few analyses, in addition to the ones
from the paper that reported only the values of ACC, TPR,
FPR, and PPV, as we now discuss.

A. COMPUTING ADDITIONAL PERFORMANCE METRICS
If a paper bases its conclusions on performance metrics like
Accuracy and F-measure, the risks described in the previous
sections apply. In such cases, it is a good idea to compute
additional performancemetrics, selected among themost reli-
able ones, and checkwhether the original conclusions are also
supported by these additional performance metrics. To this
end, several authors recommend using φ [7], [9]. In fact,
φ (see the definition in Table 2) is an effect size measure,
which quantifies how far the classification performed by a
binary classifier is from random classification, in which each
subject has the same probability of being estimated positive.
The value of φ obtained with random classification is 0. φ is

also related to the χ2 statistic, since |φ| =

√
χ2

n .
A recent study [7] showed that, in the software engineering

domain, around 22% of the results published in 38 considered
studies would be reversed if φ is selected as a performance
metric instead of the F-measure. This kind of risk is not
limited to a specific domain, since it stems from the very
definitions of the involved performance metrics.

In general, given two binary classifiers Ca and Cb, it is
possible that Ca performs better than Cb according to the
F-measure or Accuracy, while it performs worse than Cb
according to φ. Similarly, when considering a single binary
classifier Ca, it is possible that Ca achieves a quite high
value of F-measure or Accuracy, while it gets a rather low
φ. In these cases, we should trust φ or, even better, look for
further evidence about the real performance of the considered
binary classifier(s). To this end, it can be quite helpful to look
at the values of all the four cells of the confusion matrices,
instead of a single summarizing performance metric.

B. CONSIDERING COST
As already mentioned, the costs of false positives and false
negatives are different, in general. Nonetheless, Accuracy
assigns equal importance to false positives and false nega-
tives. In fact, Accuracy can be defined as

ACC=
TP+ TN

n
=
AP− FN + AN − FP

n
=
n− FN − FP

n

or, equivalently, as ACC = 1 − fn− fp.
Instead, the F-measure does not account equally for false

negatives and false positives. In fact, the definition of
F-measure in (1) can be rewritten as follows

FM =
2(AP− FN )

2(AP− FN ) + FN + FP
=

1

1 +
FN+FP

2(AP−FN )

.

Increasing or decreasing FN by some amount has more
impact on FM than does increasing or decreasing FP by the
same amount [10].

C. INTERNAL CONSISTENCY CHECKS
Having derived the confusion matrices concerning a diagnos-
tic test, a few checks can be carried out, especially concerning
the characteristics of the test set.
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AP and AN can be respectively computed as AP = TP +

FN and AN = TN + FP, and prevalence ρ (the fraction of
positive subjects) as ρ =

AP
AP+AN . To be clear, ρ is here the

prevalence of the test set, since it has been derived from the
performance metrics obtained by applying a given diagnostic
test to the test set.

When analyzing the comparison of multiple binary classi-
fiers, we can check if all of them were assessed with test sets
with the same prevalence. Ideally, multiple binary classifiers
should be assessed using the same test set, to have fully
meaningful comparisons. Finding that all test sets used for
the comparison of multiple binary classifiers in a scientific
study have the same prevalence does not guarantee that the
same test set was used. However, finding different prevalence
values is sufficient to conclude that different test sets were
used, which may impair the validity and usefulness of the
comparison.

IV. ANALYSIS OF SELECTED PAPERS
In this section, we use a few recent scientific papers from
well-known journals and conferences to illustrate the possible
problems deriving from using Accuracy and the F-measure,
and, when possible, show how to provide sounder, more
complete interpretations of the published results.

The papers we selected as examples are representative of
the usage of F-measure or Accuracy (possibly in combina-
tion with other metrics) and report enough data to make the
re-interpretation of results possible.

Note that we use the published data, which are typically
rounded to the third decimal digit. This implies that our
results are generally accurate up to the second decimal digit.
For instance, in the first row of Table 4, it is tn+fp+fn+tp =

1.001, instead of 1. This level of imprecision does not affect
our considerations.

In discussing each case, we use the terminology used in
the considered paper. So, for instance, we may write F-score
instead of F-measure, after the original paper.

A. CASE 1
We here consider a study that proposes ‘‘using a novel com-
bination of short-term and long-term features from different
timescales to develop an automatic newborn cry diagnos-
tic system to differentiate the cry audio signals (CASs) of
healthy infants from those with respiratory distress syndrome
(RDS)’’ [11].

The study reports the performance metrics of classifiers,
obtained using Support Vector Machines, using inspiration
episodes as well as classifiers using expiration episodes.
We consider only the classifiers using individual and com-
bined feature sets for the expiration dataset, whose perfor-
mance data reported in the original paper are in Table 3.
The conclusions of the study state ‘‘The combination of

long-term (melody1 and rhythm) and short-term (MFCCs)

1Tilt features were used in the study to parameterize the melody features
in the CAS.

TABLE 3. Performance of classifiers (Table 4 of [11]).

features was found to provide a better classification perfor-
mance for differentiating the CAS of healthy infants from
infants with RDS in comparison to using short-term fea-
tures alone, particularly for the expiration episodes. The best
improvements of the results (F-score) that we achieved were
10.3% in the expiration episode.’’

The values of the performance metrics reported allowed us
to compute the cells of the rates confusion matrix, based on
which we computed φ for every classifier. Table 4 shows both
the rates confusion matrices and the values of φ.

TABLE 4. Confusion matrices and φ derived from Table 4 of [11].

The data in Table 4 cast a new light on the results of the
classifiers.

If we base the evaluation on φ, as many authors suggest [7],
[9], [10], we can observe that the improvements obtained
using Tilt and Rhythm together with MFCC are marginal
(MFCC alone achieves φ = 0.48, together with Tilt and/or
Rhythm the classification reaches φ = 0.5). We also gather
evidence that Tilt or Rhythm alone provides performances
that are hardly better than random estimation (φ being close to
zero). The increase of F-score obtained using Tilt and Rhythm
does not correspond to an equally large improvement of φ.
This is possible because prevalence ρ in the test set is close to
0.5 [10]. In addition, according toφ, the best result is achieved
by MFCC&Rhythm, not by MFCC&Tilt&Rhythm, as stated
in the conclusions of the paper.

At any rate, we can base the evaluation of the results
directly on the confusion matrices, rather than on a perfor-
mance metric like F-score or φ. Let us consider the per-
formance of the classifier that uses MFCC&Tilt&Rhythm
against the performance of the classifier that uses only
MFCC. The former classifier increases tp and decreases fn,
at the expense of an increase of fp and a decrease of tn.
It achieves a high F-score because the decrease of tn is not
considered in the computation of the F-score. However, φ

does consider all of the confusion matrix elements: in this
case, the decrease of fn occurs with an increase of fp, and the
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increase of tp with a decrease of tn, so that φ does not change
much.

However, one could observe that increasing tp and decreas-
ing fn is what really counts for most diagnostic tests. Accord-
ingly, the classifier based on Tilt alone, which maximizes tp
and minimizes fn, could be considered a very good classifier,
even though it gives low values of both F-score andφ, because
of the relatively high number of false positives.

So, how good is the Tilt-based classifier in practice? The
answer to this question depends on the cost associated with
false positives: if such costs are low, classifications based on
Tilt could turn out to be preferable to all other classifications.
In general, as costs are quite context-sensitive, it is advisable
that studies like the one considered publish confusion matri-
ces (like in Table 4) so that anybody can perform contextu-
alized evaluations, by applying the most likely costs in the
considered situation. As for costs, we need to highlight that
global costs should be evaluated, taking into account not only
misclassifications, but also the cost of true positives (i.e., the
cost of the needed treatment) as well as a possibly limited
budget.

In conclusion, the usage of the F-score in the considered
study resulted in hiding a number of interesting considera-
tions, and in leading to overoptimistic conclusions.

B. CASE 2
In this section, we consider a paper that ‘‘proposes a new
framework to automatically identify or confirm COVID-19
in cough audio signals based on six machine learning algo-
rithms’’ [12]. The paper also proposes and evaluates the
usage of genetic algorithm (GA) in combination with the ML
techniques.

The paper reports different types of performance met-
rics, including F-score, Precision, Recall, and Accuracy. The
confusion matrices obtained by applying different machine
learning techniques are also given: this made the computation
of other performance metrics, like φ, straightforward.

Table 5 summarizes the confusion matrices that describe
the performances of classifiers obtained using usingML tech-
niques. It is a transcription of Fig. 7 of the original paper [12],
in which we added the computation of φ.

TABLE 5. Confusion matrices and φ for ML techniques [12].

Table 6 summarizes the confusion matrices that describe
the performances of classifiers obtained using GA-ML tech-
niques. It is a transcription of Fig. 8 of the original paper [12],
in which we added the computation of φ.

TABLE 6. Confusion matrices and φ for GA-ML techniques [12].

In addition, the original paper reported that in combination
with GA, all the ML techniques achieve accuracy over 90%.

The authors conclude that ‘‘The results showed that the
KNN algorithm provides the best results based on different
evaluation metrics compared with the other algorithms in
the detection and diagnosis process.’’ The statement appears
correct, in that KNN achieves the highest values of φ with
both ML (φ = 0.78) and GA-ML (φ = 0.89) techniques.
However, the authors also report results from other sim-

ilar papers, for the sake of comparison. Among others, the
paper reports the results, expressed via Accuracy, achieved
in a study by Pahar et al. [13], who noticeably used the
same dataset, i.e., the Coswara dataset. Based on the reported
results, the authors state ‘‘It is clear that the proposed frame-
work has more than an advantage over all of the conventional
methods. Therefore, our proposed framework is presented
for cough detection using a hybrid method of genetic and
ML models to improve the performance of existing machine
learning models in COVID19 detection.’’ Unfortunately, this
statement appears overoptimistic when results are evaluated
and compared via sounder performance metrics. As we did in
Case 1, we reconstructed the confusion matrices of the results
by Pahar et al. [13] and then computed φ, as shown in Table 7.

The comparison of Table 7 with Tables 5 and 6 shows that,
according to φ, Resnet50 appears to perform better (although
marginally) than any method proposed in the considered
study. It is also apparent that CNN’s performance is as good
as the best model proposed in the considered study.

Reconstructing the original classifications also allowed us
to carry out an additional check. Even though the two papers
claim to use the same dataset as the test set, ρ is 0.887 in
the paper by Hemdan et al. [12], while ρ is close to 0.5
in the paper by Pahar et al. [13]. This casts serious doubts
on the soundness of the comparison, which seems to involve
performance metrics computed on different datasets.

C. CASE 3
In this section, we deal with a study that aims ‘‘to predict
Chronic Kidney Disease (CKD)’’ [14]. The study investigated
different techniques to build classifiers, namely artificial
neural network (ANN), C5.0, logistic regression (LR), Chi-
square automatic interaction detection (CHAID), linear sup-
port vector machine (LSVM), K-nearest neighbors (KNN)
and random tree (RT). All the mentioned techniques were
applied with three types of feature selections: correlation-
based feature selection (CFS),Wrapper method, and LASSO.
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TABLE 7. Confusion matrices and φ for the results of [13].

In addition, classifiers were built with and without using
SMOTE to balance the dataset.

In the paper, a number of performance metrics were used,
namely Precision, Recall, Accuracy, F-measure, AUC (Area
Under the ROC Curve) and the Gini coefficient. Nonetheless,
the authors use only Accuracy both to compare the classifiers
obtained in their study and make comparisons with the results
reported in the literature. Also the conclusions are based on
Accuracy: ‘‘It was observed that LSVM achieved the high-
est accuracy of 98.86% in SMOTE with full features’’ and
‘‘LSVM achieved the highest accuracy in all experiments as
compared to other classifiers algorithms.’’

This study drew our attention because it reports several
performance metrics, but it bases its evaluations and conclu-
sions uniquely on Accuracy. This is particularly interesting,
because basing the evaluation on F-measure leads to dif-
ferent conclusions: KNN with CFS achieves a value of the
F-measure (0.985), which is slightly greater than the
F-measure (0.983) of the best-performing model according
to the authors (LSVM with SMOTE and full features).

Noticeably, in the conclusions, the authors also state that
‘‘Logistic and KNN did not give suitable results,’’ which
does not appear true, as far as KNN is concerned, when the
F-measure is taken into account.

Thus, we proceeded to derive the confusion matrices from
the published data, along the same lines as in the cases
described above. Based on the confusion matrices, we com-
puted φ. Considering φ, we can confirm the conclusions
of the study, since LSVM with SMOTE and full features
achieved the highest φ, namely 0.967. However, we can also
add a few considerations, based on φ:

• CHAID with SMOTE and feature selection achieves
φ = 0.958, i.e., a performance level that is only
marginally smaller than LSVM’s.

• The paper reports that ‘‘LSVM with penalty L2 gave a
better result in all techniques.’’ This statement is not true
when the comparison is based on φ: CHAID gets higher
φ than LSVM in a few cases. So, even though it is true
that LSM always achieves good performance, it is not
always the best performance.

At any rate, we must not necessarily regard φ as the ulti-
mate performance metric. In fact, looking into the confusion

matrices themselves supports a definitely more accurate and
complete evaluation. Let us consider the confusion matri-
ces of the considered methods when SMOTE and selected
features are used. The rates confusion matrices are given in
Table 8 (note that the study did not use LR and KNN in this
case).

TABLE 8. Confusion matrices and φ for results obtained with SMOTE and
selected features [14].

Table 8 shows that CHAID achieves slightly smaller values
of F-score, Accuracy, and φ, with respect to LSVM. Nonethe-
less, it achieves more true positives and fewer false negatives.
The performance metrics for CHAID are penalized by a
relatively high fraction of false positives. To draw a reliable
conclusion about which method is best, one should consider
the cost of false positives: if the cost of false positives is small
enough, CHAID is preferable to LSVM.

At any rate, while performing the computations to derive
confusion matrices from the data retrieved from the original
paper, we found a few problems (as described inAppendixA)
that cast some doubts on the reliability of the data,
although they do not affect the validity of the observations
above.

D. CASE 4
We now analyze the results of a study aimed at ‘‘demonstrat-
ing that it is possible to reliably identify cases of chronic
spinal cord injury or disease (SCI/D) in a primary care
electronic medical records database using a detailed case
definition, a comprehensive keyword search strategy, and a
rigorous manual chart review process’’ [15].

The original paper reports the confusion matrices for all of
the proposed algorithms, and uses the F-score (along with its
components Recall and Precision) to identify the best results.
Using the confusion matrices, we computed φ, as shown in
Table 9.
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TABLE 9. Confusion matrices and φ for the best results of [15].

Table 9 shows that
• High values of the F-score correspond to high values of

φ. This is consistent with the fact that ρ is rather small
(ρ =

AP
n =

126
126+677 ≃ 0.157) [10].

• The algorithm featuring the highest F-score also has the
highest φ.

• The algorithm that has the highest F-score and φ is also
the one that maximizes TP and minimizes FN.

• In all cases, ρ ≃ 0.157. This indicates that the various
algorithms were tested with the same dataset (or datasets
having the same prevalence).

In conclusion, in the considered case, looking at the con-
fusion matrices and φ confirms the considerations based on
the F-score, but with greater confidence on the correctness of
the evaluations.

However, by considering the confusion matrix, it is pos-
sible to note two interesting characteristics of the proposed
diagnostic test. First, the test tends to estimate negative more
subjects than the actual negatives, i.e., for all rows of Table 9
it is TN + FN > AN . Second, more than 30% of the positive
subjects are incorrectly estimated negative: this may have
important adverse consequences.

E. CASE 5
In this section, we consider a paper that proposed and evalu-
ated the usage of fecal immunochemical tests (FIT), which is
commonly used for screening, for detection of H. pylori, the
main risk factor for gastric cancer [16].

The authors compared the results obtained via 1) ELISA
stool antigen test in standard feces tube (SAT), 2) ELISA
stool antigen test in FIT tube (Hp-FIT), and 3) blood sampling
(Serological), by using performance metrics PPV, NPV, Sen-
sitivity (alias TPR), Specificity (alias TNR) and Accuracy.
Based on the collected results, the authors observe that2 ‘‘SAT
and Hp-FIT showed comparable overall accuracy 71.1% vs.
77.6%, respectively; sensitivity of SAT was 91.8% versus
94.2%. Serology scored low with an overall accuracy of
49.7%.’’ Based on these observations, the authors conclude
that FIT can be used with high accuracy and sensitivity for
diagnosing H. pylori and is rated as the most convenient test.

This case is a bit different from the previous ones, in that
those concerned the usage of binary classifiers (mostly
derived via machine learning techniques), while the present
case deals with the direct evaluation of the performance of

2The authors also report confidence intervals, which we do not use here,
although the same kind of reasoning we propose can be applied to confidence
intervals as well.

different diagnostic tests. At any rate, performance metrics
are used in this case for the same purpose and in the same
way as in previous cases.

From the published performance metrics, the confusion
matrix could be easily derived. It is shown in Table 10, along
with φ.

TABLE 10. Confusion matrix and φ for the results of [16].

Based on Table 10, we can add some arguments that sup-
port the conclusions of the authors: first, Hp-FIT achieves
the highest value of φ; second, Hp-FIT minimizes fn and
maximizes tp; third, although the performances of Hp-FIT
and SAT are very close as far as fn and tp are concerned,
Hp-FIT achieve better fp and tn than SAT.

In this case, our technique increases the confidence that the
conclusions reported in the original paper are well supported
by the collected data.

F. CASE 6
Gupta et al. [17] developed a Neural Architecture Search
(NAS) method to find the best convolutional architecture
capable of detecting pneumonia from chest X-rays. They
proposed a Learning by Teaching framework inspired by
the teaching-driven learning methodology from humans, and
conducted experiments on a pneumonia chest X-ray dataset
with over 5000 images. The proposed method achieved
AUC=97.6%; Gupta et al. state that this ‘‘improves upon
previous NAS methods by 5.1% (absolute).’’

In Table 1 of their paper, Gupta et al. provide several
performance metrics, including TPR, TNR, FM and ACC.
These metrics were obtained from ‘‘fivefold cross valida-
tion’’; the reported metrics are ‘‘the mean and standard devi-
ation of the five test performance numbers.’’ Gupta et al.
compared the results of their methods (LBT-DARTS and
LBT-PC-DARTS) with the results of other 18 methods. The
standard deviation was greater than 0.01 only in 6 cases out
of 80, and also in those cases it was just slightly greater than
0.01; hence, in what follows, we consider only the mean
values, which appear to be reliable representations of the
obtained performances.

As in previous cases, we computed tp, fn, tn and fp for
each method, based on the provided performance metrics.
The results are in Table 11.
The observation of Table 11 reveals that ap ranges from

0.435 to 0.729. This implies that the considered methods
were tested with datasets having different prevalence: as a
consequence, the reliability of results is dubious.

It can be noticed that the data that we computed include
some error, due to the relatively low precision of the original
data: for instance, it can be noticed that ap+an is not always 1,
being slightly greater than 1 in all the rows of Table 11.
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TABLE 11. Table from [17] with derived tp, fn, tn, fp.

Nonetheless, the differences among ap values are too large
to be due only to the precision of our computations.

The observation of Table 11 reveals also that the method
by Siddiqi appears to feature better fn than LBT-PC-DARTS,
hence it could be preferable, if the cost of false negatives is
prominent. Unfortunately, in this case the precision of the
computed fn does not allow us to be sure that Siddiqi’smethod
is preferable. As already noted, the authors themselves should
provide the confusion matrices, so that the readers can draw
their conclusions about which method is preferable.

G. FINAL REMARKS ON THE ANALYSIS OF PAPERS
We observed that several papers (including many not dis-
cussed here) use F-score and Accuracy, because these metrics
had been used in similar previous papers. The motivation
is that authors want to compare the results yielded by the
new techniques and models they propose with the results
that had been achieved previously. This mechanism seems to
perpetuate the usage of performance metrics that, as shown
above, have serious drawbacks.

In addition, several papers propose evaluations based on
datasets having different prevalence. This phenomenon was
observed both within the same paper and when comparing
results from different papers.

The application of the proposed procedure to the six cases
discussed above shows that it was possible to uncover prob-
lems with the evaluation of binary classifiers. In addition,
we could also compute reliable indicators of performance.
Specifically, in some cases, we were able to perform sound
comparisons of results published in different papers.

V. RELATED WORK
The relevance of Accuracy and the F-measure in medical
informatics has been documented in a systematic literature
review byHasan andYao [18]. They found that ‘‘accuracy and
specificity are among the most popular performance metrics

used’’ and ‘‘as of 2018, the F-measure began to attract the
researchers’ attention and then used dramatically for perfor-
mance measurement.’’

The characteristics of performance metrics have been—
and still are—studied by several researchers, both empirically
and theoretically. The pros and cons of performance metrics
are also the subject of study by researchers.

Chicco and Jurman described the advantages of the
Matthews correlation coefficient (i.e., φ) over FM and
ACC [9]. They observed that ACC and FM can dangerously
show overoptimistic inflated results, especially on imbal-
anced datasets. Instead, φ is considered a more reliable per-
formance metric: they show the benefits of φ by explaining
some mathematical properties, and then the qualities of φ in
six synthetic use cases and in a real genomic scenario.

In a more recent paper, Lavazza and Morasca described
analytically the relationship that links FM and φ (and
ρ and EP) [10], thus providing the theoretical foun-
dations that support the observations by Chicco and
Yourman [9].

Chicco et al. also discussed why φ is more reliable than
other performance metrics for the evaluation of binary clas-
sifiers. Specifically, they addressed balanced accuracy, book-
maker informedness, and markedness [19], Cohen’s Kappa
and Brier score [20] and the diagnostic odds ratio [21].

Some preliminary study concerning the relationship
between the ROC AUC and φ was studied by Lavazza et
al. [34]. Specifically, they studied the relationship when φ

is constant for all the threshold values corresponding to the
ROC curve points.

VI. ADDITIONAL CONSIDERATIONS
In this section, we deal with some additional aspects of clas-
sifiers and their evaluation. Though not completely related
to the previous sections, they show how our work could be
expanded and be the object of further work.
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A. DEALING WITH COSTS
Usually, the binary classifiers that we build are not perfect,
i.e., they involve a number of incorrect classifications (false
positives and false negatives). Since incorrect classifications
are associated to some cost, a reasonable way for evaluating
binary classifiers consists in computing the cost of incorrect
classifications.

Misclassification cost (MC) was used to evaluate the prac-
tical usefulness of binary classifiers, in different fields [22],
[23], [24], [25]. It is defined as follows:

MC = CFNFN + CFPFP

where CFN and CFP are the costs per false negative and false
positive, respectively.

MC shows how to take into account the cost of false
positives and false negatives explicitly. However, other cost
models could be adopted, depending on the specific context.

In a way, cost is the ultimate performance metric: if the
values of CFN and CFP are known, then there is no need to
use other performance metrics.

It can be argued that the exact knowledge of CFN and CFP
is hardly ever possible. While that is true, we observe that
such exact knowledge is in general not really necessary. For
instance, when comparing the performances of two binary
classifiers, what one needs to know is whether the ratio
between CFN and CFP is above or below a specified value.
It is much more likely that this information is available.

B. VARIABLE THRESHOLD CLASSIFICATION
The considerations reported in the above sections concern
proper binary classifiers, which, given a subject, always clas-
sify it as either positive or negative

There are several situations when a binary classifier is
obtained based on other model or knowledge. For instance,
a function f (X ) that estimates the probability p that a subject
X is positive (hence, the probability 1-p that X is negative)
can be used to define a binary classifier, e.g., by considering
X positive if and only if f (X ) > t , where t is a threshold that
can be determined in different ways. In cases like this, one is
often interested in evaluating the classifications that can be
obtained via different values of t . This is especially the case
then the ‘‘best’’ value of t is not known, while it is possible
to devise a reasonable range for t .

In these cases, it is common practice to represent the
performance of the family of classifiers obtained by varying
t via a ROC curve [26]. ROC curves represent a different
concept with respect to the performance metrics discussed in
the previous sections, since a ROC curve represents different
performances, depending on the threshold chosen. In fact,
every point of a ROC curve corresponds to a specific con-
fusion matrix.

The Area Under the Curve (AUC) is often used to sum-
marize the performance of the family of classifiers into a
single number. Although it is widely used, the AUC has a few
drawbacks. Among these is the fact that AUC is computed

for the entire ROC curve, i.e., for all the possible values of
the threshold t , even though some values of t are not suitable
for being used in practice [8], [27], [28], [29]. To overcome
this problem, it has been proposed to use partial AUC, which
considers only a section of the curve and a portion of the ROC
space [8], [30], [31], [32].

It is known that AUC is the mean TPR of the classifiers
obtained form all the possible values of threshold t [33]. Some
research concerning the relationship between AUC and φ is
ongoing [34].

C. MULTICLASS CLASSIFICATION
Many diagnostic activities involve multiclass classification,
i.e., subjects are classified into three or more classes. For
instance, several tests for dementia detection consider three
classes: mild cognitive impairment (MCI), dementia, and nor-
mal. In these cases, when evaluating a classifier, one should
consider that classes are not equally distant from each other.
For instance, given a subject that has dementia, an incorrect
classification of the subject as normal is a bigger error than
classifying the subject as having MCI.

Therefore, most performance metrics, namely those
involving false positives and false negatives, cannot be
applied as-is to multiclass classification. Instead, perfor-
mance metrics should involve some sort of weighting,
to account for the distance among classes.

The considerations reported in the previous sections are
conceptually applicable to multiclass classification as well.
Specifically, reporting the confusion matrix is even more
important than for binary classification, since each element of
the matrix can be assigned a difference importance (or cost),
which implicitly determines the distance among classes. For
instance, using the example mentioned above, in the confu-
sion matrix you have (among others) two cells, representing
the subjects having dementia and classified, respectively,
as normal or having MCI. By assigning a weight or a cost to
these cells, you are also defining the distance between MCI
and dementia and normal and dementia.

VII. CONCLUSION
Several performance metrics have been proposed to eval-
uate binary classifiers and diagnostic tests. These metrics
have the merit of summarizing performance (which is fully
represented by a confusion matrix) into a single number,
which appears easier to understand and makes comparisons
straightforward.

However, most performance metrics make implicit
assumptions and hide important characteristics of classifiers,
also in relation to how they are evaluated. For instance,
F-measure ignores the true negatives, while Accuracy and
φ assume that false positives and false negatives have the
same cost. Similarly, the relationships that link performance
metrics to each other or to the prevalence of the dataset are
largely ignored.

In this paper, we have discussed a few properties of
Accuracy and F-measure, and we have shown how the
improper or naive usage of these performance metrics can
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lead to partial or incorrect evaluations.We have also proposed
a technique to reinterpret published evaluations based on
F-measure, Accuracy, and other metrics (including Precision,
Recall, etc.). The proposed technique is based on reconstruct-
ing the confusion matrix from the available performance
metrics. In fact, the confusion matrix supports the evaluation
of performance from different points of view (e.g., the cost of
incorrect diagnoses) and according to a specific context.

When applied to a few research papers, the proposed
re-interpretation technique showed that some papers present
overoptimistic interpretations of the obtained results, while
others draw erroneous or incomplete conclusions from the
obtained results, especially when comparing the latter with
previously published results.

Finally, we recommend that new evaluations be provided
with the complete confusion matrices, so that readers can
formulate personal evaluations, based on specific contexts
and priorities.

APPENDIX A
PROBLEMS WITH CASE 3
The original paper by Chittora et al. [14] provides Accu-
racy (ACC), Precision (PPV) and Recall (TPR) metrics.
We derived the confusion matrices by solving the following
set of equations, three of which are definitions, and the fourth
is a property of confusion matrices:

tp+ tn = ACC
tp

tp+ fn
= TPR

tp
tp+ fp

= PPV

tp+ tn+ fp+ fn = 1

The system of equations can be solved as follows:

tn = ACC − tp

fn = tp
1 − TPR
TPR

fp = tp
1 − PPV
PPV

tp+ ACC − tp+ tp
1 − PPV
PPV

+ tp
1 − TPR
TPR

= 1

Last equation yields

tp =
1 − ACC

1−PPV
PPV +

1−TPR
TPR

so, tp can be computed, because ACC, PPV, and TPR are
known. The value of tp can then be used to compute tn, fn
and fp.
Based on the obtained results, we spotted two problems,

described below.

A. VARIABLE PREVALENCE OF TEST SETS
We computed the prevalence of the test sets as ρ = ap =

tp+ fn (being tp and fn relative values, ap is the rate of actual
positives in the test population).

When considering the confusion matrix derived from
Table 4 of the original paper (i.e., the table that reports

the results obtained with no feature selection and without
applying SMOTE), we have that

• Methods ANN, C5.0, LR, CHAID, LSVM and RT were
tested with test sets having ρ in the [0.362, 0.375] range.

• Method KNN was tested with a test set having
ρ = 0.504.

This observation triggers an obvious question: why was
method KNN tested using an almost perfectly balanced test
set, while the other methods were tested using definitely more
imbalanced data? Moreover, why not use the same test set for
all methods, given that adopting a unique test dataset would
make the comparison of results from different methods more
reliable?

B. INCONSISTENCY
Table 5 of the original paper (reporting results achieved with
CFS and without SMOTE) reports the following performance
metrics for KNN: PPV (Precision)=0.9705, TPR (Recall)=1,
ACC (Accuracy)=0.5317.
TPR =

tp
tp+fn = 1 implies that fn = 0. ACC = tp + tn =

(ap− fn) + (an− fp) = 1 − fn− fp. Being fn = 0, we have
ACC = 1 − fp = 0.5317, hence fp = 1 − 0.5317 = 0.4683.
Finally, PPV =

tp
tp+fp = 0.9705, hence tp =

fp PPV
1−PPV =

0.4683·0.9705
1−0.9705 ≈ 15.4, which is not possible: being a relative

value, tp cannot be greater than one.
We found this type of inconsistency for the performance

metrics concerning LR and KNN in Tables 5, 6, and 7 of the
original paper (LR and KNN do not appear in the following
Tables).

As already noted, in the conclusions of the study (‘‘Logistic
and KNN did not give suitable results’’) might have been
affected by the inconsistencies described above.
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