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ABSTRACT In recent years, with the development of deep learning, research on end-to-end mispronunci-
ation detection and diagnosis(MDD) methods has been further promoted. At present, research on end-to-
end mispronunciation detection and diagnosis is gradually emerging. Most end-to-end mispronunciation
detection and diagnosis methods are based on the CNN-RNN-CTC network structure. To improve the
performance of end-to-end mispronunciation detection and diagnosis systems, this paper proposes an
end-to-end multi-feature and multi-modal mispronunciation detection and diagnosis method based on the
Squeezeformer encoder. The model uses Squeezeformer as an audio encoder, a Bi-LSTM network as a
phoneme encoder, and Transformer as a decoder. The model fuses phoneme information before speech
encoding and decoding, respectively, and uses a secondary decodingmechanism during the decoding process.
This study further incorporated phoneme information in the encoding process so that the model could learn
the intrinsic characteristics of the speaker’s pronunciation content. The decoding process uses a secondary
decoding mechanism to send the sequence decoded by the model to the decoder for decoding again, which
solves the problem of no a priori knowledge at the decoder end in the first decoding stage, thus improving
the performance of mispronunciation detection and diagnosis. In this study, experiments were conducted on
the PSC-Reading Mandarin mispronunciation detection and diagnosis dataset. Compared with the baseline
model, the F1 index improved from 0.4060 to 0.7943, and the diagnostic accuracy improved from 83.93%
to 88.45%.

INDEX TERMS MDD, squeezeformer, secondary decoding, computer-assisted language learning (CALL).

I. INTRODUCTION
With the development of deep learning technology, the tech-
nology in the field of speech recognition has been pushed to
a new level. Deep learning models such as Transformer [1],
Conformer [2], and Squeezeformer [3] have been proposed
by researchers and applied in the field of speech recogni-
tion [4] or natural language processing [5], with a more
complex structure and stronger feature information represen-
tation ability than traditional deep neural networks, which
greatly improve the performance of speech recognition or
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natural language processing. End-to-end mispronunciation
detection and diagnosis is performed with phoneme recog-
nition [6] as the task, and the phoneme sequences identi-
fied by the model and the reference phoneme sequences
are aligned by the Needleman–Wunsch [7] algorithm, which
leads to the final mispronunciation detection and diagno-
sis [8] results. The traditional approach is used to determine
whether pronunciation is correct or not based on confidence
scores, but this approach can only test whether pronuncia-
tion is correct or not, and cannot provide a valid diagnosis
of pronunciation. The confidence-based mispronunciation
detection technique relies on more algorithm modules, with
a large degree of coupling between modules; the training
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process of this model is more complicated, which affects
the final mispronunciation detection performance. To assess
the types of mispronunciation and to provide feedback about
specific errors, the extended recognition network (ERN) [9]
was created. The extended recognition network incorporates
the expected mispronunciation patterns into the lexicon to
constrain the recognition path to canonical pronunciations
and possible mispronunciations. These extended recognition
networks constructed from manual or data-driven rules have
the advantage of simultaneously detecting errors and provid-
ing diagnosis, and thus can systematically provide diagnos-
tic feedback. However, it is difficult to construct extended
recognition networks that contain as many mispronuncia-
tion paths as possible, thus limiting their performance in
mispronunciation detection and diagnosis. Leung proposed
a CNN-RNN-CTC [10] model for mispronunciation detec-
tion and diagnosis tasks, using a connectionist temporal
classification (CTC) [11], [12] loss function instead of a
cross-entropy loss function to train the model and remove
the reliance on phoneme boundary information during train-
ing. The training process of the mispronunciation detection
and diagnosis model can be further improved by using a
multi-task learning model with multiple encoders to fuse
linguistic information to improve the model’s ability to carry
out phoneme recognition, thus enhancing the performance
of mispronunciation detection and diagnosis. Feng proposed
the SED-MDD [13] model, which further improves the per-
formance of mispronunciation detection and diagnosis based
on the CNN-RNN-CTC model by adding a text encoder
to the end-to-end phoneme recognition model and fusing
acoustic and linguistic information to achieve a reference
text-based mispronunciation detection and diagnosis method.
Yunfei Shen proposed amispronunciation detection and diag-
nosis model with aWavLM-Transformer [14] structure, using
Transformer instead of the traditional CNN-RNN structure
in the encoding stage, using a self-supervised pre-training
model to extract raw audio features for training, and using
a hybrid CTC/ATT structure as the loss function to further
improve the performance of the mispronunciation detection
and diagnosis model.

In this paper, we propose a multi-feature, multi-modal mis-
pronunciation detection and diagnosis model with Squeeze-
former as the audio encoder and Transformer as the decoder,
which incorporates phoneme length information into speech
features before speech encoding, and uses a Long Short
Term Memory networks (LSTM) [15] to encode phoneme
sequences in the phoneme encoding stage, and uses an atten-
tion mechanism to further fuse audio features and phoneme
features so that the model can learn the speaker’s pronuncia-
tion patterns. The decoding process uses a secondary decod-
ing mechanism, which further improves the performance of
mispronunciation detection and diagnosis. In this paper, the
WavLM-Transformer was used as the baseline model; the F1
index improved from 0.4060 to 0.7943, and the diagnostic
accuracy improved from 83.93% to 88.45% when compared
with the baseline system.

II. RELATED WORKS ON MDD
This section introduces the development process of MDD,
including from traditional methods to deep learning methods,
and the research background of Squeezeformer.

A. STATISTICAL APPROACHES
A speech recognition system based on statistical learning
algorithms is essentially a statistical model of the pronuncia-
tion patterns of various phonemes in a language, so the like-
lihood of the output of a speech recognition system trained
using a standard speech dataset for a segment of speech
can be used to measure the similarity between that segment
of speech and the standard speech. The speech-recognition-
based approach views the detection of articulation errors as a
measure of howwell a segment of speech can be correctly rec-
ognized by a standard speech recognition system, that is, the
confidence score of decoding a signal into a target phoneme
pattern in a speech recognition system [16]. This requires the
construction of efficient and reasonable confidence measures
that can effectively distinguish correct pronunciation from
mispronunciation.

In the 1990s, SRI International conducted a series of stud-
ies on automatic pronunciation evaluation, and Bernstein
proposed the use of HMM [17]-based speech recognition
models with Viterbi [18] algorithms for forced alignment
between audio and recognized phoneme sequences and for
pronunciation quality evaluation. Neumeyer, on the other
hand,proposed an algorithm to calculate pronunciation scores
using the log-likelihood output from the decoding of HMM
speech recognition systems. Based on this, Witt proposed the
GOP [19] algorithm and described a system for pronunciation
evaluation based on forced alignment and the GOP algorithm,
in which a phoneme is considered to have poor pronunciation
quality when its GOP score is below a predefined threshold.
In this regard, the framework of pronunciation quality assess-
ment based on a speech recognition system with the GOP
algorithm is determined, and the main direction of further
research is to improve the defects of the GOP algorithm and
to improve the correlation between GOP machine scores and
expert-labeled artificial scores.

Ke Yan proposed a trainable posterior probability trans-
formation of phoneme correlation to fit the artificial scores
by Sigmoid transformation, which significantly improved
the human–machine score correlation coefficient of the
GOP algorithm. Novoa et al. proposed an improved GOP
algorithm considering the HMM transfer probability in the
DNN-HMM [20] acoustic model. After the emergence of
deep learning algorithms, some improved GOP algorithms
also used deep learning models. Shi et al. proposed the
context-dependent CaGOP algorithm, which predicts the
duration of each phoneme by feeding the reference text into
a self-attentive text-based encoder during GOP calculation,
and uses the difference between the predicted duration and the
actual duration of the phoneme obtained by forced alignment
as the penalty factor in GOP computation [21].
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In response to the shortcoming of assuming equal phoneme
prior probabilities in the GOP algorithm, Long Zhang fused
the phoneme confusion prior knowledge into the calculation
of phoneme prior probabilities in the GOP calculation and
used the confusion phoneme set instead of the full proba-
bility space to improve the human–computer score correla-
tion coefficient of Mandarin vowel-rhyme assessment from
0.796 to 0.836 in the baseline GOP algorithm. Since Witt
proposed the pronunciation fit scoringmodel in 2000, the pro-
nunciation fit scoring algorithm based on the GMM-HMM
recognition model has been widely used in mispronuncia-
tion detection applications. In recent years, Hu and Ming
have carried out some optimization of the pronunciation fit
scoring algorithm. This technical route of the algorithm for
mispronunciation detection has advantages such as ease of
construction (the ability to migrate directly from recognition
models) and low data annotation requirements (no phoneme-
level annotation data required). At the same time, the method
has some limitations, such as low accuracy and no ability to
diagnosemispronunciations. Professor HelenMeng proposed
the Extended Speech Recognition Network (ERN) and has
continued to improve the method in their subsequent research
work. The aim of the ERN approach is to detect and diagnose
mispronunciations by manually developing a series of rules
for mispronunciations to be added to the standard speech
recognition network. Based on the popular deep neural net-
works, Professor Helen Meng proposed the phoneme-level
acoustic model [22] (APM) algorithm for detecting and diag-
nosing mispronunciations and established a series of widely
used evaluation metrics. A phoneme transcription alignment
model is first trained for each frame of the audio, based on
which a recognition model is trained based on the contextual
features and transcription alignment results for each frame of
that audio, and, finally, a Viterbi decoder is used to obtain the
final results.

B. END-TO-END MDD METHODS
With the development of deep learning in recent years, mis-
pronunciation detection and diagnosis algorithms based on
deep neural networks or end-to-end [23] speech recognition
models have become a hot research topic, and some end-to-
end mispronunciation detection and diagnosis models have
also emerged. These models no longer need HMM models
and have gradually removed forced alignment from the train-
ing process.

Watanabe et al. proposed an end-to-end speech evaluation
system based on the CTC/Attention [24] end-to-end speech
recognition model and discussed the effect of fundamen-
tal frequency features on the performance of an end-to-end
speech recognition system for Mandarin, which compares
the recognition results of the reference text and the speech
recognition system using the Needleman–Wunsch algorithm
to obtain mispronunciation detection and diagnosis results.
Leung et al. proposed a CNN-RNN-CTC [10] model for
mispronunciation detection and diagnosis tasks, using a CTC
loss function instead of a cross-entropy loss function to train

the model, thus eliminating the need to provide phoneme
boundary information at training time.

Feng et al. proposed the SED-MDD [13] algorithm,
which implements an end-to-end pronunciation evalua-
tion algorithm related to the reference text by adding
a text encoder to an end-to-end phoneme recognition
model of Encoder-Attention-Decoder architecture. Based
on SED-MDD, Fu et al. [25] combines the reference text
encoder with a CNN-RNN-CTC model, and implicitly aligns
the phoneme sequences from the audio to be evaluated and
the reference text, respectively, inside the model using an
attention mechanism. Zhang et al. proposed a text-related
mispronunciation detection and diagnosis model based on
Transformer [26], which performs alignment between the
actual transcript and the reference text before training to
obtain the corresponding mispronunciation, thus defining
the mispronunciation detection and diagnosis task as a
binary classification task of ‘‘correct or incorrect pronun-
ciation’’, and further improving the overall performance
of the model by adding accent recognition and phoneme
recognition tasks. The speech evaluation system proposed
by Nadig et al. takes uncertainty into account by concatenat-
ing an Encoder-Attention-Decoder [27]-based pronunciation
evaluation model after a CTC-based phoneme recognition
model so that a pronunciation score can be given simultane-
ously after aligning the recognition result with the reference
text.

Shen et al. [14] proposed amispronunciation detection and
diagnosis model with aWavLM-Transformer structure, using
Transformer instead of the CNN-RNN structure in the encod-
ing stage, using a self-supervised pre-training model to
extract audio raw features for training, and using a hybrid
CTC/ATT structure as the loss function to further improve the
performance of the mispronunciation detection and diagnosis
model. However, the model does not perform best on a series
of indicators such as F1 value and diagnostic accuracy.

C. SQUEEZEFORMER SPEECH REPRESENTATION MODEL
With the further development of deep learning, the Trans-
formermodel has been proposed in the field of machine trans-
lation [28] as a new deep learning algorithmic framework
that has received more and more attention from researchers.
The self-attention mechanism in the Transformer model [29]
is inspired by the fact that humans focus only on what is
important and learn only the important information in the
input sequence. Transformer can integrate acoustic, articula-
tory, and language models [30] into a single neural network
to form an end-to-end speech recognition system, solving
the problems of the forced alignment and multi-module
training of traditional speech recognition systems. How-
ever, models with self-focus or convolution [31] each have
their limitations. While Transformer is good at modeling
remote global contexts, it is weak at extracting fine-grained
local feature patterns. As a result, a convolutional enhance-
ment Transformer for speech recognition, named Conformer,
was later proposed. Conformer significantly outperforms
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previous Transformer- and CNN-based models, with local
and global information extraction acting together to learn
location-dependent local features and use content-based
global interactions to achieve better accuracy.

However, through a series of systematic studies, the
researchers found that the design choice of the Conformer
architecture was not optimal. After re-examining the design
choices of macro- and microarchitectures for Conformer,
the researchers proposed Squeezeformer, which consistently
outperformed the Conformer model for the same training sce-
nario. In particular, for the macroarchitecture, Squeezeformer
combines the temporal U-Net [32] structure, which reduces
the cost of multi-headed attention [33] modules on long
sequences, with a simpler block structure of multi-headed
attention or convolution modules followed by feedforward
modules, instead of the macaron structure proposed in Con-
former. Moreover, for the microarchitecture, Squeezeformer
simplifies the activation in the convolution block, removes
redundant layer normalization operations, and merges effec-
tive depth downsampling layers to efficiently subsample
the input signal, leading to further performance improve-
ments.The Squezeformer model structure is shown in Fig.1.

III. OUR METHODS
A. SYSTEM OVERVIEW
The input of the model is the fbank acoustic feature, phoneme
sequence length information embedding, and phoneme
sequence embedding, and the output of the model is the
corresponding acoustic phoneme sequence. The mispronun-
ciation detection and diagnosis model proposed in this paper
uses the Squeezeformer model in the encoding stage, uses
the Bi-LSTM network to encode the reference phoneme
sequence, and fuses the phoneme sequence length informa-
tion before speech encoding. Our phoneme sequence uses
a 512-dimensional embedding layer, and phoneme length
information uses an 80-dimensional embedding layer. The
audio encoding stage of the model uses 12 encoder layers, the
number of multi-head attention heads is 4, and the phoneme
encoder uses 1 layer of the Bi-LSTM network. The decoder
of the model uses 2048 linear units and 6 encoder layers. The
number of attention heads with multiple heads is 4. The loss
function uses CTC/Attention as the joint loss. The overall
structure of the model is shown in Fig.2.

The training and decoding process of the model is as
follows:

• Convert audio into fbank features through calculation;
• Encode the length information of the phoneme sequence
label into a vector through an embedding operation;

• Send the multi-modal feature obtained by fusing the
fbank feature and the phoneme embedding vector to the
Squeezeformer encoder;

• Encode the reference phoneme sequence through the
LSTM network;

• Fuse the hidden state sequence calculated and output by
the Squeezeformer encoder and the reference phoneme

FIGURE 1. The Squeezeformer encoder.

hidden state sequence encoded by the LSTM network
through the attention mechanism;

• Input the multi-feature hidden state sequence into the
Transformer decoder to calculate the joint loss, and
then conduct backpropagation to optimize the network
parameters;

• Use the trained model to decode the data to obtain the
predicted phoneme sequence;

• Align the decoded phoneme sequence with the reference
phoneme sequence to obtain the final mispronunciation
detection and diagnosis results.

B. MULTI-MODAL INFORMATION FUSION
Before sending the feature into the audio encoder, we fuse
the length information of the phoneme tag sequence and the
audio feature to form a multi-modal feature and then feed the
multi-modal feature to the audio encoder. The multi-modal
feature contains the length information of the phoneme tag
sequence so that the model can further learn some intrinsic
characteristics of the speaker’s pronunciation content. First,
we calculate the length of the corresponding phoneme tag
sequence for each audio and store the phoneme tag sequence
length and the corresponding audio name in the form of
a form. During the model training process, the phoneme
tag sequence length information is included in each batch
of data. We embed the length information of the phoneme
sequence label into an 80-dimensional vector Z∈RB×1×80
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FIGURE 2. MDD model based on squeezeformer encoder.

through the embedding operation and then splice it with
the audio feature X∈RB×T×80 to obtain the multi-modal fea-
ture Y∈RB×(T+1)×80. The whole multi-modal information
construction method is shown in Fig.3.

C. AUDIO ENCODER
The audio encoding calculation process is as follows. The
input of the audio encoder is the multi-modal feature after
80-dimensional phoneme information (phoneme length)
embedding and 80-dimensional fbank feature splicing. First,
the fbank feature of audio data is extracted, and the fbank
feature of voice data is marked as X = [x1, . . .xn]. Phoneme
information is embedded as Z = [z1, . . .zn]. Features after
splicing Y = [y1, . . .yn] output the corresponding hidden
state sequence through the Squeezeformer encoder and mark
it as HQ

= [hq1 , . . .h
q
n], so the audio encoder based on

Squeezeformer can be expressed as

Z = Embedding(PhonemeLength) (1)

Y = Concat(X,Z) (2)

HQ
= AudioEncoder(Y) (3)

D. PHONEME ENCODER
The phoneme encoder uses a Bi-LSTM network. We first
embed the reference phoneme sequence into the phoneme
with the embedding dimension of 512 and then feed the
phoneme embedding into the Bi-LSTM encoder with the
input dimension of 512; the size of the hidden layer is
128. We mark the input reference phoneme sequence as
P = [p1, . . .pn]. Our phoneme encoder can be expressed as

hK,hV = PhonemeEncoder(P) (4)

E. FEATURE FUSION
Our feature fusion method uses the dot-product attention
mechanism [34], where hQ, hK, and hV are used as query
vectors, key vectors, and value vectors for attention calcula-
tion. Then, we use the dot-product attention mechanism to
input hQ, hK, and hV, and calculate the final fusion feature
sequence M = [m1, . . .mn]. The calculation process of
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FIGURE 3. Multi-modal information fusion.

dot-product attention can be expressed as follows:

M = Concat(hQ,C) (5)

C = Attention(hQ,hK,hV) (6)

Attention(hQ,hK,hV) = α · hV (7)

α =
exp(score(hK,hQ))

6exp (score(hK,hQ))
(8)

score(hK,hQ) = hK · hQ (9)

where C is the vector for frame-level alignment via the atten-
tion mechanism, α is the attention weight, and the score is
hK · hQ. Then, the hidden state sequence hQ is output after
audio encoding and the hidden state sequenceM, obtained by
the dot-product attentionmechanism, is spliced into the linear
layer for down-sampling to obtain the final fused feature
hidden state sequence. Here, the purpose of down-sampling
is to reduce the number of dimensions of the spliced features,
reduce the amount of computation in the decoding stage, and
speed up the decoding process. The feature fusion process is
shown in Fig.4.

FIGURE 4. Feature fusion based on attention.

F. DECODER
The performance following the joint training of CTC and
the attention mechanism is greatly improved. In the training
process, the main operation is to use the output of the encoder
as the input of the decoder and the input of CTC, respectively.
Our decoder uses the Transformer structure, and the hidden
state sequence obtained by the encoder calculates the joint
loss through CTC and attention and uses the joint loss as the
final loss value for the parameters of the back-propagation
optimization model. We mark the loss calculated by CTC as
Lctc, and the loss calculated by attention is marked as Latt. Our
joint loss Lloss can be expressed as

Lloss = λLctc + (1 − λ)Latt (10)

where λ is the weight value assigned to CTC loss, and (1−λ)
is the weight value assigned to attention loss.

G. SECONDARY DECODING
Secondary decoding mainly uses the decoder to decode the
beam search [35] results twice, thus changing the candidate
ranking of the whole-sentence results. At each time step,
beam search saves the top n candidate sequences and predicts
the next phoneme for each candidate sequence. If there are
k phonemes in the phoneme set, k prediction results will be
generated. Then, from the resulting nk new sequences, the
top n sequences are selected as the candidate sequences.The
secondary decoding process obtains n of the best results from
the output of the decoder through beam search, and then
inputs the n best results as the label of the decoder again,
which solves the problem of the decoder having no prior
knowledge in the first decoding stage. In the experiment,
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FIGURE 5. Secondary decoding process based on beam search.

we set n to 10. We express the encoded multi-feature hidden
state vector as M = [m1, . . .mn], M here is equivalent to
the vector in Formula 5.Then, the whole secondary decoding
process can be expressed by the following formula:

decoderout = Decoder(M) (11)

hypsctc = BeamSearch(decoderout) (12)

hypsatt = Decoder(hypsctc, decoderout) (13)

where hypsctc represents the first decoded phoneme tag
sequence. We decode the multi-feature hidden state vector at
the decoder end to obtain the corresponding output sequence
through model decoding and then calculate the predicted
phoneme tag sequence hypsctc through beam search, and then
the predicted phoneme tag sequence hypsctc and the output
of the CTC and decoder are sent to the Transformer decoder
for secondary decoding to obtain the final predicted phoneme
tag sequence hypsatt. The whole secondary decoding process
is shown in Fig.5.

IV. SPEECH CORPUS
A. DATA CREATION PROCESS
To be consistent with our baseline model, we also use the
dataset PSC-Reading [14], built by Shen et al., as the source
of experimental data for this paper. The recording texts of the
dataset are all from the Mandarin Proficiency Test question
bank, which is to ensure the consistency between the self-built
dataset and the real test data of the Mandarin Proficiency
Test. In this question bank, there are 60 short-text reading
questions, ten of which were selected as reference texts for
the data recordings, each with a word count between 400 and
600 words.

In the process of building the data, dozens of university or
graduate students were recruited to record the audio in a quiet
environment. Speakers were recorded reading aloud from
the selected recorded text. The recording equipment used

a headset connected to an office computer, and the record-
ing software used Praat with a sampling rate of 44.1 kHz,
mono, and saved in Flac format. Afterward, each recorded
text was checked manually to screen out data with too many
mispronunciations or with too much outside noise, and the
speakers were organized for a secondary collection of data.
Each speaker was assigned ten short texts to read aloud, and
the speaker recorded from the complete text so that each voice
included chapter-level short-text readings. Because the input
for phoneme recognition model training is typically short
audio of fewer than 20 s, in the later annotation stage, the
original long audio was segmented into short audio based on
sentences through forced alignment. Silent portions between
adjacent sentences longer than 1 s were removed and all
10 spoken texts were divided into a total of 240 short sen-
tences based on the sentence boundary, with an average
length of 20.65 syllables per short sentence.

B. DATA ANNOTATION SPECIFICATION
This section describes the method of annotation of
PSC-Reading using Praat. To improve the annotation effi-
ciency, manual fine annotation was performed on top of
the machine’s coarse annotation TextGrid files generated by
forced alignment. For chapter-level article audio (between
150 and 200 s in length), it was manually divided into short
audio of approximately 10 s in length after the sentences
were manually divided using the CTC-Segmentation [36]
tool provided by the ESPNet2 framework to force alignment
by sentence. The short audio obtained from the segmen-
tation was kept silent for no more than 0.5 s before and
after. Using the speech evaluation interfaces provided by
Unisound, IFLYTEK, etc., we obtained the machine scores
and generated the coarse standard TextGrid according to
the annotation specification. The TextGrid annotation file
uses UTF-8 encoding, and when using Hanyu Pinyin for
annotation, the tones are represented by numbers, 1-4 for
one to four tones, respectively, 5 for light tones, and other
numbers represent special tones that do not exist in standard
Mandarin. When using ‘‘v’’ for ‘‘ü’’ in phoneme annotation,
in the syllable layer and the pinyin layer, ‘‘ü’’, which is
represented as ‘‘u’’ according to the Hanyu Pinyin standard,
does not need to be changed; in the phoneme layer, the
phoneme containing ü should first be reduced to its original
form and then represented as ‘‘v’’, e.g., ‘‘jun1’’ is first broken
down into the phoneme ‘‘j+ün1’’ and then into ‘‘j+vn1’’.

For the Erhua phenomenon, the Erhua part of ‘‘er’’ is
separated from the phoneme as a syllable and is marked at
the word level together without a tone value. For the zero
consonants ‘‘y’’ and ‘‘w’’, a special rhyme notation is used
to replace their position in the phoneme notation as a pseudo
vowel. The annotation includes the following hierarchy:

1) Sentence text, the entire sentence and its corresponding
time range, presented in Chinese characters;

2) Pinyin of sentences, including the pinyin of the entire
sentence;
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FIGURE 6. Mispronunciation of tones.

TABLE 1. Special phonetic transcriptions.

3) Words, that is, each word and its corresponding time
range, are labeled with Chinese characters;

4) Syllables, the time range of each syllable in pinyin and
silence, using pinyin notation;

5) Phonemes, the time range of each phoneme and silence,
using pinyin notation;

Among them, words, syllables, and phonemes need to be
marked with three types of mispronunciation—-substitution,
insertion, and deletion—in the format of expected correct
pronunciation, actual pronunciation, and error type. For
example, ‘‘jue2, jue1, s-tone’’ represents vowel tone mispro-
nunciation.‘‘jue2’’ is the pinyin of the corresponding Chinese
character, and ‘‘jue2, jue1, s-tone ’’ means that the speaker
mispronounced ‘‘jue2’’ into ‘‘jue1’’. We use ‘‘s-tone’’ to
indicate a tone error. See the following for specific annotation
specifications, and an example of an annotation is shown
in Fig.6.

For special phonemes, we perform the corresponding
phoneme transcriptions during the annotation process, such
as the transcription of some vowels (zh, ch, sh, z, c, s, and r)
with i. The transcription rules are shown in Table 1.

After completing the PSC-Reading data annotation, several
trained graduate students were organized as data proofreaders
to finely proofread the data. After proofreading to ensure that
all data are error-free, the data are organized into the format

TABLE 2. Details of the PSC-Reading dataset.

TABLE 3. Phoneme error details of the PSC-Reading dataset.

of the L2-Arctic dataset [37], and the construction of the
PSC-Reading-24 dataset is completed.

C. DATA STATISTICS
The PSC-Reading-24 dataset includes a total of 24 speakers
with a male-to-female gender ratio of 12:12. 240 raw audio
recordings were recorded and cut into 5733 utterances, and
a small number of recorded utterances that did not meet the
recording criteria were discarded before annotation. The total
length of the dataset was 8.59 h, with an average sentence
length of 5.4 s. As a comparison, L2-Arctic, a commonly
used public dataset for English second language acquisi-
tion in academia, includes 24 speakers, of whom each has
150 recordings annotated by experts for mispronunciation,
with a total of 3.66 h of annotated data in total. We fol-
lowed the L2-Arctic and TIMIT [38] data and used the above
data annotation format to additionally annotate the standard
example audio of the first 10 sets of Mandarin read-aloud
texts from five different training institutions or Mandarin
textbooks, notated as PSC-Reading-G1.

The PSC-Reading-G1 and PSC-Reading-24 training sets
were used as the final training set with a total training time
of 6.56 h to enhance the model’s ability to detect substandard
pronunciation and finally build up the final dataset for detect-
ing and diagnosing mispronunciation in read-aloud questions
of the Mandarin Proficiency Test. The statistical information
of the dataset is shown in Table 2, and the statistical infor-
mation of the number of mispronunciations in the dataset is
shown in Table 3.

V. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
The experiment in this paper was carried out on an x86 server
of Ubuntu 20.04 system, and the GPU used was NVIDIA
A40. The in-depth learning framework used in the experiment
was PyTorch 1.13.1, the CUDA runtime version was 11.6, the
Python runtime version used was Python 3.8.16, and the CTC
loss function used was the PyTorch built-in implementation.
In this paper, feature extraction, phonememodel building and
training were implemented using theWeNet [39], [40] frame-
work, and the calculation of each index of mispronunciation
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detection and diagnosis was conducted using the method
given by Fu et al. [25].

The batch size parameter was set to 32 for model training in
the experiments of this paper, the WavLM-Transformer [14]
and CNN-RNN-CTC [10] models based on the beam search
algorithm were used as the baseline model, the modeling unit
was the phoneme, and the word list size (number of tag class)
was 188.

In this paper, the speed perturbation data enhancement
method was used in the model training process. The range
of speech speed conversion used in this paper was 0.9, 1.0,
and 1.1 times.

B. MISPRONUNCIATION DETECTION AND DIAGNOSIS
We used the phoneme error rate (PER), F1 score, detection
accuracy and diagnosis accuracy as the performance indica-
tors of the model.

PER =
(S + D+ I )

N
(14)

DetectionAccuracy =
(TA+ TR)

(TA+ FR+ FA+ TR)
(15)

DiagnosisAccuracy =
CD

(CD+ DE)
(16)

where S, D, and I are the number of substitution, deletion,
and insertion errors, and N is the total number of phonemes
in the reference phoneme sequence. Before calculating the F1
score, it is necessary to divide the mispronunciation detection
results of the model into four cases: true accept (TA), true
rejection (TR), false accept (FA), and false rejection (FR).
Then, the F1 score can be calculated according to the num-
ber of four types of result samples. The mispronunciation
detection results of the true rejection (TR) type can be further
divided into two categories according to whether the mis-
pronunciation type is correctly determined: correct diagno-
sis (CD) and diagnosis error (DE). The error detection and
diagnosis performance of the model can be comprehensively
measured by combining F1, detection accuracy, and diagnosis
accuracy.

We use theWavLM-Transformer [14] andCNN-RNN-CTC
[10] model as the baseline model for our experiments, and we
also conduct ablation experiments for models using different
encoders, with or without multi-features and multi-modality,
and with or without secondary decoding in our experiments.
Considering the impact of different CTC loss weights on the
performance of the model when using CTC/Attention joint
loss, we conducted a detailed comparative experiment on the
performance of the model under different CTC loss weights.
We adjusted the CTC loss weight from 0 to 1. When the
CTC loss weight is 0, it means that only a single Attention
loss is used in the model training process. When the CTC
loss weight is 1, it means that only a single CTC loss is
used in the model training process. CTC loss weight between
0 and 1 means that the model uses CTC/Attention joint loss
during the training process. Table 4 shows the experimental
results under different CTC loss weights. It can be seen from

FIGURE 7. F1 value and PER index under different λ.

the experimental results that the model achieved the best F1
value and PER on the test set when the CTC loss weight
was set to 0.6. Table 5 compares the MDD results under
different CTC loss weights. It can be seen from the table
that the impact of different CTC loss weights on MDD is
uneven.When the CTC loss weight is 0.4, the model achieved
the best diagnostic accuracy on the test set, while when the
CTC loss weight was set to 1.0, the model achieved the best
detection accuracy on the test set. Therefore, considering all
the indicators of pronunciation error detection and diagnosis,
we finally set the CTC loss weight to 0.6.The distribution of
F1 score and PER index obtained by themodel under different
CTC loss function weights λ are shown in Fig.7.According
to the experimental results in Table 6, it can be seen that
the multi-feature, multi-modal mispronunciation detection
and diagnosis model based on the Squeezeformer encoder
has the best PER and F1 value in a series of comparative
model experiments after secondary decoding. It achieved an
F1 score of 0.7943 and a PER of 1.50%. Relative to the
WavLM-Transformer model using the beam search algo-
rithm, the F1 was relatively improved by 0.3883, and the
PER was reduced by 2.66%. From the experimental results,
it can be seen that the model using Squeezeformer as the
encoder has a significant performance improvement com-
pared with the model using Transformer as the encoder. Tak-
ing the Squeezeformer encoder as an example, after adding
multi-modal information based on the use of feature fusion
and secondary decoding, the F1 value is improved by 0.0275,
the PER is reduced by 0.12%, and the diagnostic accuracy
is improved by 0.59%; thus, we can verify that the model
has a certain performance improvement after incorporating
multi-modal information. Among the secondary decoding
algorithms, we use SD (secondary decoding) as represen-
tative. From the experimental results, we can see that the
SD decoding method shows better performance compared
with decoding using the beam search method using the same
encoder. We also take the Squeezeformer encoder as an
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TABLE 4. Experimental results under different CTC weight.

TABLE 5. MDD results under different CTC weight.

TABLE 6. Experimental results.

example. Under the condition of using multiple features and
multiple modes, the decoding process using the SD decoding
method improves by 2.3% in terms of F1 value, 0.56% in
terms of PER reduction, and 1.34% in terms of diagnostic
accuracy compared with using the beam search decoding
method. Table 7 demonstrates the performance of our model
in terms of correct diagnosis and detection accuracy, and it
can be seen from the experiments that the Squeezeformer

encoder-based multi-feature and multi-modal approach has
the highest diagnosis accuracy after secondary decoding,
with a diagnostic accuracy of 88.45%. The multi-feature
model based on the Squeezeformer encoder achieves 96.19%
detection accuracy using beam search combined with multi-
modal methods. Overall, in this experiment, the model based
on the Squeezeformer encoder and using feature fusion and
multi-modal information, which uses a secondary decoding
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TABLE 7. MDD results.

mechanism in the decoding process, performs better than the
baseline model.

VI. CONCLUSION
Combined with the more advanced Squeezeformer model
in speech recognition tasks, this paper proposes a reference
text-related mispronunciation detection and diagnosis frame-
work based on Squeezeformer, dual encoders, multi-modal
features, and the secondary decoding mechanism. This model
can effectively combine multi-modal information to improve
the representation ability of speech features, so that the model
can further learn the intrinsic characteristics of the speaker’s
pronunciation content, thus improving the accuracy of the
model phoneme recognition and the quality of mispronunci-
ation detection and diagnosis. From a series of comparative
experiments, it can be seen that in the mispronunciation
detection and diagnosis dataset, the model with the Squeeze-
former encoder incorporating multi-modal information and
using the secondary decoding mode has better performance.
Compared with the baseline model, our model has better per-
formance in terms of the F1 value, PER, diagnostic accuracy,
and detection accuracy.

Through the above research, our model can be applied to
computer-assisted language learning (CALL). This research
has important theoretical and practical significance in the
field of mispronunciation detection and diagnosis., being able
to theoretically improve the performance of mispronuncia-
tion detection and diagnosis, reduce the errors in model per-
formance, and more effectively complete mispronunciation
detection and diagnosis tasks. At the same time, this study
also provides important theoretical information for further
research in the field of mispronunciation detection and diag-
nosis. In addition, this research also has great potential value
in the field of education, to help people better learn Mandarin
and provide a series of feedback on pronunciation quality.
At the same time, it will greatly reduce the pressure of manual
evaluation.

To improve the performance of the Mandarin mispronun-
ciation detection and diagnosis model, we will continue to
explore the multi-task learning method of integrating data

scoring tags into the multi-feature aspect and adding scoring
tasks based on mispronunciation detection and diagnosis,
in order to further improve the mispronunciation detection
and diagnosis performance.
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