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ABSTRACT This paper proposes a noniterative direct data-driven gain-scheduled control. Gain-scheduled
proportional–integral–derivative (PID) control is one of the most popular approaches for nonlinear systems.
However, compared to fixed PID, gain-scheduled PID has considerably more scheduler parameters and
requires time to tune them, which is the problem in conventional methods that include hand-tuning
and model-based control design. To solve these problems, a noniterative data-driven tuning method for
a gain-scheduled controller with polynomials via tuning approach using a fictitious reference signal is
proposed. The proposed method enables tuning of the parameters from one-shot data obtained from a
test without the system model to be controlled. To verify this method, the numerical simulation for two
types of nonlinear systems is conducted. Therefore, the proposed method enables the parameters of the
gain-scheduled controller to realize high tracking performance.

INDEX TERMS Data-driven control, model-free control, parameter tuning, PID control.

I. INTRODUCTION
The most popular feedback controller is proportional-
integral-derivative (PID) control which is the most widely
used in industry [1], [2] - it is used in >90% of feed-
back systems [3]. This is because PID control has a sim-
ple structure and is intuitively easy to understand. Fixed
PID control can achieve the good performance for strongly
linear systems; however, for nonlinear systems, it is dif-
ficult to obtain the control performance expected by the
designer. One of the most popular approaches for a nonlin-
ear system is a gain-scheduled control which provides the
desired control performance by changing controller gains
according to scheduling parameters which are the states of
the targeted system and external environment. In general,
the design of the gain-scheduled controller needs an iden-
tified linear-parameter variant (LPV) model of the system
to be controlled. However, the model-based control design
approach may not be appropriate because industrial systems
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are complex, and obtaining accurate system models to be
controlled is difficult. From this background, in industry,
a look-up table (LUT)-based gain-scheduled PID control with
trial-and-error tuning is often employed [4], [5], [6]. How-
ever, it is required to tune a number of control parameters to
obtain the desired control performance. Time-invariant nor-
mal PID controller has only three tunable parameters, while
gain-scheduled control requires numerous tuning parameters
and much time for parameter tuning. This requirement poses
a problem for industrial applications, such as automobile
systems [7].

In the past decade, data-driven (DD) or model-free
controller design approaches that do not involve system iden-
tification or controlled plant models have attracted atten-
tion [8], [9]. In particular, direct data-driven control approach
features that tunable controller parameters are optimized
from one-shot time series input/output data. Examples of
such methods are the VRFT (virtual reference feedback tun-
ing) [10], [11] using a virtual signal and FRIT (fictitious ref-
erence feedback tuning) [12], [13] using fictitious reference
signals [14]. Additionally, an approach in which the target
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system model is not used has been employed in industrial
systems, e.g., process systems and automotive systems [7],
[15], [16], [17], [18], [19], [20].

Although most of the DD control schemes assume
linear control systems, industrial systems have many com-
plex nonlinear systems. Thus, there is a need for DD con-
trol for nonlinear systems. Some prior studies explored DD
control for nonlinear systems, for example, DD-PID [21],
DD-FRIT [22], [23], FRIT for feedback linearization [24],
application of VRFT to LPV system [17], [25], [26], VRFT
for Q-learning [27], VRFT for gain-scheduled PID control
considering sparsity [28], automatic tuning method of LUT
by VRFT [6], and MFC design by VRFT [29]. We compared
thesemethods for nonlinear systems. DD-PID, DD-FRIT, and
VRFT-Q-learning require high storage capacity and compu-
tational cost, which leads to difficulties in implementation
on mass-produced controllers. For FRIT using feedback lin-
earization, the model structure should be known in advance,
and the commonly used PID controller parameters cannot
be directly obtained. LPV-VRFT [25], sparse-VRFT-GS-PID
control [28], andMFC-VRFT [29] were proposed as methods
with low computational load. Although theVRFT approaches
are attractive, the prefilter design remains a challenge. For
example, rigorous prefilter design requires system identifica-
tion [11]. Furthermore, the noise is amplified as the virtual
reference signal is calculated from the inverse function of the
reference model. Hence, the control parameters that realize
model matching may not be obtained.

To overcome some of these challenges, we propose a DD
design method for a gain-scheduled controller. The proposed
method (FRIT-GS) employs the FRIT approach using a ficti-
tious reference signal. The gain-scheduled controller used in
this paper consists of a velocity form of time-variant PID con-
troller and a gain scheduler expressed as a polynomial. The
polynomial is represented by tunable weighting coefficients
and scheduling parameters. Next, we derived the objective
function for optimizing the gain scheduler parameters based
on FRIT framework. The proposed method is a data-driven
approach that does not require a model to be controlled, and
thus does not require system identification and trial-and-error
parameter tuning.

The contributions and advantages in this study are summa-
rized as follows:

• Contributions: (i) We extend the standard data-driven
control, i.e., FRIT [13], to optimize the gain-scheduled
controller parameters from one-shot data without know-
ing the plant model under noisy conditions. The
data-driven method that uses a fictitious reference signal
to optimize the gain-scheduled controller has not been
examined in previous studies. (ii) To verify the effec-
tiveness of the proposed method, we perform a numer-
ical simulation for nonlinear systems and compare the
simulation results obtained using the proposed method
with those obtained using the conventional method.

• Advantages: (i) The plant model and trial-and-error des-
ign are not required; only the one-shot time-series data

are needed, which makes designing the gain-scheduled
controller easy. (ii) Compared to the DD-PID, DD-FRIT,
and VRFT for Q-learning, the calculation cost related
to the proposed method is low. (iii) Compared to the
VRFT approach, which is one of the most popular data-
driven approaches, the proposed method is more robust
to noise.

The direct data-driven tuning for the gain-scheduled con-
troller has been proposed [17], [25], [26], [28]. However,
the optimized parameters obtained by VRFT approach are
affected by the noise due to the calculation of virtual reference
signal which is VRFT’s key concept. This is a motivation to
adopt the fictitious reference signal in the proposed method.
In numerical examples, the proposed method is compared
with VRFT approach. The results reveal that the proposed
method is less sensitive to noise than the VRFT approach.

The structure of remainder of this paper is as follows.
Section II describes preliminary information, including
problem setting and FRIT. In section III, we propose a
noniterative data-driven design method for a gain-scheduled
controller. Section IV presents the numerical simulation.
By performing simulations on two nonlinear systems, the
effectiveness of the proposed method will be verified.
In the proposed method, the parameters are optimized to
obtain the desired response by changing the PID gain cor-
responding to the characteristic variation of the system to
be controlled. Additionally, the FRIT-GS (proposed) and
VRFT-GS (conventional) methods are compared. Section V
describes the conclusion.

II. PRELIMINARY
Here, we describe the problem formulation and FRIT.

A. PROBLEM FORMULATION
The gain-scheduled control illustrated in Fig. 1 is considered
in the form of a block diagram, where r ∈ R is the set-
point; y ∈ R is the plant output; u ∈ R is the control input;
e(= r − y) ∈ R is the error between the set-point and the
plant output; ρ(t) ∈ Rm is a time-variant controller parameter;
t ∈ Z is the discrete time; p ∈ Rnp is the scheduling parameter
which is themeasurable state inputted into the gain scheduler;
C (q, ρ) is the controller given as u = C (q, ρ) e, where q is
a shift operator defined by y (t + 1) : = qy(t); ρ ∈ Rnm is the
time-variant controller parameter; f (p,w) is the scheduling
function; w ∈ Rnw is the tunable gain scheduler parameter.
The controlled object P is a nonlinear single-input single-
output system, which is described as

y (t + 1) = fp
(
y (t) , . . . ,y

(
t − ny

)
, u (t) , . . . ,u (t − nu)

)
(1)

where fp (·) is a nonlinear function which is unknown. Here
nu and ny are the orders of the input and output, respectively,
which are unknown. It is assumed that Eq. (1) is a stable
system and it is possible to linearize the system at any equi-
librium point. This assumption is satisfied in many industrial
systems such as automobile systems. One of the scheduling
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parameter candidates is the plant states. In general, designing
a gain-scheduled controller requires linearizing a nonlinear
system. Our aim is to design a gain-scheduled controller
without system identification and linearization.

The gain-scheduled controller is given as

C (q, ρ) = ρTψ (q) = f (p,w)Tψ (q) (2)

with

ρ =
[
ρ1 ρ2 · · · ρm

]T
f (p,w) =

[
f1 (p,wρ1) f2 (p,wρ2) · · · fm (p,wρm)

]T
ψ (q) =

[
ψ1 (q) ψ2 (q) · · · ψm (q)

]T
w =

[
(wρ1)T (wρ2)T · · · (wρm)T

]T
(3)

where ρ ∈ Rnm consisting of ρj ∈ R is a time-variant
controller parameter vector; f : Rnp × Rnw → Rnm consist-
ing of fj : Rnp × Rnl → R is a vector-valued function of
the scheduling function for ρj; ψ (q) ∈ Rnm consisting of
ψj (q) are a rational function vector; w ∈ Rnw consisting
of wρj ∈ Rnl is the overall parameter vector. wρj ∈ Rnl

is the tuning parameter vector for ρj. Here, nw = nmnl .
In Eqs. (2) and (3), the gain scheduler f : p×w 7−→ ρ consists
of the scheduling parameters p ∈ Rnp and the tuning param-
eters w ∈ Rnw . If the tuning parameters w is determined, the
controller parameters (gains) are determined according to the
scheduling parameters using the gain scheduler. The detailed
settings of the rational function vector ψ (q) are described in
Section III.

FIGURE 1. Gain-scheduled feedback system.

Similar to previous studies on DD controls, the
model-referenced control is considered. Fig. 2 shows a
model-referenced gain-scheduled control. We aim to tune
the scheduler parameters directly such that the following
objective function is minimized:

JMR (w) =
1
N

N∑
t=1

(y (t,w)−Md (q) r (t))2 . (4)

FIGURE 2. Gain-scheduled feedback system with reference model.

This objective function represents that the optimized param-
eters w are obtained such that the closed-loop characteristics
from the set-point value r to the output ymatched a reference
modelMd defined by a user.

B. FRIT [13]
FRIT is a data-driven design method to tune the parameters of
a feedback controller directly from a set of plant input/output
data so that the closed-loop system matches the user-defined
referencemodel. Namely, FRIT is a model-free model match-
ing control system designmethod thatminimize the following
objective function:

JMR (ρ) =
1
N

N∑
t=1

(y (t, ρ)−Md (q) r (t))2 (5)

That is, the objective is to make the plant output similar
to the response of the reference model. Fig. 3 shows the
structure of FRIT. We describe the FRIT procedure using this
figure. First, a closed-loop test is conducted with the initial
controller parameters that make the system stable, and the
input and output time series data D = {u0(t), y0(t) : t =

1, . . . ,N } are obtained. In the FRIT approach, the fictitious
reference signal [14] obtained using the initial input-output
time series data is the key element and is calculated
as

rf (ρ, t) = C−1 (ρ) u0 (t)+ y0 (t) , (6)

where C−1 is an inverse function of the controller, rf is a fic-
titious reference signal, and u0 and y0 are initial input/output
time series data. Thus, the objective function of FRIT is given
as

JFRIT (ρ) =
1
N

N∑
t=1

(
y0 (t)−Md (q) rf (ρ, t)

)2
. (7)

We obtain the optimized parameters by minimizing this
objective function.
Remark 1. A comparison of Eqs. (5) and (7) shows that

y and r are replaced by y0 and rf , respectively. Thus,
FRIT is easier to understand intuitively than other DD
approaches [30].

FIGURE 3. FRIT concept.

III. PROPOSED METHOD
A. GAIN-SCHEDULED PID CONTROL
The proposed gain-scheduled PID control, which consists of
the velocity form of PID controller and PID gain scheduler,
is described here.
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1) VELOCITY FORM OF PID CONTROLLER
In the position form of PID controller, if the gain changes
abruptly, the control input will change over time, causing
disturbances in the system. Thus, we adopt the velocity form
of PID the control law which has the advantage that it is not
necessary to reset the integral term and that the control input
does not change abruptly despite a sudden change in gain.
Thus, velocity form is suitable for gain-scheduled control.
The block diagram of the velocity from of PID control is
shown in Fig. 4. 1 = 1−q−1 is the difference operator; q−1

is the backward shift operator such that q−1y(t) := y(t − 1).
An integrator is located just before the control input and can
reduce the time variation of the control input. Furthermore,
the integrator is located after the integral gain Ki, and the
differential gain Kd is located after the differentiator. When
the orders are reversed, it is not preferable due to the large
time variation of the input during switching [31]. The control
input of the velocity form of PID control is given by

u (t) = u (t − 1)+ Cv (q, ρ) e (t) (8)

with

Cv (q, ρ) = K (t)ψ(q)

K (t) =
[
Kp(t) Ki (t) Kd (t)

]T
ψ(q) =

[
1 − q−1 1 (1 − q−1)

2
]T

(9)

where Kp(t), Ki (t), and Kd (t) are the proportional, integral,
and derivative gains, respectively.

FIGURE 4. Velocity form of the PID controller.

2) PID GAIN SCHEDULER
We adopt a polynomial as the gain scheduler. Implementation
of the other methods such as database control [21], just-in-
timemethod [32], and neural networks [33] inmass-produced
controllers has been difficult due to limitations in computa-
tional cost and ROM capacity. In addition, LUTs are popular
gain scheduler approaches in industry, especially in auto-
motive control. However, LUTs require more ROM space
and tuning parameters. Additionally, there is concern that
LUT-based gain scheduler control, which is designed for
each operating point, may cause system instability due to
sudden fluctuations in PID gains. Therefore, we express the
scheduling function as a polynomial shown in Eq. (10). As a
result, the number of parameters to be stored is reduced, and
since the gain changes continuously, there is less likelihood

of abrupt changes in the gain.

Kj (p) =
(
wρj

)T psf (p)
wρj =

[
w
ρj
1 w

ρj
2 · · · w

ρj
l

]T
psf (p) =

[
1 p1 p21 · · · pnσ1

1 p2 p22 · · · pnσ2 · · ·

· · · 1 pnp p
2
np · · · pnσnp

]T
(10)

where Kj (p) ∈ R is the PID gain scheduler (scheduling
function); pi ∈ R is the scheduling parameter where i ∈

{1, 2, . . . ,np}; psf ∈ Rnl (=np(nσ+1)) is the basis function vector
composed of the scheduling parameters; wρj ∈ Rnl is the
weighting coefficient vector for each PID gain and acts a
tuning parameter. The scheduling parameters are generally
state variables including the position and the velocity of the
control system, and signals from the external environment,
such as temperature.
Remark 2. The basis function vector psf (p) is designed by

selecting the scheduling parameters pi and the order for pi.
The scheduling parameters are generally set to plant sates. For
specific examples, refer to the simulation studies described
below.

B. THE OBJECTIVE FUNCTION OF THE PROPOSED
METHOD
An objective function was derived to obtain optimal values
for the weighting coefficients of the gain scheduling function.
From the standard FRIT objective function (Eqs. (7), (8),
and (9)) and PID gain scheduler (Eq. (10)), the objec-
tive function for gain-scheduled PID control using FRIT
(GS-PID-FRIT) is given by

J (w) =
1
N

N∑
t=1

(
y0 (t)−Md (q)rf (w;t, u0, y0, p0)

)2
(11)

with

rf (w;t, u0, y0, p0) = C−1
v (w;t, p0)1u0 + y0 (t) (12)

C−1
v (w;t, p0) =

1
c0(p0) + c1(p0)z−1 + c2(p0)z−2

(13)

where

c0(p0) = Kp(p0) + Ki(p0) + Kd (p0)

c1(p0) = −(Kp(p0) + Kd (p0))

c2 (p0) = Kd (p0) . (14)

Remark 3. By introducing the fictitious reference sig-
nal (12), the objective function (11) is composed of the
initial data D={u0(t), y0(t), p0(t) : t= 1, . . . ,N }. Thus, the
optimized parameters are obtained without the need for
repeated tests and system identification of the controlled
object. In other words, a noniterative direct data-driven tuning
is built.
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C. ALGORITHM
We summarize the algorithm for the direct noniterative
DD tuning via FRIT approach, which tunes the weighting
coefficients of the gain scheduler (scheduling function).
Step 1: Acquire a set of data D={u0(t), y0(t), p0(t) : t =

1, . . . , N } by a closed-loop test.
Step 2: Set the reference modelMd and design scheduling

functions Eq. (10).
Step 3: Obtain the weighting coefficients w of the schedul-

ing function to minimize the objective function Eq. (11) by
nonlinear optimization.
Remark 4. After optimizing the weighting coeffi-

cients w using the above algorithm, the controller is imple-
mented using the PID controller and scheduler shown
in Eqs. (8)–(10).
Remark 5. Although the FRIT approach also allows data

collection in open-loop tests, most literature on FRIT assumes
a closed-loop test. This is because open-loop test may be
difficult in industrial systems. The closed-loop test requires
some kind of the initial PID gain; however, this is a rare
when the characteristics of the system model to be controlled
are not known at all, so some initial gain can be obtained.
Therefore, a closed-loop test is conducted for simulation
studies.
Remark 6. The proposed method does not guarantee the

stability of a closed-loop system. However, this is a general
problem including VRFT and FRIT approaches which are
the representative and popular DD tuning method. In prac-
tical situations, a simple control design is required rather
than ensuring stability [34]. Also, the stability assurance
based on Lyapunov and the small gain theorem may lead
to a conservative performance. It is noted that model free
adaptive control (MFAC) [35], [36], [37] and noniterative
correlation-based tuning (NCbT) [38] are known to ensure
the closed-loop stability. However, MFAC is not parameter
tuning type data-driven control which includes the proposed
method, and there are some design parameters tuned by the
user. Thus, the proposed method for controller tuning and
MFAC are different approach. NCbT which is data-driven
tuning type method can guarantee the closed-loop stability
for LTI controller, but the literature [25] points out NCbT
approach cannot extend LPV controller.
Remark 7. We compared the proposed method with

VRFT-GS, in which the objective function is a convex func-
tion. To design the prefilter strictly, the controlled object
model should be identified. Furthermore, the computation
of the virtual reference signal requires the inverse function
of the reference model, thereby amplifying noise. To solve
this problem, application of the instrumental variable method
can be considered; however, this method will increase the
number of tests [11], [39] and the variance of the estimated
values. In contrast, since FRIT does not require an inverse
function of the reference model, such problems do not occur.
In the next section, we compare the effects of noise on
FRIT and VRFT approaches via simulation studies. Further,
VRFT evaluates the input and FRIT evaluates the output,

so that it is remarked that FRIT is easier to understand
intuitively [30].

IV. NUMERICAL SIMULATION
To verify the proposed method, numerical simulation is con-
ducted. The controlled objects are two nonlinear systems.
The first is a spring–mass system represented by the LPV
system, which is often used in industries. Another system
is the Hammerstein model [40], which consists of a linear
dynamical system and a static nonlinear map. These systems
are extensively used for modeling nonlinear systems [41] and
verifying the efficacy of the DD controls [21], [22], [23]. The
simulation is implemented using a PC (CPU: core i5-8250U
1.6 GHz; RAM: 16GB). MATLAB/Simulink (2021a) is used
as the programming language and ode 5 (Dormand-Prince)
is employed as the solver. The optimization method uses the
Nelder-Mead Simplex Method.

A. APPLICATION TO SYSTEM 1
The proposed method was applied to a LPV spring–mass
system, wherein the system parameters vary with the plant
output. The sampling period in Simulink is set to 1 ms.

1) SYSTEM DESCRIPTION
The plant, reference model, and gain-scheduled controller
used in this section were described as follows: the plant was
a spring–mass system with time-varying parameters (Fig. 5),
where y, m, c, and k , and represent the system response (dis-
placement), the mass, damping coefficient, and spring stiff-
ness, respectively. These parameters vary with the response of
the system. The plant used in the simulation was the system
obtained by discretizing the following equation of motion:

m (y, t)
d2y (t)
dt2

+ c (y, t)
dy (t)
dt

+ k (y, t) y (t)

= u(t) + v(t) (15)

with

m (y, t) = 1 + 0.2y (t)

k (y, t) = 5 + 2y (t)+ y2 (t)

c (y, t) = 2 + 0.5y (t) (16)

where v is the white noise. The set-point is given by

r(t) =


0.75 (0 < t ≤ 10)
2.5 (10 < t ≤ 25)
1.5 (25 < t ≤ 40)
0.5 (40 < t ≤ 50).

(17)

The reference model with no-overshoot whose time constant
is 1 s is given as

Md (q) = c2d(Md (s))

Md (s) =
1

s+ 1
(18)

where c2d is an operator that is transferred from a continuous
system to a discrete one. The sampling period of controller is
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set to 50 ms. The gain scheduler was based on Eq. (10). The
scheduling parameter and the basis function are given as

p (t) = y (t) ,

psf (p(t)) =
[
1 p(t) p2(t)

]
. (19)

FIGURE 5. Time-varying spring–mass system.

2) RESULTS
Fig. 6 shows the initial input/output time-series data when
the closed-loop test was conducted. A random signal was
used as the set-point value, and the input/output data at that
time were measured. Let v be white noise with a variance
of 1 × 10−4. The gain scheduler parameters were optimized
from these data. The calculation times for optimization using
FRIT and FRIT-GSwere 6.97 s and 29.5 s, respectively. Fig. 7
shows the input/output time-series data with the optimized
gain scheduler parameters. For comparison, the fixed PID
gain obtained by the standard FRIT is shown in the figure.
The optimized PID gains were Kp = 2.5234, Ki = 1.0586,
and Kd = −1.2163. The figure shows the output, input,
proportional gain, integral gain, and derivative gain (consec-
utively from the top). The cost value of FRIT-fixed and FRIT-
GS are 1.1220 × 10−2 and 1.4401 × 10−3, respectively.
A comparison of the standard FRIT and FRIT-GS shows that
FRIT-GS has higher followability because the PID gain varies
appropriately with the plant state, and the desired effect is
obtained.

Next, we compare the proposed method and VRFT-based
gain-scheduled control (VRFT-GS). For VRFT-GS, refer to
Appendix and previous literature [7], [28]. The prefilter,
which is a design parameter of VRFT-GS, is set to L =

Md (1 − Md ) as proposed in the previous study [11]. For
a clearer comparison, the variance of the white noise v is
set to 0.01. Fig. 8 shows the initial input/output data when
the closed-loop test is conducted under v of 0.05. The opti-
mized parameters are obtained from these time-series data.
The calculation times for optimization using VRFT-GS and
FRIT-GS were 0.121 s and 26.2 s, respectively. Fig. 9 shows
the results of comparison between FRIT-GS and VRFT-GS.
The cost values of FRIT-fixed, FRIT-GS, and VRFT-GS are
1.6569 × 10−2, 1.3331 × 10−2, and 1.8167 × 10−1, respec-
tively. The figure shows that while VRFT-GS has a shorter
calculation time than FRIT-GS, FRIT-GS has a better tracking
performance than VRFT-GS even when the noise is loud.

FIGURE 6. Initial input and output data in a closed-loop test for a
spring–mass system. The variance of the white noise v is set
to 1 × 10−4. u: control input; y : plant output.

FIGURE 7. Signal trajectory after tuning with the proposed method and
fixed PID gain for the spring–mass system. The desired and proposed
lines almost overlap. u: control input; y : plant output; Kp: proportional
gain; Ki : integral gain; Kd : derivative gain.

We also examined the control performance under colored
noise because the noise is often difficult to capture accurately.
The pink noise was set as the noise v. Fig. 10 depicts the
power spectrum of the pink noise. The noise level was the
almost same as that in Fig. 8. The initial data were mea-
sured under the noise, and the controller parameters are opti-
mized. Fig. 11 shows the closed-loop test results of FRIT-GS
and VRFT-GS. The cost values of FRIT-GS and VRFT-GS
were 2.5797 × 10−2 and 5.2397 × 10−1, respectively. The
results show that the proposed method achieved a satisfactory
tracking performance under the colored and white noises.
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FIGURE 8. Initial input and output data in a closed-loop test for a
spring–mass system. The variance of the white noise v is set to 0.01. u:
control input; y : plant output.

FIGURE 9. Signal trajectory after FRIT-GS and VRFT-GS tuning in a noisy
spring–mass system. The desired and proposed lines almost overlap. u:
control input; y : plant output; Kp: proportional gain; Ki : integral gain; Kd :
derivative gain.

Moreover, the tracking performance under brown noise was
almost similar to that shown in Fig. 11.
Remark 8. The simulation results shown in Figs. 6 and 7,

verify the effectiveness of the proposed method by compar-
ing the fixed PID controller and the proposed data-driven
gain-scheduled controller in the presence of low noise. The
proposed method shows better tracking performance than the
fixed PID controller.
Remark 9. The simulation results shown in Figs. 8–11 con-

firm the effectiveness of the proposedmethod by comparing it
to the VRFT approach, which is a state-of-the-art data-driven

FIGURE 10. Power spectrum of the pink noise used in the spring-mass
system simulation.

FIGURE 11. Signal trajectory after FRIT-GS and VRFT-GS tuning in a
colored noisy spring–mass system. The desired and proposed lines
almost overlap. u: control input; y : plant output; Kp: proportional gain;
Ki : integral gain; Kd : derivative gain.

control method, under high white/colored noise conditions.
The proposed method outperforms the VRFT approach in
terms of the tracking performance.

B. APPLICATION TO SYSTEM 2
We adopted the Hammerstein model, which is widely used to
describe nonlinear systems, as the controlled object using a
system formulation identical to that in previous works [21],
[22], [23]. The sampling period in Simulink is set to 1 s.

1) SYSTEM FORMULATION
The Hammerstein model [40] is given as

y (t) = 0.6y (t − 1)− 0.1y (t − 2)+ 1.2x (t − 1)

− 0.1x (t − 2)+ v(t)

x (t) = 1.5u (t)− 1.5u2 (t)+ 1.5u3 (t) (20)

where v is the white noise. Fig. 12 shows the static
characteristics of the controlled object. The sampling period
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of controller is set to 1 s in this simulation including the
controller. The set-point is given by

r(t) =


1.0 (0 < t ≤ 100)
3.5 (100 < t ≤ 200)
2.0 (200 < t ≤ 300)
0.5 (300 < t ≤ 400)

(21)

The user-defined reference model is set to

Md

(
q−1

)
=

0.399q−1

1 − 0.736q−1 + 0.135q−2 . (22)

The gain scheduler adopts Eq. (10), and the scheduling
parameter and basis function are given by

p (t) = y (t) ,

psf (p(t)) =
[
1 p(t) p2(t)

]
. (23)

FIGURE 12. Static characteristics of the Hammerstein model. u: control
input; y : plant output.

2) RESULTS
Fig. 13 shows the initial input/output time-series data when
the closed-loop test was conducted. The target was assigned a
random signal, and the input/output data were measured. The
variance of the white noise v was set to 1 × 10−3. As the
feedback controller, a fixed PID controller was used with
the optimized PID gains (CHR method): Kp = 0.059, Ki =

0.058, and Kd = 0.0038 [21]. Fig. 14 shows the time series
data with the optimized gain scheduler parameters which
were obtained from these input/output data. The calculation
times for optimization using FRIT and FRIT-GS were 3.48 s
and 14.2 s, respectively. The output, input, proportional gain,
integral gain, and differential gain are plotted (from top to
bottom). For comparison, the time series data with the fixed
PID gains optimized by CHR and FRIT methods are shown
here. Here, the PID gains optimized by FRIT were Kp =

−0.0401, Ki = 0.2740, and Kd = 0.1047. The cost values of
CHR, FRIT-fixed, and FRIT-GS are 1.4908× 10−1, 1.7330×

10−2, and 7.0564× 10−3, respectively. The fixed PID control
tuned by standard FRIT cannot follow the desired value. The
figure confirms that the PID gain via the proposed method
varies with the plant state, and the output follows the desired
response.

FIGURE 13. Initial input and output data under the closed-loop test when
the variance of the white noise v is set to 1 × 10−3. u: control input; y :
plant output.

FIGURE 14. Signal trajectory after tuning with the proposed and
conventional methods for the Hammerstein model. The desired and
proposed lines almost overlap. u: control input; y : plant output; Kp:
proportional gain; Ki : integral gain; Kd : derivative gain.

Next, we compare the proposed method and VRFT-
based gain-scheduled control (VRFT-GS). The prefilter—the
design parameter of VRFT-GS—is set to L = Md (1−Md ) as
proposed in previous studies [11]. To further clarify the com-
parison, the variance of the white noise v is set to 0.05. Fig. 15
shows the initial input/output data when the closed-loop test
is conducted under v of 0.05. The optimized parameters
are obtained from these time-series data. The calculation
times for optimization using VRFT-GS and FRIT-GS were
0.301s and 16.7 s, respectively. Fig. 16 shows the closed-loop
test results of FRIT-GS and VRFT-GS. The cost values of
FRIT-fixed, FRIT-GS, and VRFT-GS are 8.6676 × 10−2,
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FIGURE 15. Initial input and output data under the closed-loop test when
the variance of the white noise v is set to 0.05. u: control input; y : plant
output.

FIGURE 16. Signal trajectory after tuning with FRIT-GS and VRFT-GS in a
noisy Hammerstein model. The desired and proposed lines almost
overlap. u: control input; y : plant output; Kp: proportional gain; Ki :
integral gain; Kd : derivative gain.

8.4334 × 10−2, and 1.8267 × 10−1, respectively. According
to the figure, while VRFT-GS has a shorter calculation time
than FRIT-GS, FRIT-GS has a higher tracking performance
than VRFT-GS even when the noise is high.

We also examined the control performance under colored
noise because the noise is often difficult to accurately capture.
The pink noise was set as the noise v. Fig. 17 illustrates the
power spectrum of pink noise. The noise level was similar to
that in Fig. 15. The initial data weremeasured under the noise,
and the controller parameters were then optimized. Fig. 18
shows the closed-loop test results of FRIT-GS and VRFT-GS.

FIGURE 17. Power spectrum of the pink noise used in the Hammerstein
model simulation.

FIGURE 18. Signal trajectory after FRIT-GS and VRFT-GS tuning in a
colored noisy Hammerstein model. The desired and proposed lines
almost overlap. u: control input; y : plant output; Kp: proportional gain;
Ki : integral gain; Kd : derivative gain.

The cost values of FRIT-GS and VRFT-GS were 7.7257 ×

10−2 and 2.7962 × 10−1, respectively. The results show
that the proposed method achieved a satisfactory tracking
performance under the colored andwhite noises. The tracking
performance under brown noise was almost similar to that
shown in Fig. 18.
Remark 10. The simulation results shown in

Figs. 13 and 14 confirm the effectiveness of the proposed
method by comparing the fixed PID controller to the pro-
posed data-driven gain-scheduled controller under low noise
conditions. The proposed method shows better tracking per-
formance than fixed PID controller.
Remark 11. The simulation results shown in Figs. 15–18

confirm the effectiveness of the proposed method by compar-
ing it to the VRFT approach, which is a state-of-the-art data-
driven control, under high noise conditions. The proposed
method shows better tracking performance compared to the
VRFT approach.
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C. DISCUSSION
The simulation results for two nonlinear systems confirmed
that FRIT-GS (the proposed method) has better tracking
performance than the conventional FRIT. In other words,
by using the scheduling parameters optimized by FRIT-
GS, the PID gains changed appropriately according to the
state of the plant; therefore, the actual response follows the
desired response generated by the reference model. In addi-
tion, FRIT-GS and VRFT-GS were compared under loud
white and colored noises. Moreover, a correlation exists
between the initial input and output data because the data was
obtained through the closed-loop test. The results showed that
FRIT-GS realized satisfactory high tracking performance, but
VRFT-GS could not follow the desired response because
of the noise. This shortcoming of VRFT-GS is attributed
to the virtual reference signal used in VRFT. This vir-
tual reference signal is obtained by multiplying the output
signal obtained in the initial data by the inverse function
of the reference model (see Eq. (24) shown in appendix).
Then, the output noise increases because the inverse func-
tion of the reference model has high-pass characteristics.
Hence, the VRFT approach could not obtain suitable param-
eters. Thus, we demonstrated that the proposed method
(FRIT-GS) can realize higher control performance than fixed
PID control and provide good results even in a noisy
environment. The optimization time of proposed method
was ∼30 s, which is considered to be a practically reasonable
time.

V. CONCLUSION
This paper proposed a noniterative DD design method for a
gain-scheduled PID controller without system identification
via an approach using a fictitious reference signal. In this
method, the gain scheduler (scheduling function) adopts
polynomial function, and the tunable weighting factors of the
gain scheduler are obtained based on the FRIT framework.
The proposed method made it possible to directly design a
gain-scheduled PID controller without obtaining a controlled
plant model from one-shot data. To confirm the effectiveness
of this method, the numerical simulation for two types of
nonlinear systems was conducted. Thus, we confirmed that
the tunable parameters of the gain scheduler can be optimized
without knowing the system model to be controlled. In addi-
tion, high tracking performance was achieved even in a noisy
environment. The proposed method features rapid automatic
parameter tuning without trial and error. The future work will
include theoretical and application extensions of the proposed
method. We aim to achieve theoretical stability which is
guaranteed by incorporating the method presented in [42]
and [43]. For the application extensions, we plan to apply
the proposed design method to nonlinear industrial systems
such as automobile systems, which include powertrains [18],
drivetrains [7], and vehicle dynamics controls [17], [44].
Moreover, we aim to extend the proposed design method to
highly more complex systems, including an event-triggered

multiagent control [45] and an uncertain networked sys-
tem [46].

APPENDIX
A. VRFT [11]
Herein, the VRFT is briefly explained. Firstly, the virtual
reference signal is expressed as:

rv (t) = M−1
d y0 (t) . (24)

Using rv (t), the VRFT objective function is expressed as:

JVR (ρ) =
1
N

N∑
t=1

(u0 (t)− uv (t))2 , (25)

where

uv (t) = C (ρ, z) (rv (t)− y0 (t)) . (26)

By adding the prefilter L, we can express the VRFT objective
function as

JVR(ρ) =
1
N

N∑
t=1

(uL (t)− C (ρ, q) eL (t))2 (27)

with

uL (t) = Lu0 (t) , eL (t) = L (rv (t)− y0 (t)) . (28)

B. VRFT-GS
Here, we describe the VRFT for gain-scheduled con-
troller [7], [28]. FRIT-GS was compared with VRFT-GS
(Section IV). The objective function of VRFT-GS is given
as:

J (w) =
1
N

N∑
t=1

(
d (t)− wT ξ (t)

)2
(29)

with

d (t) = L1u (t)

ξ (t) = X
(
M−1
d (q)− I

)
Ly (t) . (30)

Here,

w =
[
wp wi wd

]T (31)

X =

[
pTsfψ1(q) pTsfψ2(q) pTsfψ3(q)

]T
(32)

whereψi is the i− th element of the vectorψ , as shown in Eq.
(9). Since the objective function is convex, the least-squares
(LS) method provides the optimal solution:

w∗
=

(
4T4

)−1
4TD (33)

with

4 =
[
ξ (1) ξ (2) · · · ξ (N )

]T (34)

D =
[
d (1) d(2) · · · d (N )

]T (35)
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LIST OF SYMBOLS
Symbol Description
C Controller
P Controlled object (plant)
Md Reference model
C−1 Inverse function of the controller
L Prefilter
t Time
q Shift operator
1(= 1 − q−1) Difference operator
s Laplace operator
r Set-point signal
y Plant output signal
u Control input signal
e(= r − y) Error between set-point and plant-output
ρ Controller parameter vector
p Scheduling parameter vector
psf Basis function vector
fp Nonlinear map
nu The order of control input
ny The order of plant output
f Scheduling function
w Tunable gain scheduler parameter vector
ψ Rational function vector
J Objective function
N Data length
nw The number of overall tunable parameters
np The number of scheduling parameters
nm The number of controller parameters
nl The number of tunable parameters for ρj
rf Fictitious reference signal
u0 Initial input signal
y0 Initial output signal
rv Virtual reference signal
uv Virtual control input signal
K PID gain vector
Kp Proportional gain
Ki Integral gain
Kd Derivative gain
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