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ABSTRACT Low-light image enhancement (LLIE) is a method of improving the visual quality of images
captured in weak illumination conditions. In such conditions, the images tend to be noisy, hazy, and have
low contrast, making them difficult to distinguish details. LLIE techniques have many practical applications
in various fields, including surveillance, astronomy, medical imaging, and consumer photography. The total
variational method is a sound solution in this field. However, requirement of an overall spatial smoothness
of the illumination map leads to the failure of recovering intricate details. This paper proposes that the
interaction between the global spatial smoothness and the detail recovery in the total variational Retinex
model can be optimized by adopting a structure-awareness regularization term. The resultant non-linear
model is more effective than the original one for LLIE. As a model-based method, its performance does
not rely on architecture engineering, super-parameter tuning, or specific training dataset. Experiments of
the proposed formulation on various challenging low-light images yield promising results. It is shown that
this method not only produces visually pleasing pictures, but it is also quantitatively superior in that the
calculated full-reference, no-reference, and semantic metrics are beyond most of state-of-the-art methods.
It has a better generalization capability and stability than learning-based methods. Due to its flexibility and
effectiveness, the proposed method can be deployed as a pre-processing subroutine for high-level computer
vision applications.

INDEX TERMS Low-light image enhancement, total variational retinex model, structure-awareness.

I. INTRODUCTION
High-contrast and high-visibility images not only reflect
abundant details for target scenes, but are also crucial for
many high-level computer vision tasks, such as object detec-
tion [1], and segmentation [2]. Unfortunately, most photos
are captured from sub-optimal lighting conditions suffering
from back-lit, non-uniform lighting, weak or extremely low-
illumination, color cast, and intensive noise. The low visual
quality of these images would have detrimental effect to
high-level algorithms. Low-light image enhancement (LLIE)
refers to the research activities that devote to solve this
problem [3]. Both model-based and learning-based methods
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are included and prosperous, such as histogram equalization
(HE) [4], [5], Retinex based methods [6], [7], [8], deep
neural networks (DNNs) [9], as well as network architec-
ture searching [10]. However, the HE-based techniques can
result in over-saturation or under-saturation of certain pixels.
This may lead to an unrealistic looking without natural color
balance. The HE also cannot handle high contrast scenes
well and can make the image look unnatural. On the other
hand, the Retinex-based conventional algorithms may lead
to color shifts and artifacts. Moreover, such a technique is
time consuming to process large images or videos, making it
impractical for real-time applications.

The recent progress of deep-learning (DL) enables
researchers to take great advantage of this kind of learning-
based methods to solve LLIE problems. However, the
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performance of these DNNs heavily relies on elabo-
rately designed network architectures and carefully selected
paired/unpaired large-scale training data. When presented
with real-world images whose statistical distribution is not
included in the training data, most of these DNNs would give
rise to unsatisfactory visibility. Moreover, learning-based
methods should be regarded as a black box that fits to certain
training data. It would be inevitably suffered from a lack
of interpretability. This could bring difficulties in analyzing
the nature of LLIE itself so as to find potential cue for
improvement.

Due to these existing limitations in learning-based meth-
ods, this work turns to the model-based method for the
seeking of improvements. Compared with the learning-based
method, the model-based has good interpretability and it
can better explore the structure of low-light images. Since
it does not rely on specific training data, the model-based
method may be more robust than the learning-based, lead-
ing to a satisfactory performance in the wild. In this way,
we propose TV_SA which is a model-based LLIE by inte-
grating a structure-awareness (SA) regularization term into a
total variational (TV) Retinex model. Previous TV methods
[6], [11] require an overall spatial smoothness of the illu-
mination field. Although the assumption is effective for
image denoising, this smoothing process can also remove
important image features, making the frameworks noneffec-
tive. Another issue is that the frameworks can lead to over-
smoothing of the image in regions of high contrast. This
over-smoothing can result in loss of details and information,
especially in regions such as edges and corners [12]. As amat-
ter of fact, how to restore the details of the enhanced image is
a primary concern of many LLIE investigations. In order to
solve this problem, various SA regularization terms have been
proposed in the previous works [7], [13], which can help to
recover the details of the enhanced images. Inspired by these
works, this paper designs a new SA regularization termwhich
can be integrated into the TV Retinex model. The modified
TV model not only improves the brightness and reduces the
noise, but also retains more details. To make an unbiased
quantitative and qualitative evaluation of TV_SA, we collect
207 images that suffer inevitable noise and poor visibility
from real environments. These images compose a challenging
low-light image dataset. In addition, TV_SA is also evaluated
on the well-known benchmark datasets. In summary, the
contributions of this work are as follows:
• A new SA regularization term which can be integrated
into a TV Retinex model is proposed. Different from
the previous works, this SA regularization term uses
the square of l2 norm of the gradient of reflection to
weight the gradient of the illumination. This not only
enables the derivation of a differential equation that can
be solved via the multi-resolution projected normalized
steepest descent (PNSD) method, but it also associates
with the lighting property of the image. Therefore, the
present assumption is more physically motivated than
previous ones.

• In contrast to existing learning-based LLIE, the present
method dose not contain any trainable parameters. As a
result, TV_SA will not be biased to specific training
data. The quantitative and qualitative evaluations guar-
antee the universality of the present method with supe-
rior performance than DL ones.

• We propose a low-light image dataset that contains pho-
tos captured by different mobile devices under diverse
illumination conditions to evaluate the generalization
capability of LLIE methods. It is shown that the dataset
is challenging and the performance of most LLIE meth-
ods is barely satisfactory.

The remainder of this paper is organized as follows.
Section II summarizes the recent works regarding the
progress of Retinex-based LLIE methods and recently pro-
posed SA regularization terms. In section III, the proposed
new variational framework with its mathematical formulas
is presented and the associate numerical method is also pro-
vided. In Sec. IV, the experiments are preformed on three
benchmark datasets and comparison ismade between existing
methods. The conclusions are drawn in the final section.

II. RELATED WORKS
A. RETINEX THEORY IN LLIE METHODS
A model-based LLIE method often relies on a certain math-
ematical model with assumption about human visual system
(HVS) or imaging process of specific device. The most com-
monly used assumption is the well-known Retinex theory
which addresses the problem of separating the illumination
from the reflectance in a given image [14]. Since it is a math-
ematically ill-posed problem, several decomposition strate-
gies have been proposed under variational frameworks [6],
[11], [15]. In these works, the decomposition is solved by
a variational equation with certain priors such as the global
smoothness of the illumination map. The illumination is
enhanced by a Gamma correction and then it synthesizes with
the reflectance. Although the brightness is increased and the
noise is reduced, the details are inevitably blurred. In order
to preserve naturalness and in the mean time enhance details,
the lightness-order error measure, the bright-pass filter, and
the bi-log transformation are adopted into the Retinex-based
algorithm to encourage naturalness preservation [16]. To opti-
mize the image restoration, model-based methods whose
energy functions are under maximum a posteriori framework
are proposed [7], [17], [18]. With the recent progresses in
DL-based methods, sophisticated loss functions are designed
to train the DNNs for the Retinex decomposition. Retinex-
Net is an end-to-end trainable network with a decomposi-
tion module and an illumination adjustment module [13].
To address the lack of paired training data, a self-supervised
learning framework combining the Retinex theory with max-
imum entropy to impose the constraint on reflectance is
proposed [19]. With the recent development of auto-machine
learning, authors make great efforts to explore the searching
method for most efficient DNNs that may be suitable for
LLIE tasks. Since the searching space for DNNs is huge, the
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Retinex theory can play the role as the heuristics to guide
the searching [10]. Furthermore, effort is also devoted to
design new attention mechanism, such as signal-to-noise-
ratio awareness network [20]. In this way, the algorithm could
adaptively focus on which patches need to be enhanced most
and which need not.

Although these attempts have shown promising perfor-
mance on LLIE, two main shortcomings are still remained.
On the one hand, they cannot cope with heavily noisy image
captured in extremely low-light conditions. The outputs often
look unnatural with artifact and blocks. On the other hand, the
details in the enhanced images are lost. Therefore, a method
that can simultaneously handle above issues is highly
desirable.

B. STRUCTURE-AWARENESS REGULARIZATION
As a matter of fact, the concept of SA is not new. It is
a regularization term designed for restoring image details
and it can be found in certain publications. LIME proposed
in [7] includes a SA regularization to refine the illumination
map based on the initial one. For Retinex-Net in [13], a SA
term is added to the loss function which would guide the
training process to preserve more details. For LIME [7], the
SA constraint is weighted by a constant illumination map,
which is the maximum intensity of each pixel in R, G, and
B channels. Such a static initial estimation may not depict
the image structure. Instead, Retinex-Net uses reflectance
to weight the smoothness loss. This makes the model more
sensitive to image domain with a large reflectance gradi-
ent. However, as a learning-based method, Retinex-Net will
be inevitably fitted to certain training data. Its performance
would be degenerated when feeds on real world images char-
acterized by various data distributions. Additionally, the noise
is inevitably enhanced even if it uses a post-processing layer
that is based on BM3D [21]. To integrate the strengths from
the above methods, we formulate a modified SA constraint
into a TV Retinex model which would be effective for the
noise reduction and structure preservation.

III. METHODOLOGY
To provide a comprehensive understanding of our methodol-
ogy, the pipeline of the proposed method will be elaborated
in this section. The overall method is attribute as TV_SA for
short.

A. VARIATIONAL RETINEX MODEL WITH
STRUCTURE-AWARENESS
In Retinex theory [11], a source image S can be decomposed
into two factors, say a reflectance imageR and an illumination
image L. At a given point (x, y) in the image domain, it can
be formulated as

S(x, y) = R(x, y) · L(x, y), (1)

where · denotes the element-wise matrix multiplication.
Recovering the illumination form a given image is a highly
mathematically ill-posed problem. Solving it needs additional

FIGURE 1. (Color online) Overall framework of TV_SA-based LLIE method.
The source image is decomposed into a reflectance image and an
illumination image via TV_SA. The illumination image is enhanced by a
Gamma correction and then recombines with the reflectance.

priors or constraints. The first step taken by most methods
is the conversion to the logarithmic domain by s = log S,
l = logL, and r = logR, and thereby s = l + r . In the
following, we list the known priors about the illumination
image [11].
• The overall spatial smoothness is the first and most
important assumption about the illumination image.

• Since R is restricted to the unit interval, the constraint
L ≥ S should be added. It is also had that l ≥ s because
the log function is monotone.

• A trivial solution l = Const , where Const is any con-
stant above the maximal value of s, satisfies the two
previous assumptions. Therefore, the assumption that
the illumination image is close to the intensity image s
should be added. It minimizes a penalty term of the form
dist(l, s), e.g., the L2 norm (l − s)2.

• Boundary conditions are necessary for solving the par-
tial differential equation (PDE) which is derived from
minimizing the functional. It is assumed that the illu-
mination is continuous as a constant beyond the image
boundaries. This artificial assumption would have minor
effect on the final results [11].

By these assumptions, the solution of Eq. (1) can be obtained
via the following variational problem:

Minimize:

F[l] =
∫

�

[
|∇l|2 + α(l − s)2 + β|∇(l − s)|2

]
dxdy, (2)

Subject to:

l ≥ s and ⟨∇l, n⃗⟩ = 0 on ∂�,

where ∇ is the gradient operator, � is the support of the
image, ∂� is its boundary, and n⃗ is the normal to the bound-
ary. In Eq. (2), α and β are free non-negative real parameters.
The numerical inner product ⟨G,F⟩ is defined as

⟨G,F⟩ =
N∑
n=1

M∑
m=1

G[n,m]F[n,m]. (3)

Terms in functional F[l] are explained as follows:
• The first penalty term (|∇l|2) forces spatial smoothness
on the illumination image.
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• The second penalty term (l − s)2 forces a proximity
between l and s. The difference between these images
is exactly r , which means that the norm of r should be
small (i.e., R tends to white).

• The third term represents a Bayesian penalty expression.
It forces r to be a ‘‘visually pleasing’’ image.

• In addition, the solution l forces to be l ≥ s. In practice,
this penalty term should be weak in order not to pull l
down too much towards s.

By inserting the functional F[l] into the Euler-Lagrange (EL)
equation, a PDE can be obtained whose solution is the l.
When l is solved, it would be tune up by a Gamma correction

L ′ = W ·
(
L
W

) 1
γ

. (4)

Here, L’ is the enhanced illumination, L = exp(l), W is the
white value, and γ is a free parameter. The final result S ′

yields

S ′ = L ′ · R, (5)

where R = exp(r).
In the TV problem defined in Eq. (2), both l and r are

required to be smooth, it fails at regions where the image
has strong structures or where lightness changes drastically.
To deal with it, we modify hypothesis 1 by making a
replacement:∫

�

|∇l|2→
∫

�

|∇le−
λ
2 |∇(s−l)|

2
|
2, (6)

where λ is the coefficient balancing between the strength
of SA regularization and other terms. With the weight
e−

λ
2 |∇(s−l)|

2
, functional F[l] loosens the constraint for l

smoothnesswhere the gradient of reflectance is steep. In other
words, the illumination should be discontinuous or not so
smooth in the region where image structures locate. With Eq.
(6), the TV problem in Eq. (2) is reformulated as

Minimize:

F[l] =
∫

�

[|∇le−
λ
2 |∇(s−l)|

2
|
2
+ α(l − s)2

+ β|∇(l − s)|2]dxdy, (7)

Subject to:

l ≥ s and ⟨∇l, n⃗⟩ = 0 on ∂�,

Since Eq. (7) is featured by SA, it is attributed as TV_SA
for short. An overall pipeline of TV_SA-based LLIE is pro-
vided in Fig. 1. In following sections, it is shown that the
numerical solution can still be obtained based on a multi-
resolution PNSDmethod as the original TV. The illumination
and reflectance are updated simultaneously at each iteration.

B. EULER-LAGRANGE EQUATION
The solution of TV_SA in Eq. (7) can be found by inserting
functional F[l] into the EL equation,

∂F
∂l
=

∂

∂x

(
∂F
∂lx

)
+

∂

∂y

(
∂F
∂ly

)
. (8)

FIGURE 2. (Color online) A sketch of multi-resolution PNSD method.
Here, si (i ∈ [1, p]) denotes the source image coarse-grained at i th
resolution layer with li being the corresponding illumination image.

Here, lx/y = ∂l
∂x/y is the partial derivatives of l with respect to

x or y, and ∂F
∂lx/y

are the functional derivatives ofF with respect
to lx/y. Using these notions, Eq. (7) can be formulated as

F[l] =
∫

�

(l2x + l
2
y )e
−λ[(sx−lx )2+(sy−ly)2] + α(l − s)2

+ β[(lx − sx)2 + (ly − sy)2]dxdy, (9)

where sx/y = ∂l
∂x/y is the partial derivatives of s with respect

to x or y. With Eq. (9), derivatives in Eq. (8) are calculated as
follows:

∂F
∂lx/y

= 2lx/y(1+ λ|∇l|2)e−λ|∇(s−l)|2 , (10)

and

∂

∂x/y

(
∂F

∂lx/y

)
= 2lxx/yy(1+ λ|∇l|2)e−λ|∇(s−l)|2

+ 2lx/yλ
∂

∂x/y
|∇l|2e−λ|∇(s−l)|2

+ 2lx/y(1+ λ|∇l|2)
∂

∂x/y
e−λ|∇(s−l)|2

≈ 2lxx/yy(1+ λ|∇l|2)e−λ|∇(s−l)|2 . (11)

Here, lxx/yy = ∂2l
(∂x/y)2

is the second order partial derivatives
of l with respect to x or y. To obtain a closed-form solutions,
the spatial derivatives on gradients |∇l|2 and |∇(s − l)|2 are
neglected in Eq. (11). By inserting Eqs. (10) and (11) into
Eq. (8), one finds that

∇
2l(1+ λ|∇l|2)e−λ|∇(s−l)|2

− α(l − s)+ β∇2(l − s) = 0.
(12)

Here, ∇2 is the Laplacian. In the next section, the numerical
solution of the above equation is discussed.

C. NUMERICAL SOLUTION
A multi-resolution PNSD method [11] is used to solve Eq.
(12). This method constructs a Gaussian pyramid from the
source image s by the kernel κPYR at a downsampling rate of
2:1. Here, the kernel κPYR reads

κPYR =


1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 . (13)
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This kernel would be applied p times and gives rise to a
pyramid of images {sk}

p
k=1, where s1 = s and sp is the

most coarse-grained image. The iteration should be start at
sp layer and the initial condition is l0 = max{sp}. For the
kth resolution layer, the solution lk can be obtained by first
calculating the LaplacianLs = ∇2

k sk and gradientGs = ∇ksk .
The numerical Laplacian is defined as

∇
2
k sk = sk ∗ κLap2−2(k−1), (14)

where the kernel κLap is given as

κLap =

 0 1 0
1 −4 1
0 1 0

 . (15)

The numerical gradient is defined as

∇ksk = sk ∗ κxGradex + sk ∗ κ
y
Gradey, (16)

where the kernels κxGrad and κxGrad are given as

κxGrad =

−1 0 1
−2 0 2
−1 0 1

 , (17)

and

κ
y
Grad =

−1 −2 −10 0 0
1 2 1

 , (18)

and ex/y are the unit vectors along x/y directions.
For j ∈ {1, . . . ,Tk}, the following steps should be repeated

Tk times:
• Calculate gradient and update:

Ll = ∇2
k lj−1

Gl = ∇k lj−1
G←−Ll(1+ λ|Gl |2)e−λ|Gs−Gl |2

+ α(lj−1 − sk )− β(Ll − Ls). (19)

• Calculate update step size µNSD according to

µNSD←
µA

αµA + (1+ β)µB
, (20)

where µA = ⟨G,G⟩ and µB = ⟨G,∇2
kG⟩.

• Complete the NSD iteration

lj← lj−1 − µNSD · G. (21)

• Project onto the constraint

lj = max{lj, sk}. (22)

The above procedure solves Eq. (12) on the kth resolution
layer. The solution is lTk . For the layer k ̸= 1, the lTk is up
scaledwith 1:2 ratio by pixel replication into the new l0, that is
the initialization for the k− 1 resolution layer. The algorithm
proceeds by going again to the above steps (19)-(22). When
it reaches k = 1, the result lT1 is regarded as the final output
of the algorithm.

FIGURE 3. (Color online) Demonstration of image sequences in
LoLi-Phone dataset. These sequences are highly correlated. Thus, only
one representative image is selected from each sequence.

FIGURE 4. (Color online) Several images sampled from proposed
Real-Scene-v2 dataset. The images are taken by different mobile devices
under diverse lighting conditions and scenes.

IV. EXPERIMENTS
In this section, we are in a position to verify the uni-
versality and effectiveness of TV_SA on real low-light
images via intensive experiments. For datasets, the well-
known benchmark datasets LOL and LIME, as well as
a custom real scene dataset collected and arranged by
authors are included. We qualitatively and quantitatively
compare TV_SA with various sound LLIE methods, includ-
ing a traditional model-based algorithm (LIME) [7], a deep
Retinex model (KinD++) [22], a zero-shot-learning DL algo-
rithm (Zero-DCE++) [23], and a no-reference DL algorithm
(RetinexDIP) [24]. Furthermore, comparison is also make
between different variational frameworks, including original
TV and STAR [25].

A. DATASET AND METRICS
The datasets involved in this paper are elaborated as follows:
• LOL and LIME.1 LOL [13] is the first paired low-
/normal-light image dataset taken in real scenes. The
low-light images are collected by changing the exposure
time and ISO. LOL contains 500 pairs of low-/normal-
light images of size 600 × 400 saved in RGB format.
In our experiments, we use the LOL-test set which
contains 15 paired low-/normal-light images. Moreover,

1These datasets can be downloaded from URL https://daooshee.github.io/
BMVC2018website/ and https://github.com/estija/LIME
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LIME dataset is proposed in Ref. [7] and it contains
8 weak illuminate images without ground truth.

• Real-Scene-v2.2 The flexibility and effectiveness of
TV_SA means that the algorithm itself and the asso-
ciate parameters are applicable to any real world scenes
without structure fine-tuning or parameter adjustment.
In order to verify it, we introduce another real world
low-light image dataset. This dataset consists of two
parts. The first part is the one that we have introduced
in our previous work [26]. It contains 94 real low-light
images collected over six different cities of China. These
images cover multiple scenes, including indoor, coun-
try field, inside building corridor, residential square,
street scene, etc. The images are taken using the mobile
phone cameras with various resolutions, ranging from
4000 × 3000, 1920 × 873, to 1368 × 1824, and they
are saved in RGB format. This dataset is named as
Real-Scene. The second part of the dataset is collected
from the LoLi-Phone dataset proposed in Ref. [3]. LoLi-
Phone is also constituted by images and video captured
by various mobile phones. It is the largest and most chal-
lenging real-world testing dataset, including 120 short
videos and 55,148 images. However, these videos are
usually continuous shot of a same scene, and the images
are screenshots from these videos. A demonstration of
such an image sequence is provided in Fig. 3. These
sequences have significant time relevance which may be
useful for burst imaging algorithms. Since the proposed
method is based on a single RGB image, we filter LoLi-
Phone and selected 113 images from different scenarios
and add them to the previous Real-Scene dataset. There-
fore, the expanded dataset contains 207 images and it
is named as Real-Scene-v2. Several samples of Real-
Scene-v2 are provided in Fig. 4.

Comprehensive evaluation of a LLIE algorithm is more
intricate then evaluating a high-level task. One could not get
a conclusion from a single indicator such as mean average
precision for object detection algorithms [1]. In quantita-
tive comparisons, various metrics are used including full-
reference metrics (structural similarity index measurement,
SSIM, peak signal-to-noise ratio, PSNR, mean square error,
MSE, and mean absolute error, MAE), no-reference metrics
(naturalness image quality evaluator, NIQE [27], BNBT [28],
S-CCR [29], [30], and perceptual index, PI [31]), and seman-
tic metrics(smartphone photography attribute and quality,
SPAQ [32]). For SPAQ, there are three sub-indexes: SPAQ-
BL, SPAQ-IA, and SPAQ-SS. Here, SPAQ-BL estimates
image quality by a baseline model (residual network 50,
ResNet-50), SPAQ-IA works for by input image attributes,
and SPAQ-SS accounts for input image semantic information.
The details of these indicator are elaborated in a recent sur-
vey [3], and we do not intend to reproduce them here.

2This dataset can be downloaded from URL https://pan.baidu.com/s/
1Y8gYqyVsplPv7ycX NG3vg?pwd=d5lc/ (code: d5lc)

B. IMPLEMENTATION DETAILS
The numerical solution of TV_SA is realized by python-3.6
with numpy-1.18.4 for matrix manipulation and opencv-
4.2.0 for image reading and writing. The experiment is per-
formed on a computer with ubuntu-18.04, Intel i5-9400F
CPU, and 8GBmemory. A same set of empirically parameters
in which α = 0.1, β = 100, γ = 4, and Tk = 10 is used
over all of our experiments. Since the parameter λ controls
the intensity of SA term, its influence would be discussed in
details. The white value in 8-bit images is W = 255. For
color images, one can apply either the RGB Retinex method
or the HSV Retinex method. The former treats the R, G,
and B channels separately and usually yields a color shifting
effect. The latter only applies Eq. (7) to the intensity channel
V, and then it maps the enhanced V together with H and S
channels back to the RGB domain. The HSV Retinex method
not only suppresses the color shifts, but also has the advantage
to process a single channel [11]. Thus, we prefer to the HSV
Retinex method in this work.

C. RESULTS AND DISCUSSIONS
1) EVALUATION ON LOL
The qualitatively and quantitatively results of TV_SA on
LOL-test set and LIME dataset are provided in Figs. 5 and 6,
and in Tab. 1. Here, λ is fixed as 0.1. Since the visual results
of TV and STAR are very similar with TV_SA for most
of images without strong structure, it is not provided here.
A detailed visual inspection between TV and TV_SA will be
provided afterward. The quantitative results of full-reference
metrics and no-reference metrics mentioned in Sec. IV-A are
given in Tab. 1. As can be seen from full-reference metrics,
TV_SA is the best one in MSE, MAE, and SSIM in that
these indicators outperform other methods by a wide mar-
gin. However, the PSNR for Zero-DCE++ is slightly better
than other methods. For the no-reference metrics (NIQE,
PI, and SPAQ), a similar trend is shown. The NIQE of
TV_SA is better than other methods by an average of 25.7%
(i.e., 32.2%, 31.0%, 26.7%, and 12.9% enhanced with respect
to LIME, Zero-DCE++, RetinexDIP, and STAR). For PI,
TV_SA achieves a significant improved performance by an
average of 49.15% better than other methods (i.e., 65.4%,
48.4%, 63.4%, and 19.4% enhanced with respect to LIME,
KinD++, Zero-DCE++, and RetinexDIP). For SPAQ, it is
shown that TV_SA is better than other methods in SPAQ-
BL and SPAQ-SS, and it gets a nearly equal performance in
SPAQ-IA compared with TV.

Visual comparisons on the LOL-test set and LIME dataset
are shown in the Figs. 5 and 6. In Fig. 5, it is shown
that the brightness of LIME algorithm enhanced images is
less than ground truth (GT) images, and the RetinexDIP
results are even lower brightened. Compared with these
two methods, TV_SA outputs the closest results to GT
images. This is also consistent with the quantitative results
in Tab. 1. For the LIME dataset, the enhanced images
given by LIME algorithm are still slightly less bright than
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FIGURE 5. (Color online) Visual results of different methods on LOL-test. Here, λ is
fixed as 0.1.

TABLE 1. Quantitative comparisons on LOL-test in terms of SSIM, PSNR, MSE, MAE, NIQE, PI, and SPAQ. Here, the best results are boldfaced and λ = 0.1.

FIGURE 6. (Color online) Visual results of different methods on LIME dataset. Here,
λ is fixed as 0.1.

TV_SA. However, Zero-DCE++ outputs are over enhanced.
The RetinexDIP outputs are similar to those of TV_SA. It is
worth noting that for the images in the first row, LIME
algorithm shows that the reflection of the building in the river
appears overexposure and artifact, while TV_SA obviously
fixes this problem. As a result, it is obvious to learn that
TV_SA gives rise to the more visually pleasing images and
they are even more closer to GT.

2) EVALUATION ON REAL-SCENE-v2
In Tab. 2 and Fig. 7, the qualitatively and quantitatively
comparisons between various methods on the Real-Scene-
v2 are reported. Here, λ is fixed as 0.1. Different from the
previous LOL-test set and LIME dataset, it is shown in Tab. 2
that TV_SA achieves promoting performance in NIQE, PI,
SPAQ-IA, SPAQ-SS, BNBT, and S-CCR. TV_SA also out-
performs the DL methods. For NIQE, TV_SA is reduced by
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FIGURE 7. (Color online) Visual results of different methods on Real-Scene-v2. Here, λ is fixed as 0.1.

TABLE 2. Quantitative comparisons on Real-Scene-v2 in terms of NIQE, PI, SPAQ, BNBT, and S-CCR. Here, the best results are boldfaced and λ = 0.1.

23.9%, 0.5%, 21.9% and 2.8% relative to the input, KinD++,
RetinexDIP, and STAR. For SPAQ-BL, SPAQ-IA, and SPAQ-
SS, TV_SA are increased by 2.6%, 1.93%, and 8.6% with

respect to Zero-DCE++, and 0.2%, 3.2%, and 2.7% with
respect to RetinexDIP. This means that TV_SA can obtain
an evidently improvement with respect to Zero-DCE++, and
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FIGURE 8. (Color online) Several visual results for demonstration of detail restoration.
Here, comparison between TV and TV_SA is made, and λ is fixed as 0.1.

a nearly equal SPAQ with respect to RetinexDIP. Compared
with KinD++ and STAR, TV_SA achieves a nearly 3%
performance improvement in SPAQ. For indictors BNBT
and S-CCR, TV_SA also achieves a significant performance
improvement with respect to other methods. Compared with
TV, indicator SPAQ-BL has decreased a little, but SPAQ-IA
and SPAQ-SS of TV_SA are still the best of all. Therefore,
TV_SA performs better results than all other methods in
terms of restoring semantic information of images. This is
also consistent with the results on LOL-test set and LIME
dataset. Since TV_SA is modified base on TV, a compre-
hensive comparison among these two methods for preserving
small details will the subject of the next section.

For the Real-Scene-v2, a similar tendency can be found
from the visualization results in Fig. 7. Zero-DCE++ as a
learning-based LLIEmethod has a limited capacity to achieve
noise suppression and reaches a satisfactory result. Although
RetinexDIP removes noise, it may bring other problems
such as losing details, blurring or even worse image quality.
TV may retain details and brightness. It also leads to a color
distortion which gives rise to an uncomfortable visualization.
In comparison to all of these approaches, ourmodel is capable
of noise suppression and detail preservation in the meantime
sufficiently revealing low-light domains. However, for certain
images suffered by severe noise or extremely low-lighting,
all of these methods produce output images which are fea-
tured by noise, color blocks, and artifacts. In this case, the

TABLE 3. NIQE, PI, SPAQ, BNBT, and S-CCR of TV_SA outputs evaluated on
Real-Scene-v2 for various values of λ. Here, the best results are
boldfaced.

information is even not captured by the sensor or lost via
camera’s ISP. As a result, the methods based on RGB images
would fail and one may have to turn to use raw data for
enhancement [33], [34].

The influence of parameters α, β, and λ will be discussed
here. As a matter of fact, the chosen value of parameters α

and β is adopted from Ref. [11], where the value of β is
one thousand times of α. Therefore, we directly borrow the
ratio into our experiments for a fair comparison. However,
parameter λ describes the intensity of the SA term, and it
is a newly introduced parameter featuring TV_SA. Thus,
the influence of λ on the model’s performance should be
discussed in details. To this end, we evaluate TV_SA on
Real-Scene-v2 for various values of λ. The experimental
result is reported in Tab. 3. Here, three sub-indicators for
SPAQ are averaged as ⟨SPAQ⟩ for simplicity. It is shown that
when λ = 0.01, the SA term has relatively minor effect.
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In this case, the performance of TV_SA is very similar to
that of original TV. When λ = 0.1, TV_SA achieves a great
performance improvement. With the further increasing of λ,
the improvement becomes less obvious once again. When
λ is taken to be a larger value, the performance of TV_SA
will be degraded greatly. These results demonstrate that the
contribution of SA term is best when the value of λ has a same
magnitude as that of α. As λ approaches the magnitude of β,
the SA term will give a negative contribution to the model’s
performance.

3) COMPARISON WITH TV
The proposed TV_SA is modified by the inclusion of a
SA term into the Retinex-based TV method. An extensive
visual comparison on Real-Scene-v2 is given among TV and
TV_SA. From Tab. 2, it is found that TV_SA outperforms TV
by 31.5%, 7.3%, 7.0%, 50.8%, and 22.3% for indictors NIQE,
PI, SPAQ-SS, BNBT, and S-CCR. However, they achieve
a nearly equal performance for SPAQ-IA. For SPAQ-BL,
TV_SA is slightly lower than TV. The visual comparison
results are plotted in the Fig. 8. It can be seen that the detailed
structures are better enhanced along with the brightness and
contrast enhancement. For example, in the image provided
in the upper panel, details of the Doraemon’s eyes and beard
almost disappear in the TV’s output. However, these details
are better recovered and sharpened by TV_SA. The same
can be found in the other panels, such as the grass, the lion,
the door of the zoo, and the words on the yellow jar. These
indicate that the SA term can balance the global smoothness
enforced by TV. It enables a TV method making fully usage
of the information in the original image to better recover the
details of the enhanced image.

V. CONCLUSION
In this study, a new LLIE algorithm (TV_SA) is proposed
by integrating a SA term into the Retinex-based TV model.
By EL equation, we derive a non-linear PDE whose solution
is the optimized illumination image. Only V channel in the
HSV color space is enhanced by a Gamma correction and
then reunions with other channels. By a multi-resolution
PNSD method, TV_SA is closed mathematically and can
be numerically solved. The experiments are performed on
existing benchmark datasets (i.e., LOL and LIME) as well as
on a custom dataset. Various metrics are included and com-
parisons are made among existing model-based and learning-
based methods. The proposed TV_SA outperforms these
methods on both publicly available and custom datasets in
that it has promoting performance on most of those metrics.
TV_SA yields not only state-of-the-art quantitative results
but also applicable visualizations. Since TV_SA is not data-
driven, its parameters are universal and the generalization
capability could be better than that of the learning-based
methods. Detailed comparison and analysis demonstrate the
effectiveness of TV_SA in restoring image details.

This work only realizes a simple implementation by
Python to verify the idea of TV_SA. In this realization,

TV_SA is programmed serially. Since a multi-resolution
pyramid is involved, it is time-consuming in the iterative
optimization. Therefore, TV_SA cannot achieve real time
running speed. How to optimize its running speed would be
our future research topic. It is also interesting to explore the
deployment in low-end devices such as mobile phones. In this
way, one may programme in a paralleled manner taking full
usage of the computing capability of the device.
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