
Received 11 May 2023, accepted 16 May 2023, date of publication 22 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3278974

SSRT: A Sequential Skeleton RGB Transformer to
Recognize Fine-Grained Human-Object
Interactions and Action Recognition
AKASH GHIMIRE 1, VIJAY KAKANI 1, (Member, IEEE), AND HAKIL KIM 2, (Member, IEEE)
1Department of Integrated System Engineering, School of Global Convergence Studies, Inha University, Incheon 402-751, South Korea
2Department of Information and Communication Engineering, Inha University, Incheon 402-751, South Korea

Corresponding author: Hakil Kim (hikim@inha.ac.kr)

This work was supported by Inha University’s Research Grant.

ABSTRACT Combining skeleton and RGB modalities in human action recognition (HAR) has garnered
attention due to their ability to complement each other. However, previous studies did not address the
challenge of recognizing fine-grained human-object interaction (HOI). To tackle this problem, this study
introduces a new transformer-based architecture called Sequential Skeleton RGB Transformer (SSRT),
which fuses skeleton and RGB modalities. First, SSRT leverages the strength of Long Short-Term Memory
(LSTM) and a multi-head attention mechanism to extract high-level features from both modalities. Subse-
quently, SSRT employs a two-stage fusion method, including transformer cross-attention fusion and softmax
layer late score fusion, to effectively integrate the multimodal features. Aside from evaluating the proposed
method on fine-grained HOI, this study also assesses its performance on two other action recognition tasks:
general HAR and cross-dataset HAR. Furthermore, this study conducts a performance comparison between a
HARmodel using single-modality features (RGB and skeleton) alongside multimodality features on all three
action recognition tasks. To ensure a fair comparison, comparable state-of-the-art transformer architectures
are employed for both the single-modality HAR model and SSRT. In terms of modality, SSRT outperforms
the best-performing single-modality HAR model on all three tasks, with accuracy improved by 9.92% on
fine-grained HOI recognition, 6.73% on general HAR, and 11.08% on cross-dataset HAR. Additionally,
the proposed fusion model surpasses state-of-the-art multimodal fusion techniques like Transformer Early
Concatenation, with an accuracy improved by 6.32% on fine-grained HOI recognition, 4.04% on general
HAR, and 6.56% on cross-dataset.

INDEX TERMS Multimodality fusion, human action recognition, fine-grained actions, transformer cross-
attention fusion.

I. INTRODUCTION
RGBvideo data encompasses both temporal and spatial infor-
mation, including details about human limbs and interactions
with objects [9], [10]. However, extracting human actions
from RGB data can pose a challenge due to the diversity
in surroundings, angles of observation, human proportions,
and illumination settings. On the other hand, skeleton modal-
ity data encodes human body joint movements, capturing
motion-related information and making it highly suitable for
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HAR tasks [21], [43], [44]. This modality is scale-invariant
and robust to variations in clothing textures and backgrounds,
ensuring reliable action recognition across different subject
sizes and situations. Nonetheless, the limitation of skeleton
data is its lack of spatial information, which complicates
the accurate prediction of fine-grained Human-Object Inter-
action (HOI). These actions involve similar limb and joint
movements but vary in HOI aspects, as illustrated in Figure 1.
In this series of images, the action of drinking differs due
to the person’s interactions with various objects (cup, can,
and bottle). To accurately classify fine-grained HOI, it is
beneficial to merge the strengths of both RGB and skeleton
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FIGURE 1. Examples of fine-grained human-object interactions.

modalities into a cohesive set of distinguishing features. Con-
sequently, in the field of HAR, combining skeleton and RGB
modalities is currently a significant research focus.However,
most of the previous studies [12], [13], [16] primarily focused
on achieving state-of-the-art performance on well-known
datasets, such as NTU-RGB+D [27], and often overlooked
the following key concerns:

1) Recognition of fine-grained HOI : Most existing
HAR studies [12], [13], [36], [37], [42] that fuse skele-
ton and RGB modalities have mainly concentrated on
recognizing broad interaction categories. These studies
have assessed datasets like NTU RGB+D [27], which
contain only coarse-grained HOI that can be accurately
classified using high-quality skeletonmodality features
alone.

2) Bias to RGB modality features: During the training
process of a model that utilizes both RGB and skele-
ton modalities, there is often a prevalent bias towards
appearance. This bias can limit the model’s generaliza-
tion capabilities for unseen videos and increase its sus-
ceptibility to deception by out-of-context videos [11].
Research on the fusion of these twomodalities suggests
that the multimodal methods employed in these studies
offer only slight enhancements over RGB-based HAR
models [12], [14]. Furthermore, none of these stud-
ies [12], [14], [15], [16], [37], [42] assess the robustness
of their proposed models when facing cross-dataset.

Some limited research [14], [15], [16] has explored
the integration of RGB and skeleton modalities using
datasets containing fine-grained HOI, such as Toyota
Smarthome [14], but their primary focus was not on improv-
ing the accuracy of fine-grained HOI. First, these studies
were conducted on overall action classes, with only a few
actions involving fine-grained HOI. Furthermore, although
multimodal strategy in [14] demonstrated enhanced accuracy
for certain fine-grained HOI classes, this improvement was
not observed in other fine-grained HOI classes possessing the
same coarse label. The reason for this might be an uneven

distribution of training and testing instances in fine-grained
HOI with identical coarse labels.

In the field of HAR, recent advancements are largely
driven by the success of transformer-based multimodal-
ity architectures [35], [37], [40], [41], [42], demonstrat-
ing state-of-the-art results. Building on such success, this
paper introduces a new transformer-based architecture called
Sequential Skeleton RGB Transformer (SSRT) that fuses
skeleton and RGB modalities. First, SSRT harnesses the
power of Long Short-Term Memory (LSTM) and a trans-
former multi-head attention mechanism to obtain abstract
features from the skeleton and RGB modalities. Subse-
quently, SSRT employs a two-stage fusion approach, con-
sisting of transformer cross-attention multimodal fusion [34]
and Softmax layer (SML) late fusion, to efficiently integrate
abstract features from two modalities. The architecture of
SSRT is illustrated in Figure 2.

Efficiently complementing heterogeneous modalities such
as RGB and skeleton modality presents challenges, as men-
tioned by Joshi et al. [57]. Unlike conventional fusion
techniques like early fusion, late fusion, concatenation,
or weighted sum, which do not effectively address the
heterogeneity of RGB and skeleton modalities, SSRT uti-
lizes multi-head attention mechanisms. These mechanisms,
as demonstrated in [29], can determine information from
various representation subspaces at distinct locations. This
approach captures the two counterintuitive modalities and
provides a more accurate fusion method than traditional tech-
niques shown in [17], [18], [19], and [20].

The primary objective of this study is to solve the prob-
lem of recognizing fine-grained HOI. To accomplish this
goal, this study utilizes balanced sets of training, validation,
and test data for each fine-grained HOI class in the Toyota
Smarthome dataset to prevent any bias towards specific
actions within the same coarse label. Apart from recogniz-
ing fine-grained HOI, the study assesses SSRT on action
classes other than fine-grained HOI to confirm that the
model generalizes well across various scenarios. Addition-
ally, to ensure that SSRT is robust and not biased toward
RGB features, the study evaluates the proposed method on
classes from cross-dataset actions in the ETRI-Activity3D
dataset [28].

The main contributions of this research include the
following:

1) A new method for merging skeleton and RGB data
in human activity recognition, SSRT initially extracts
high-level features from both the skeleton and RGB
modalities using a unique technique that employs
LSTM and a transformer encoder to capture improved
high-level temporal dependencies of two modalities.
Following this, SSRT combines the high-level fea-
tures from the skeleton and RGB modalities through
a two-stage fusion process: transformer cross-attention
and softmax layer late score fusion.

2) We evaluate the performance of skeleton and
RGB modalities on fine-grained HOI, general, and
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FIGURE 2. Overview of SSRT architecture: A sequential skeleton RGB transformer designed for fine-grained human-object interaction and action
recognition.

cross-dataset HAR tasks. Following this, the best-
performing single-modality HARmodel for each HAR
task is compared to SSRT, which incorporates both the
skeleton and RGB modalities.

3) To ensure a fair comparison among skeleton, RGB,
and multimodal approaches, the study employs a state-
of-the-art transformer architecture action recognition
model tailored to each modality-based HAR.

4) The novelty of this research is fourfold. First, to the
best of our knowledge, SSRT is a pioneering model
that employs a combination of LSTM and a trans-
former architecture as described above. Second, SSRT
is the first to fuse skeleton and RGB modalities using
a transformer cross-attention multimodal mechanism.
Third, this research is the first of its kind to primar-
ily concentrate on recognizing fine-grained HOI and
action recognition. Fourth, we are the first to assess
the performance of a multimodal features-based HAR
model on cross-dataset actions.

II. RELATED WORKS
A. TRANSFORMERS FOR HAR
Research in HAR using transformer-based architectures, such
as ViViT [8], TimeSformer [45], MVT [39], AcT [44],
and STST [43], has demonstrated state-of-the-art results.
Using RGB modality features, ViViT [8] and TimeSformer
[45] extract spatiotemporal features separately, whereas
MVT [39] uses two transformer encoders to process differ-
ent views of input frames. Transformer-based models such
as AcT [44] and STST [43] have also explored the use of
skeleton modality for HAR tasks. AcT utilizes 2D skeleton
representations for efficient real-time performance, whereas
STST [43] uses spatial and directional temporal transformer
blocks for modeling skeleton sequences.

In this study, we select a model resembling the one used in
AcT [44] as our primary model for HARwith a single modal-
ity. This choice was made because the AcT model not only
outperforms state-of-the-art models such as SR-TR [53] and
MS-G3D(J+B) [54], but also provides a low latency solution.
Furthermore, our proposed multimodal HAR model, SSRT,
employs a model resembling the AcT model as a baseline,
combined with LSTM, to extract high-level temporal depen-
dencies from the skeleton and RGB modalities. However,
our study introduces a distinct transformer architecture that
differs from AcT.

B. MULTIMODAL FUSION FOR HAR
1) TRANSFORMER-BASED MULTIMODALITY FUSION
FOR HAR
The fusion of multimodal information through transformer
architectures has recently garnered considerable interest, par-
ticularly in uniting RGB and language modalities to achieve
state-of-the-art performance in vision-linguistic tasks [30],
[31], [38]. Capitalizing on this achievement, researchers have
explored the integration of skeleton and RGB modalities
with transformer-based architectures for a range of vision
tasks, including HAR. To offer a thorough understanding of
the transformer-based multimodality fusion applied in HAR,
a summary is given in Table 1, featuring three columns:
Fusion Method, Modalities Used, and Purpose. The Fusion
Method column details three popular fusion techniques using
transformer architecture: early summation, early concatena-
tion, and cross-attention. The Modalities Used column lists
themodalities employed in the studies, while thePurpose col-
umn highlights the specific tasks for which fusion is executed.

Early summation is a simple yet effective approach to
multimodal interaction that involves weighting token embed-
dings from multiple modalities and subsequently summing
them at each token position before processing them through
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a transformer layer. For example, the authors in [35] utilized
early summation to fuse three multimodality features (RGB
images, optical flow images, and static skeleton) for group
activity recognition. A benefit of using the early summation
approach is its low computational difficulty, but the primary
drawback lies in the need to manually assign weights for
various input multimodal features [34].

As another early fusionmethod, early concatenation entails
concatenating token embedding sequences from multiple
modalities and inputting them into transformer layers. Studies
in [36], [37], and [42] employed this fusionmethodwith RGB
and skeleton sequences for HAR. Early concatenation offers
the benefit of relative simplicity compared to other methods.
Nevertheless, the drawback of utilizing this fusion technique
is the increased computational complexity due to the longer
sequence resulting from concatenation [34].

Cross-attention is an efficient fusion method for multiple
modalities, enabling each modality to attend to information
from the others. This process is achieved by exchanging the
key (K) and value (V) vectors of one modality with the query
(Q) sequences of another modality within multiple stream
transformer layers. Furthermore, this fusion method does not
significantly increase computational complexity.

Yan et al. [39] employed cross-attention to fuse RGB
images from different views for more robust action recogni-
tion. Similarly, Ijaz et al. [40] used cross-attention to inte-
grate skeleton sequence data and acceleration data for action
recognition in nursing. Additionally, Zhang et al. [41] applied
cross-attention to fuse three modalities-RGB images, text,
and audio-for effective facial expression recognition.

Our proposed SSRT represents the first transformer-based
multimodal fusion approach to combine skeleton and RGB
modalities for HAR using cross-attention. Diverging from
prior studies that employed early concatenation for fusing
high-level skeleton andRGB features [37], [42], our proposed
method focuses on detecting fine-grained HOI and action
recognition.

2) MULTISTAGE MULTIMODAL FUSION TECHNIQUES
FOR HAR
Cheng et al. [51] employ a two-stage approach to fuse
RGB and depth sequences. First, they introduce a novel
method called Cross-Modality Interactive Module (CMIM)
to enhance the sharing of high-level features between RGB
and depth sequences. Subsequently, these features are fused
using the late score fusion technique. Yan et al. [39] initially
utilize transformer cross-attention to fuse RGB images from
different views for more robust action recognition. Later, they
use a global transformer encoder to fuse the high-level fea-
tures derived from the transformer encoder, which processes
two distinct views of RGB images. Yuean et al. [52] develop a
human monitoring system that integrates PRF and PIR sensor
data through sensor fusion. They employ three RNN models
for PIR, PRF, and combined PRF-PIR data and implement
decision-level fusion with HAP XAI to improve the inter-
pretability of the results. Weiyao et al. [12] and Zhu et al. [13]

fuse RGB and skeleton modalities in two stages of fusion
for human action recognition. Weiyao et al. first uses the
proposed Bilinear Pooling and Attention Network (BPAN)
module to fuse the high-level features of RGB and skeleton
modalities. The BPAN module is employed to learn poten-
tial semantic relationships between RGB and skeleton HAR
baseline models. Later, similar to our Softmax layer late score
fusion, Weiyao et al. fuse the probability scores from two
pathways to obtain a final score prediction. Zhu et al. imple-
ment a novel two-stage feature fusion network to combine
the knowledge of the RGB and skeleton modalities. First,
they fuse skeleton and RGB features in the early stage using
element-wise concatenation. Then, Zhu et al. use either GCN
or LSTM architecture to fuse these features as late score
fusion.

In our proposed method, we leverage the benefits of a
two-stage fusion approach to effectively integrate RGB and
skeleton modalities for human action recognition. By initially
applying transformer cross-attention to capture the complex
interactions between the modalities, we are able to learn
more meaningful and complementary features. Then, through
softmax layer late score fusion, we combine the probability
scores of the individual modalities, allowing for a more accu-
rate and robust final prediction. To the best of our knowledge,
our method is the first to utilize this combination of trans-
former cross-attention and softmax layer late score fusion for
human action recognition. This unique approach capitalizes
on the advantages of both stages of fusion, ultimately leading
to improved performance in comparison to previous methods.

III. METHODOLOGY
A. FEATURES PREPROCESSING
This study standardized the experimental datasets by ran-
domly selecting 42 sequences of frames from each video
to identify human actions. The frames were then resized to
480×640×3. To obtain RGB features, the input pixel values
of each frame were first rescaled to between -1 and 1 using
equation (1) and were then passed through a pre-trained
Resnet152 [33] model to generate 42 × 2048 RGB features.
To obtain the skeleton modality, AlphaPose Pose Estima-
tion [32] was utilized to generate 17 2D skeleton features
from each input frame. These skeleton features were then nor-
malized along the x and y coordinates utilizing equation (1)
and flattened to obtain 42 × 34 skeleton features. Figure 4
shows the raw images in the first row and their associated
skeleton keypoint representations in the second row.

In this study, we employed a specific preprocessing
approach to create multimodal features using both RGB and
skeleton data. First, we extracted skeleton features following
the procedure described earlier. Next, we cropped frames
to a size of 350 × 350 × 3 using the x and y coordinates
of the skeleton features. To determine the optimal cropping
dimensions, we conducted a qualitative analysis, which is
illustrated in Figure 3. The figure’s columns represent three
different cases, with the first row demonstrating the limita-
tions of various cropping dimensions, while the second row
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TABLE 1. Related works on transformer-based multimodal fusion for HAR.

FIGURE 3. Suboptimal crop selection vs. Optimal crop selection.

showcases the optimal results achieved with the proposed
cropping dimension in each scenario.

Initially, we attempted cropping with a size of 144×144×

3, as depicted in the Case 1 of the first row in Figure 3.
However, this cropping method proved inadequate in most
scenarios, as it failed to fully capture the subject. We then
increased the crop dimensions to 224×224×3 but found this
size to be insufficient for cases where the subject is standing,
as illustrated in Case 2 of the first row in Figure 3.
Subsequently, we further increased the crop dimensions to

275× 275× 3 and observed that although this size produced
optimal results in most scenarios, it struggled to accurately
capture human-object interactions, particularly when the per-
son was too close to the camera. In Case 3 of the first row,
it is evident that the bottle was cropped during the process.
Ultimately, we settled on a dimension of 350 × 350 × 3,
which provided optimal results, as shown in the second row
of Figure 3.
To obtain RGB features, we followed the same process as

previously outlined, resulting in 42×2048RGB features from
the 42 input frames. By implementing these preprocessing
steps, the proposed SSRT can strike a balance between the
most relevant and contextual information by cropping the
frame to an ideal size.

xnormalized =
x − xmin

xmax − xmin
× 2 − 1 (1)

FIGURE 4. Optimizing RGB frame size through skeleton feature-based
cropping.

TABLE 2. Different versions of SSRT, skeleton encoder, and RGB encoder.

B. ACTION RECOGNITION MODEL
1) SINGLE MODALITY ACTION RECOGNITION
Section (III-A) outlined the preprocessing procedure
employed for classifying HAR using a transformer encoder
with either skeleton or RGB modality. Following this, the
preprocessed features are channeled through a positional
encoding layer. In accordance with the transformer architec-
ture [29], each input feature dimension must be a multiple
of the number of heads (H) utilized in the multi-head self-
attention (MSA) layer. As a result, the positionally encoded
input features are projected onto dmodel dimensions, corre-
sponding to the number of H incorporated in the MSA layer,
as noted in Table 2. Therefore, the input X for the transformer
encoder possesses dimensions of 42 × dmodel .

The operating mechanism of the transformer encoder is
elucidated in [29]. The output from the transformer encoder
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is flattened into a one-dimensional vector, which is then pro-
cessed by a Softmax layer, producing a probability output for
each human action class. In this study, the termsRGB encoder
and skeleton encoder are used when the RGB modality and
skeleton modality, respectively, are leveraged for classifying
HAR with the transformer encoder.

2) SSRT: PROPOSED MULTIMODALITY ACTION
RECOGNITION
SSRT integrates RGB and skeleton sequences using two par-
allel pathways: the skeleton modality pathway and the RGB
modality pathway, as depicted in Figure 2.

To efficiently extract high-level features from multimodal
inputs, feature preprocessing is performed for each modality
feature prior to high-level feature extraction. Section III-A
offers an in-depth description of feature preprocessing for
multimodality fusion. Providing positional information to the
preprocessed features from each modality is crucial before
inputting them into the transformer encoder. Without this
information, the transformer encoder might interpret the fea-
tures as a bag of features, potentially reducing its effective-
ness. Although a Positional Encoding Layer is commonly
employed to tackle this issue, it may be unsuitable for
time-series tasks like HAR due to its disregard for temporal
dependencies between input sequences.

In order to effectively capture the sequence order and tim-
ing of input features, this study proposes the use of an LSTM
layer instead of a positional encoder. LSTMs process inputs
element by element, adeptly capturing the temporal depen-
dencies inherent in feature sequences. This characteristic is
crucial for time-series tasks, such as HAR, where recognizing
temporal dependencies is vital. By implementing an LSTM
layer, the effectiveness of abstract feature extraction can be
enhanced compared to traditional positional encoding meth-
ods. To maintain the dimensionality of each input sequence
instance as a factor of the number of heads H used in the
multi-head attention layer, the hidden dimension of the LSTM
layer is set to dmodel . As a result, the LSTM layer generates an
output with a shape of 42 × dmodel for both pathways, which
is subsequently directed to the appropriate skeleton or RGB
transformer encoder based on the input modality.

Subsequently, the transformer encoder architecture is
employed to obtain high-level features from both the skele-
ton and RGB pathways, as described in Section III-B1.
After obtaining the abstract features from the RGB encoder
(HLFRGB) and the skeleton encoder (HLFSKL), the fusion
process begins through the skeleton cross transformer and
the RGB cross transformer. These cross transformers merge
features from two modalities using a cross-attention fusion
mechanism, which is elaborated upon in Section II-B1.
Importantly, the skeleton/RGB cross transformer uses multi-
head cross-attention (MCA) layers, distinct from the MSA
layers found in the skeleton/RGB encoder.

The skeleton cross transformer incorporates anMCA layer
that creates a Qs vector for each attention head H by
multiplying HLFSKL with a trainable weight matrix WQs.

Simultaneously, theMCA layer generates two contextual vec-
tors,Kr andVr , bymultiplyingHLFRGB with trainable weight
matricesWKr andWVr , respectively. The attention score (As)
for each attention head H in the skeleton cross transformer is
determined using equation (2), where dk denotes the dimen-
sion of each attention head. To acquire the final multi-head
attention scores (MCAs), the attention scores from all atten-
tion heads are concatenated and then multiplied by a train-
able weight vector Ws, with dimensions (dk × H ) × dmodel ,
as illustrated in equation (3).

As = Softmax
(QsKT

r
√
dk

)
Vr (2)

MCAs = Softmax
(
[As1;As2; ..;AsH ]

)
)WS (3)

In a similar manner, the RGB cross transformer produces
three vectors (Qr , Ks, and Vs). However, the query input
vectors are obtained using HLFRGB, while the contextual
input vectors are derived from HLFSKL . Then, equations (4)
and (5) are used to compute the final multi-head attention
score (MCAr ) for the RGB cross transformer, following an
approach analogous to that of the skeleton cross transformer.

Ar = Softmax
(QrKT

s
√
dk

)
Vs (4)

MCAr = Softmax
(
[Ar1;Ar2; ..;ArH ]

)
Wr (5)

The following steps in the skeleton/RGB cross transform-
ers conform to the same process as the skeleton/RGB encoder,
as detailed in Section III-B1. The outputs from the skeleton
cross transformer (OSCT ) and the RGB cross transformer
(ORCT ) are combined with HLFSKL and HLFRGB, respec-
tively, and then normalized. Afterward, the normalized out-
puts from each modality pathway are flattened and fed into
the Softmax layer, resulting in the probability of each action
class for the skeleton modality (PSKL) and the RGB modality
(PRGB), as shown in equations (6) and (7). Ultimately, the
SML late score fusion is carried out by adding PSKL and PRGB
to obtain the final probability of each action class (PFINAL) for
HAR, as portrayed in equation (8).

PSKL = Softmax
(
Flatten(Norm(HLFSKL + OSKL))

)
(6)

PRGB = Softmax
(
Flatten(Norm(HLFRGB + ORGB))

)
(7)

PFINAL = ADD
(
PSKL ,PRGB

)
(8)

3) TRANSFORMER MODEL ARCHITECTURE
This research introduces three distinct transformer architec-
ture versions (X1, X2, and X3) for the skeleton encoder,
the RGB encoder, and SSRT, as listed in Table 2. In this
Table, dff represents the dimension of the initial layer in
the feed-forward network inside the transformer encoder,
as described in [29]. Diverging from traditional transformer
architectures that use a low number of H and a higher
number of dmodel [22], [29], this study recommends making
the number of H in a multi-head attention layer the same
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as dmodel . This design enables each model to effectively
harness a high number of H without incurring excessive
computational demands.

IV. IMPLEMENTATION DETAIL
A. DATASETS
This research employs two datasets for the HAR task. Table 3
compares the commonly used vision-based datasets for this
task. Among them, the Toyota Smarthome dataset stands
out due to its fine-grained HOI and context-free nature, fea-
turing elderly people performing actions without adhering
to a specific script. Furthermore, this dataset exemplifies
a real-world situation, presenting a distinct set of chal-
lenges, including high intra-class variation, significant class
imbalance, and activities exhibiting similar motion patterns
and considerable duration disparities [14]. Consequently, the
Toyota Smarthome dataset serves as the primary dataset for
this study.

As a secondary dataset, ETRI-Activity3D is utilized. This
dataset also features elderly subjects performing context-free
actions, making it an appropriate choice. Additionally, four
general actions are shared between the Toyota Smarthome
and ETRI-Activity3D datasets, making ETRI-Activity3D
well-suited for the cross-dataset HAR task.

This study enhances dataset quality by filtering out sam-
ples in which the interacting object is obscured by the subject
or another object.

1) FINE-GRAINED HUMAN-OBJECT INTERACTION
The Toyota Smarthome dataset consists of three sets of
fine-grained HOI action classes, which fall under the coarse
action labels of Drink, Eat, and Pour. It is crucial to men-
tion that this research omits the fine-grained actions (Clean
dishes, Clean up, Cut), (Pour grains, Pour water), and (Boil
water, Insert tea bag), corresponding to the coarse labels
Cook, Make coffee, Make tea, respectively. This exclusion
is due to the fact that these fine-grained actions represent
composite actions at a fine-grained level, rather than fine-
grained HOI.

This study also excluded the fine-grained HOI action class
within the Eat and Pour categories. The Eat category is not
included because, as depicted in Figure 5, the fine-grained
HOIEat at the table involves eating at a table, whileEat snack
features a few instances of eating while sitting. The posture
differences can be detected independently using the skele-
ton modality. Similarly, as illustrated in Figure 5, the Pour
category is not considered because the Pour from kettle
action involves pouring water from a kettle, whereas the
corresponding fine-grained HOI action Pour from bottle also
includes additional actions such as opening and closing the
bottle. The skeleton modality can identify these extra actions
without requiring RGB features. This study only employs
fine-grained HOI from the Drink category. As shown in
Figure 1, the fine-grained HOI within the Drink category
share similar motions, with the only variation being the sub-
ject’s interaction with various drinking objects.

FIGURE 5. Unused action classes in fine-grained human-object
interactions from Toyota Smarthome dataset.

This research used 196 video samples from each class
within fine-grained HOI and stratified them into training,
validation, and testing sets at a 60:20:20 ratio, ensuring unbi-
ased results. This approach provides representative samples
of fine-grained HOI in each subset, mitigating the risk of
overfitting to any particular class, unlike the methods used
in [14], [15], and [16].

2) GENERAL ACTIONS AND CROSS-DATASET ACTIONS
This research extended the evaluation of the proposed SSRT
model to two other action recognition tasks. First, the model’s
ability to generalize beyond the fine-grained HOI class was
tested in the General Actions class. Secondly, the model was
assessed on the Cross-dataset Action class to evaluate its
performance with unseen videos from a different dataset. The
objective of this evaluationwas to establish if the SSRTmodel
could achieve high accuracy on videos that differ significantly
from the training set, demonstrating its ability to generalize
to new and diverse contexts.

In this research, an extensive search was conducted of
both the Toyota Smarthome and ETRI-Activity3D datasets
to identify suitable action classes for general action and
cross-dataset HAR tasks. After analyzing the datasets, four
classes were identified that exhibited comparable motion
and human-object interaction. These classes are Drink From
Cup, Readbook, Uselaptop, and Usetelephone from Toyota
Smarthome, which corresponds to Drinking water, Reading
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TABLE 3. Comparison of vision-based datasets for human action recognition.

FIGURE 6. Comparison of common actions in Toyota Smarthome and ETRI-Activity3D datasets.

a book, Using a computer, and Talking on the phone, respec-
tively, from ETRI-Activity3D. Throughout the study, the
action class names from the Toyota Smarthome dataset were
used for both HAR tasks for ease of analysis. In Figure 6,
frames depicting the beginning and middle stages of each
action category in the Toyota Smarthome dataset are shown
alongside the corresponding class from the ETRI-Activity3D
dataset.

This research underscores the significant challenges asso-
ciated with cross-dataset evaluation, which is more intricate
than both cross-view and cross-subject evaluations [14], [27],

[28]. The complexity arises due to the divergent perspectives
between the Etri-Activity3D dataset, captured from a robotics
viewpoint, and the Toyota Smarthome dataset, recorded from
a surveillance viewpoint. This variance heightens the diffi-
culty of the cross-view challenge. Furthermore, cross-dataset
evaluation proves to be more convoluted than cross-subject
testing, as the individuals performing actions differ, and other
RGB factors such as illumination, colors, and video quality
further compound the evaluation process.

The effectiveness of SSRT on the general HAR task was
assessed using the training, validation, and testing datasets
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TABLE 4. Traning and regularization hyperparameters.

from Toyota Smarthome. For selecting the training, valida-
tion, and testing datasets, sample videos of selected action
classes from the Toyota Smarthome dataset were split into
those datasets at a ratio of 60:20:20. Similarly, to evaluate
the performance of SSRT on the cross-dataset HAR action
recognition task, this research utilized the same training and
validation dataset splits as the General HAR task, and tested
the model on cross-dataset actions from the ETRI-Activity3D
dataset. From ETRI-Activity3D, 99 samples were selected
from the action class Drink From Cup, 125 samples were
selected from Readbook, 95 samples from Uselaptop, and
123 samples from Usetelephone.

This dataset implementation enables benchmarking of the
proposed method, SSRT, in a manner akin to that presented
by An et al. [55]. An et al. have proposed two experimen-
tal protocols; first, they split their dataset into Setting 1
(S1) and Setting 2 (S2). The S1 dataset is obtained from a
train-validation-test split, while S2 focuses on cross-subject
evaluation. Next, they also divide their actions into two
action protocols, P1 and P2. Similar to the S1 setting, our
fine-grained and general actions involve a train-test random
split for comparison. Likewise, our approach mirrors the
S2 setting with a cross-dataset HAR task. However, the
cross-dataset setting is considerably more challenging than
the S2 protocol, as it encompasses not only cross-subject
challenges but also other difficulties such as varying back-
grounds, cross-views, and so on.

B. COMPARISION WITH OTHER HAR METHODS
1) COMPARISION WITH SINGLE-MODALITY HAR MODEL
In this study, to compare SSRT with single-modality HAR,
LSTM and Transformer encoder HAR models were cho-
sen. Although LSTM is not a state-of-the-art HAR model,
it was selected alongside the Transformer encoder due to
their critical roles in the SSRT framework. Consequently, this
particular selection of single-modality-based HAR models
also benefits the ablation study.

As discussed in Section II-A, a Transformer encoder
resembling the AcT model [44] was chosen as the primary
single-modality HAR model for comparison with SSRT per-
formance. The main reasons for this choice are:

1) Transformer is well-suited for both RGB and skele-
ton modality-based HAR models: As discussed in
Section II-A, the transformer architecture demonstrates
state-of-the-art performance for both RGB and skeleton

modality-based HAR. This makes the transformer
architecture one of the few architectures suitable for
both the skeleton and RGB-based modalities in HAR
tasks. For example, Graph Convolution Network-based
models such as STGCN [21] and 2s-AGCN [56] exhibit
state-of-the-art performance for skeleton-based modal-
ity but fail when RGB modality is used. Similarly, 3D
CNN-based models like I3D [4] perform exceptionally
well with RGB modality but fall short when used with
skeleton modality.

2) Ensuring a fair comparison of the skeleton, RGB,
and multimodal approaches: This study proposes the
same three Transformer architectures for both single-
modality-based HAR models and SSRT, as discussed
in Section III-B3. In SSRT, a similar Transformer archi-
tecture to that of the single-modality HARmodel is first
used in the RGB/Skeleton encoder for higher feature
extraction, and later, the same architecture is employed
in the fusion stage using the cross-transformer. This
consistent use of comparable Transformer architectures
allows for a fair comparison between single-modality-
based HAR and SSRT.

2) COMAPRISION WITH OTHER METHODS OF
MULTIMODALITY FUSION HAR MODEL
In this study, the SSRT method is evaluated alongside three
other prominent fusion methods: LSTM Late Score, Trans-
former Early Concatenation, and Transformer Late Score.
The baseline models for the late score fusion methods are
derived from the single-modality HAR models used in this
research. The LSTM and Transformer late score fusion
models are trained independently on each modality, with
the predicted probability scores from each modality com-
bined to predict the action classes using the late score
fusion approach. Transformer Early Concatenation employs
a Transformer encoder to extract high-level features for each
modality. These features are subsequently concatenated and
projected onto another Transformer encoder to generate the
final prediction.

C. EXPERIMENTAL SETTINGS
The experiments were conducted using Tensorflow plat-
form release 2.11 on a personal computer that has an Intel
i7-10700K processor, 48 GB of RAM, and an NVIDIA
RTX 3090 GPU that has 24 GB of VRAM. Optuna [46]
was employed to optimize the training process because it
is a widely recognized hyperparameter optimization tool for
machine learning models. The objective function, hyper-
parameter search space, and optimization algorithm were
defined using Optuna. The hyperparameters for training and
regularization are detailed in Table 4, where some hyper-
parameters possess fixed values, but others have a range of
values. Optuna performs a random search during training
to optimize the hyperparameters based on the listed values
and then determines the optimal hyperparameter. Both the

51938 VOLUME 11, 2023



A. Ghimire et al.: SSRT to Recognize Fine-Grained HOIs and Action Recognition

TA
B

LE
5.

O
ve

ra
ll

ex
pe

ri
m

en
ta

lr
es

ul
ts

.

VOLUME 11, 2023 51939



A. Ghimire et al.: SSRT to Recognize Fine-Grained HOIs and Action Recognition

FIGURE 7. Experimental results on fine-grained HOI using different modality features.

FIGURE 8. Experimental results on general actions using different modality features.

single-modality based transformer encoder and the proposed
SSRT were trained using categorical cross-entropy loss. The
AdamW [48] optimizer, which had a learning rate of 0.00001,
was chosen for network optimization, as shown in Table 4.

V. EXPERIMENTAL RESULT
The comprehensive experimental results obtained from this
research are presented in Table 5. This section evaluates
SSRT in comparison to both single-modality HAR models
and multimodality HARmodels. It is organized into two sub-
sections. The first subsection, V-A, examines the extensive

experimental results depicted in Table 5. Concurrently, the
second subsection, V-B, assesses the three proposed Trans-
former architectures for the skeleton encoder, RGB encoder,
and SSRT within the scope of all three HAR tasks.

A. COMPREHENSIVE EXPERIMENTAL OUTCOMES
Table 5 highlights that when utilizing only the skeleton
modality, the transformer encoder achieves superior accu-
racy in fine-grained HOI action recognition and cross-dataset
action recognition tasks. In addition, the transformer encoder
yields comparable results to the LSTMmodel in general HAR
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FIGURE 9. Experimental results on cross-dataset actions using different modality features.

tasks. For the fine-grained HOI action recognition task, the
transformer encoder displays a substantial improvement with
a 7.21% increase in accuracy and a 6.69% enhancement in
F1 score compared to the LSTM model. Furthermore, the
transformer encoder demonstrates a significant advantage
over the LSTM-based model when solely relying on the
RGB modality in all action recognition tasks, achieving up
to a 32.5% improvement in F1 score for the general HAR
task. These observations suggest that the transformer encoder,
which employs the multi-head attention mechanism, is more
effective at capturing human actions than the traditionally
used LSTM model.

Interestingly, when compared to the best-performing
single-modality HAR model, the RGB-based modality out-
performs the skeleton modality in fine-grained HOI tasks,
whereas the skeleton modality achieves better results in gen-
eral and cross-action HAR tasks. The reasons behind this are:

1) Lack of spatial information in skeleton modality:
Unlike the RGB modality, the skeleton modality does
not encode spatial features, rendering it unable to com-
prehend human-object interactions within fine-grained
HOI tasks. As a result, the RGBmodality surpasses the
skeleton modality in fine-grained HOI action classes.

2) SkeletonModality Captures HumanMotions Better
than RGB Modality: The skeleton modality is better
at capturing human movement since it encodes various
joint and limb movements. Consequently, the skeleton
modality outperforms the RGB modality in general
HAR tasks.

3) Skeleton modality is more robust than RGB modal-
ity: The RGB modality faces challenges due to envi-
ronmental diversity, such as changes in illumination.
In contrast, the skeleton modality is robust to varia-
tions in clothing textures, and illumination, and is also

scale-invariant. Thus, in cross-dataset HAR tasks, the
RGB modality is more affected than the skeleton
modality.

As illustrated in Table 5, the LSTM late score fusion
model exhibits the poorest performance in all HAR tasks.
Moreover, it is particularly noteworthy that both late score
fusion models (LSTM late score fusion and transformer late
score fusion) experience a decrease in all evaluation metrics
when compared to their corresponding single-modality HAR
methods. In contrast, the state-of-the-art multimodal fusion
method, Transformer Early Concatenation, enhanced both
accuracy and F1 score when compared to single-modality
methods.

Our proposed method, SSRT, achieved the best results
in all evaluation metrics for all HAR tasks. SSRT outper-
formed Transformer Concatenation in accuracy by 6.32%
in the fine-grained HOI action recognition task, 4.04%
in the general action recognition task, and 6.56% in the
cross-dataset action recognition task. Similarly, SSRT sur-
passed Transformer Concatenation in F1 score by 6.74%
in the fine-grained HOI action recognition task, 4.12% in
the general action recognition task, and 12.19% in the
cross-dataset action recognition task. SSRT outperformed
the Transformer Concatenation multimodal fusion primarily
because it utilizes both LSTM and transformer encoder to
extract higher temporal features from both modalities. Fur-
thermore, SSRT employs two levels of fusion stages com-
pared to the single-stage multimodal fusion in Transformer
Early Concatenation. This study examines the multimodal
fusion in greater depth in Section VI-B.

From these experiments, we can observe that compared to
general HAR tasks, SSRT shows significant improvement in
fine-grained HOI and cross-dataset actions. The reasons for
this are:
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1) Performance analysis of SSRT on fine-grained
HOI task: Fine-grained HOI actions are complex in
nature, as they require an understanding of various
human-object interactions that share similar human
actions. Capturing fine-grained HOI actions using
a single modality is challenging since the skeleton
modality lacks spatial understanding, and the RGB
modality is not as effective in capturing human actions.
Furthermore, the diverse nature of these two modalities
makes it difficult to fuse them using simple fusion
methods (such as late score fusion). By employing
SSRT, we were able to complement the RGB and skele-
ton modalities, resulting in significant improvement in
the fine-grained HAR task.

2) Performance analysis of SSRT on general HAR
task: General action classes do not contain complex
actions. As these actions do not involve fine-grained
HOI actions, achieving good accuracy in these action
classes is possible using the skeleton modality alone.
Although the improvement observed in this HAR task
with SSRT is not as substantial as in other tasks, it is
still remarkable.

3) Performance analysis of SSRT on cross-dataset
HAR task: As mentioned in Section IV-A2, both the
skeleton and RGB modalities face challenges in this
task. The efficient integration of the skeleton and RGB
modalities through SSRT demonstrates a significant
improvement in overall accuracy compared to alterna-
tive HAR methods. Despite SSRT’s substantial outper-
formance of other HAR models in this task, the overall
accuracy remains relatively low.

Additionally, the ablation study (Section VI-A) examines
the performance of a single modality HARmodel with SSRT,
providing an in-depth analysis by comparing the accuracy of
each action class.

B. TRANSFORMER ARCHITECTURE COMPARISION
Figure 7, Figure 8, and Figure 9 provide a comprehen-
sive comparison of the performance of three distinct trans-
former architectures employed in the skeleton encoder, RGB
encoder, and SSRT. These performances are represented as
bar plots for the fine-grainedHOI task, general HAR task, and
cross-dataset HAR task, respectively. From these bar plots,
it is clear that X2 is the optimal transformer architecture for
both the RGB encoder and SSRT in all three HAR tasks.
In contrast, for the skeleton encoder, X1 performs best in
fine-grained HOI and general actions, while X3 excels in
cross-dataset actions. These results emphasize that although
the X2 architecture can be recommended for every HAR task
involving the SSRT and RGB encoder, the same is not true
for the skeleton encoder, as no single transformer architecture
consistently outperforms others across all HAR tasks.

In the fine-grained HOI task, when using a single-modality
feature, the RGB modality surpassed the skeleton modal-
ity, showing a 3.06% increase in accuracy and a 4.46%

improvement in the F1 score. The best-performing trans-
former architecture variant of SSRT significantly outper-
formed the corresponding version of the RGB encoder,
with an impressive 9.92% enhancement in accuracy and a
9.86% boost in the F1 score. In the general action task,
when utilizing the skeleton modality, the X1 version of
the transformer encoder achieved better outcomes com-
pared to the X2 version. The highest-performing transformer
architecture variant of SSRT considerably outperformed the
corresponding version of the skeleton encoder, with a notable
6.86% enhancement in accuracy and a 9.86% boost in
the F1 score. Finally, for the cross-dataset actions task,
the optimal transformer architecture version of the skele-
ton encoder outperformed the optimal version of the RGB
encoder with an accuracy difference of 4.3%, although both
optimal versions of the skeleton and RGB encoder exhib-
ited comparable F1 scores. The top-performing transformer
architecture variant of SSRT exceeded the best-performing
skeleton encoder model in accuracy by 11.08% and outper-
formed the best-performing RGB encoder with a 15.06%
improvement in the F1 score. Moreover, from these bar
plots, it can be observed that SSRT consistently outperformed
both the skeleton and RGB modalities across all transformer
architectures.

From these results, a key insight can be drawn: the effec-
tiveness of each modality and transformer architecture vari-
ant is highly dependent on the specific HAR task. In the
fine-grained HOI task, the RGB modality outperforms the
skeleton modality, whereas, in the general action task, certain
skeleton encoder variants deliver superior results. Addition-
ally, the optimal transformer architecture for the skeleton
encoder varies depending on the task, reinforcing the idea
that a one-size-fits-all approach is not ideal. Moreover, the
SSRT consistently outperforms both the skeleton and RGB
modalities across all transformer architectures, indicating its
potential as a robust and versatile solution for various HAR
tasks.

VI. ABLATION STUDY
A. SKELETON VS. RGB VS. MULTIMODAL MODALITIES
In this section, a comparison of performance from action
recognition models employing skeleton modality, RGB
modality, and multimodality is conducted across all three
HAR tasks. To achieve this, optimal transformer architecture
versions of the skeleton encoder, the RGB encoder, and SSRT
were selected for evaluation.

1) FINE-GRAINED HOI
Figure 10 offers a performance comparison of the skele-
ton modality, the RGB modality, and multimodality in
fine-grainedHOI recognition. In order to test the performance
of the various modalities, we selected 37 samples from each
fine-grained HOI class.

The confusion matrix depicted in Figure 10a showcases
the results of fine-grained HOI classification performed by
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FIGURE 10. Comparative analysis of confusion matrices for fine-grained HOI classification: (a). Skeleton, (b). RGB, and (c). Multimodal
(Skeleton + RGB) approaches.

the skeleton encoder. This figure demonstrates that the Drink
From Cup action attained the highest classification accuracy
(83.78%) by identifying 31 samples. Similarly, the skeleton
encoder accurately classified 29 samples of the Drink From
Bottle action attaining an accuracy of 78.38%. Conversely,
the Drink From Can class exhibited a diminished classifica-
tion performance with only 19 samples classified accurately,
resulting in an accuracy of 51.35%. From the confusion
matrix results, we observe a marked variation in accuracy
across different fine-grained HOI classes. This can be mainly
attributed to the skeleton modality’s inability to encode
fine-grained HOI spatial information. Consequently, the high
accuracy achieved by the skeleton modality may be unreli-
able, possibly resulting from coincidental matches rather than
a genuine understanding of the underlying patterns.

Next, as observed from the confusion matrix in Figure 10b,
the RGB encoder classified 28 samples of Drink From Can
and Drink From Cup with an accuracy of 75.67%, while
misclassifying only one additional sample in the Drink From
Bottle class. This observation highlights that, in contrast to
the skeleton modality, the RGB modality did not display a
biased accuracy towards any specific action class. The results
indicate that RGB modality-based HAR models are more
capable of understanding complex HOI patterns compared to
skeleton modality. Therefore, if only a single modality must
be used, this study suggests employing RGB modality-based
HAR models for fine-grained HOI actions.

The performance of SSRT is displayed in the confusion
matrix in Figure 10c. SSRT classified 32 samples in the
Drink From Can action class with an accuracy of 86.48%.
It misclassified only one fewer sample in the Drink from
Bottle and Drink from Cup action classes compared to the
Drink from Can action class. Furthermore, when compared
to overall accuracy, Table 5 shows that the RGB modality
improved accuracy by 3.6% compared to skeleton modality,
and multimodality improved accuracy by 9.92% compared
to RGB modality in this human activity recognition task.
Similar to the RGB modality, the multimodal setting does
not display biased performance towards any specific class.

FIGURE 11. Accuracy shift: Multimodality (SSRT) vs. Single modality
(Transformer Encoder) for general actions recognition.

However, the SSRT modality demonstrates improved accu-
racy for each action. This is due to the fact that while the
RGBmodality can comprehend fine-grainedHOI, it struggles
to encode humanmovement effectively. Consequently, SSRT,
which complements both RGB and skeleton modalities, out-
performs the RGB modality in the fine-grained HOI task.

2) GENERAL ACTIONS AND CROSS-DATASET ACTIONS
This section highlights the change in accuracy for
each action class when employing SSRT as opposed to
single-modality transformer encoders (skeleton and RGB)
in Figures 11 and 12 for general actions and cross-dataset
actions, respectively. The x-axis lists the action class,
while the y-axis displays the change in accuracy between
single-modality andmultimodalities based HARmodels. The
orange bar plot illustrates the difference in accuracy when
utilizing the skeleton encoder in comparison to SSRT, and the
blue bar plot demonstrates the difference in accuracy when
using the RGB encoder as opposed to SSRT.

In the general actions recognition task, integrating the
skeleton and RGB modalities led to the most significant
performance enhancement for the Uselaptop class, with a
21.15% increase in accuracy compared to employing only
the skeleton modality. Conversely, the Drink From Cup class
experienced the smallest performance improvement, with an
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FIGURE 12. Accuracy shift: Multimodality (SSRT) vs. Single modality
(Transformer Encoder) in cross-dataset actions recognition.

accuracy increase of just 1.72%when adoptingmultimodality
instead of skeleton modality. When examining the change
in accuracy between multimodality and RGB modality, the
Readbook action showcased the most notable performance
improvement, with SSRT boosting accuracy by 19.32% com-
pared to the RGB encoder. In contrast, the Drink From
Cup class displayed the smallest improvement when using
multimodality in comparison to the RGB modality. It can
be observed that for general actions tasks, in three out of
four actions, SSRT demonstrated greater improvement when
compared to using RGB modality alone. This is because
these actions do not pose challenges for the skeleton modal-
ity, as they can also be classified without utilizing spatial
information.

In cross-dataset action recognition, the Readbook class
experienced the most substantial performance enhancement,
with a 56.8% increase in accuracy when employing multi-
modality as opposed to utilizing only the RGBmodality. Nev-
ertheless, a 20% decline in accuracy was noted for the same
class when adopting multimodality over skeleton modality.
The Drink From Cup class exhibited the most substantial
negative impact on performance when using multimodality
instead of RGBmodality, resulting in a considerable decrease
in accuracy of 24.24%. In contrast, the multimodality showed
better performance in theUsetelephone class compared to the
skeleton modality, with an improved accuracy of 46.3%.

Although, as illustrated in Table 5, SSRT outperformed
every other HAR in cross-dataset HAR tasks, it can be seen
from Figure 12 that when compared with the accuracy of
each class, SSRT negatively impacts the accuracy of all action
classes except for the Uselaptop class when compared to the
accuracy obtained from the best-performing single-modality
(skeleton or RGB) HAR model for each class. This is mainly
due to the challenges in cross-dataset HAR tasks, as discussed
in Section IV-A2.

B. SSRT VS. OTHER FUSION METHODS
This study compares the accuracy of four multimodal fusion
techniques. In Figure 13, the x-axis displays the fusion
methods, while the y-axis presents their accuracy for three
action recognition tasks. The blue and orange bar plots rep-
resent the accuracy of fine-grained HOI and general actions,

FIGURE 13. Comparison of multimodality fusion methods for HAR.

respectively, and the line plot illustrates the accuracy of cross-
dataset actions.

The findings reveal that, among all four multimodal meth-
ods, LSTM late score fusion consistently exhibited the lowest
accuracy across all HAR tasks.Both late score fusion tech-
niques (LSTM and Transformer) exhibited reduced accuracy
compared to early fusion (Transformer Early Concatenation)
and SSRT. Moreover, late score fusions were outperformed
by their respective single-modality counterparts, as shown in
Table 5. This table reveals that Transformer late score fusion
modality experiences the most significant drop in accuracy
for fine-grained HOI actions, decreasing by 16.18% com-
pared to the RGB encoder. However, it suffers the least in
general actions HAR tasks, with a decrease of only 2.69%
when compared to the skeleton encoder. The primary reasons
for these outcomes can be attributed to:

1) Distinct nature of RGB and skeleton modality fea-
tures: RGB and skeleton modality features exhibit
heterogeneity. Although these two features can com-
plement each other in HAR tasks, their distinct nature
makes fusion more challenging. To tackle this diversity
in feature modalities, a more sophisticated fusion tech-
nique must be employed.

2) Inadequacy of late score fusion: As outlined in
Section IV-B2, both late score fusion methods imple-
mented in this research work merely sum the proba-
bility scores from individual single-modality models
to obtain the final prediction score. In this multimodal
fusion approach, fusion only takes place at the final
stage, which is insufficient for effectively capturing the
nuanced interplay between the two modalities. As a
result, this fusion method struggles significantly in
fine-grained HOI actions where understanding both
RGB and skeleton features is essential. Consequently,
late score fusion methods fail to supplement RGB and
skeleton modality features, and instead, they negatively
affect the overall performance in comparison to indi-
vidual single-modality approaches.

Transformer Early Concatenation, a state-of-the-art multi-
modal fusion method, demonstrated a significant increase in
accuracy when compared to the Transformer late score fusion
method. The improvement was 19.78% for fine-grained
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HOI, 5.35% for general actions, and 11.69% for cross-
dataset actions. Furthermore, this fusion approach substan-
tially enhanced both accuracy and F1 score for all HAR tasks
when compared to the best single-modality HARmodel. One
reason for this improvement is that this method employs a
multi-head attention mechanism to complement RGB and
skeleton modalities.

SSRT outperformed the other three fusionmethods, includ-
ing Transformer Early Concatenation, showcasing 6.32%
higher accuracy for fine-grained HOI, 4.04% higher accuracy
for general actions, and 6.56% higher accuracy for cross-
dataset actions. Twomain reasonswhy SSRT is a better fusion
method than Transformer Early Concatenation are:

1) Early concatenation vs. Cross-attention: As dis-
cussed in Section II-B1, the transformer cross-attention
mechanism is much more efficient in understand-
ing features from two different modalities. This is
because early concatenation simply employs a single
transformer encoder to fuse concatenated multimodal
features, whereas SSRT allows skeleton and RGB
modalities to attend to each other bidirectionally. This
process is achieved by exchanging the key (K) and
value (V) vectors of one modality with the query
(Q) sequences of another modality within multiple
stream transformer layers.

2) Single-stage fusion vs. Two-stage fusion: SSRT
employs two stages of fusion, which are transformer
cross-attention and Softmax layer late score fusion,
while Transformer Early Concatenation only employs
a single stage of multimodal fusion.

C. THE EFFECTIVENESS OF THE LSTM COMPONENT
IN SSRT
This section examines the influence of LSTM on the pro-
posed method. To do this, all experiments in this paper were
performed again by substituting the LSTM component with
traditional positional encoding. The effects of LSTM on
SSRT are depicted using a bar plot in Figure 14. The x-axis
in Figure 14 represents the three action recognition tasks,
while the y-axis displays the accuracy and F1 score values
for each task. The orange bar shows the accuracy and F1
score of the proposed SSRT, whereas the blue bar represents
the accuracy and F1 score of SSRT with positional encoding
instead of LSTM.

The results indicate that the integration of LSTM has the
most significant influence on fine-grained HOI action recog-
nition tasks, contributing to a 6.32% increase in accuracy
and a 6.38% improvement in the F1 score. The smallest
impact is observed in general action recognition tasks, with
increases of 3.36% in accuracy and 3.44% in F1 score. For
cross-dataset action recognition tasks, the implementation of
LSTM enhances the overall robustness of SSRT, resulting in
a 5.37% improvement in accuracy and a 5.26% boost in the
F1 score.

These findings imply that the combination of an LSTM
with a transformer encoder generates more effective temporal

FIGURE 14. Performance comparison of LSTM vs Positional encoding.

abstract features for each modality. This outcome can be
ascribed to the unique sequential processing approach of
LSTM. Unlike positional encoding, LSTM processes each
input instance in a sequential manner, enabling it to capture
temporal information more effectively. On the other hand,
the positional encoding layer assigns each element’s position
based on a predefined sinusoidal function and subsequently
processes the entire input sequence in parallel using the
transformer encoder. As a result, positional encoding doesn’t
capture temporal dependencies as efficiently as LSTM.

Remarkably, SSRT consistently outperforms the Trans-
former Early Concatenation fusion method across all action
recognition tasks, even when only positional encoding layers
are incorporated. This superiority is particularly evident in
fine-grained HOI actions, where a significant improvement
is noted. This result further validates the superiority of SSRT
as a fusion method, as detailed in Section VI-B. It is also
noteworthy that when LSTM is employed solely as the HAR
model, its performance is somewhat lackluster, as illustrated
in Table5. The study demonstrates that when a transformer
encoder is integrated with LSTM, a notable improvement is
observed, corroborating the findings of this research work.

VII. DISCUSSION
This study highlights that the SSRT method surpasses both
single-modality and multimodality HAR models in three
action recognition tasks, as shown in Table 5. The most
significant impact of SSRT is evident in fine-grained HOI
action recognition, where it not only achieved a considerable
increase in accuracy but also displayed consistent enhance-
ments across all action classes within the same coarse label.
The proposed method also generalizes well to action classes
beyond fine-grained HOI and proved most robust when eval-
uated on action classes from other datasets. However, it is
important to note that, except for the Uselaptop class, SSRT
adversely influences the accuracy of all action classes when
compared to the top-performing single-modality (skeleton or
RGB)HARmodel for each class. This canmainly be ascribed
to the inherent challenges associated with cross-dataset HAR
tasks. In addition to these challenges, the reason for SSRT
not performing exceptionally well in cross-dataset actions
may be due to its inability to extract superior higher-level
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features from each modality before performing multimodal
fusion.From the overall experiments conducted, the SSRT
method demonstrates state-of-the-art results for multimodal
fusion techniques; however, SSRT can still be improved by
utilizing better higher-level features from both modalities and
subsequently integrating them using the proposed two-stage
fusion method. This can be achieved in the following ways:

1) Utilization of 3D skeleton features: In this study,
we implemented Alphapose human pose estimation,
a popular human skeleton feature estimator, to extract
2D skeleton features. Although 2D skeleton features
are computationally efficient and simpler to implement,
they are not as robust as 3D skeleton features. 3D
skeleton features provide depth information in addition
to 2D skeleton features, resulting in a more accurate
representation in 3D space. 3D poses are more robust to
the shape and size of humans as well as varying camera
angles and heights. For instance, An et al. [55] uti-
lize multimodal approaches, encompassing mmWave,
RGB-D, and inertial sensors, to achieve superior 3D
human pose estimation representations, which are
notably more robust than conventional 2D skeleton
features. This information could be vital in addressing
the challenges faced by SSRT in cross-dataset actions.
In our future work, we plan to use state-of-the-art
3D skeleton feature extraction methods such as those
proposed in [49] and [55].

2) Selection of better baseline for higher fea-
tures extraction: In this study, we employed a
transformer-based architecture as the baseline for
higher-level feature extraction, with the rationale
outlined in Section IV-B1. Although, implemented
transformer-based architecture shows comparable
state-of-the-art results for both RGB and skeleton
modality but this architecture may not be the best
solution for each modality. For instance, Graph Convo-
lutional Networks like STGCN and 2S-AGCN, specif-
ically tailored for processing skeleton features, might
extract more intricate skeleton data compared to the
transformer baseline. Likewise, pre-trained 3D Con-
volutional Networks, such as I3D [4], could poten-
tially derive superior features from the RGB modality.
In future work, we plan to investigate the integration of
diverse state-of-the-art HAR models to extract sophis-
ticated higher-level features, followed by employing
the proposed two-stage fusion for enhanced feature
integration. This approach may bolster SSRT’s ability
to comprehend cross-dataset actions more effectively.
Furthermore, we will examine the combination of
various HAR baselines to achieve cutting-edge perfor-
mance on prominent HAR datasets, such as [14], [27],
and [28].

The experimental results demonstrate that neither the
skeleton nor the RGB modality consistently outperforms
the other, as performance varies depending on the action

recognition task. In fine-grained HOI action classification,
the RGB modality excels, likely because the skeleton modal-
ity has difficulty recognizing similar motion dynamics.
In contrast, the skeleton modality fares better in general
Human Activity Recognition (HAR) and cross-dataset HAR
tasks, potentially due to more distinct movement patterns.
In cross-dataset HAR tasks, the RGB modality encounters
challenges arising from significant differences in the required
RGB features.

As highlighted in Section V-A, the experimental study
conducted here suggests that multimodal HARmodels do not
always surpass single-modality models in performance. Late
score fusion models, such as Transformer Late Score Fusion
and LSTM Late Score Fusion, exhibited decreased overall
accuracy and F1 Score compared to their single-modality
counterparts. The proposed SSRT outperformed the state-of-
the-art Transformer Early Concatenation in all tasks, even
with only the traditional positional encoding and without
utilizing the LSTM. It is important to note, however, that
employing the LSTM in place of positional encoding substan-
tially improved SSRT’s performance.

Lastly, this study’s primary limitation concerning
fine-grained HOI is the scarcity of available datasets. Apart
from the fine-grained HOI of drinking from the Toyota smart
home dataset, no other related datasets were found for this
task. As part of our future work, we aim to collect more
fine-grained HOI action classes to enhance dataset diversity.

VIII. CONCLUSION
In this research, SSRT (a novel method specifically designed
for fine-grainedHOI recognition) is introduced by integrating
skeleton and RGB modalities. SSRT first obtains abstract
temporal features from each modality using an LSTM and
a transformer encoder. Subsequently, SSRT employs two
fusion stages: cross-attention multimodality fusion and Soft-
max late score fusion for effective feature integration.

The study demonstrates that SSRT outperforms state-of-
the-art single-modality HAR models (such as transformer
encoders) and multimodal based HAR models (such as
Transformer Early Concatenation) in fine-grained HOI tasks
without any bias towards a particular action class. More-
over, SSRT also excels in general HAR and cross-dataset
HAR tasks. The research highlights the significant accu-
racy improvement achieved by incorporating an LSTM layer
instead of a positional encoder layer in SSRT across all three
HAR tasks.

Additionally, this study compared the performance of
skeleton modality and RGB modality across all three HAR
tasks. It revealed that the RGB modality outperformed in a
fine-grained HOI task, while the skeleton modality exhibited
better results in general and cross-dataset HAR tasks.

Lastly, the adaptability of SSRT enables it to merge various
modalities for diverse purposes, including Vision-Language
tasks. Thus, in future work, other researchers can explore
SSRT’s potential for combining different modalities to serve
various purposes.
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