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ABSTRACT Software Defined Networking (SDN) has been a prominent technology in the last decade that
increases networking programmability. The SDN philosophy decouples the application, control, and data
plane to increase the network programmability. The data plane is an essential but unsolved component that
receives less attention than control and application planes. Traditionally, the data plane uses fixed functions
that forward packets using a limited number of protocols. The P4 (Programming Protocol-independent
Packet Processors) language makes it possible to program SDN data plane, which push the SDN to the next
level. In the research community and industry, programming the data plane has garnered significant attention.
Surprisingly, there has been no comprehensive reviews of programmable data-plane switches, which have
many advantages in today’s networks. The authors reviewed the evolution of networks from legacy to
programmable data planes, explained the fundamentals of programmable switches, and summarized the
network generation from traditional to programmable networks. In this paper, SDN is described from a
P4-centric standpoint and discusses over 75 related research papers. Several taxonomies for the field are
provided, outline potential research areas, and provide greater details regarding the patterns that have led to
the development of this technology.

INDEX TERMS Network programmability, P4 language, programmable switches, software-defined net-
works, data plane programmability.

I. INTRODUCTION
As the network structure grows in size, the network man-
agement needs to be simplified. Enterprise networks signif-
icantly influence working environments [1]. However, the
demand for delivering a growing volume of data and applica-
tions in real-time is rapidly increasing. Network technologies
have become an essential components for almost all human
activities [2]. The number of devices on the Internet and the
amount of traffic passing through them are growing exponen-
tially. Owing to the complex alliances between specialized
packet-forwarding hardware and operating systems, network
administrators can manage network hardware using other
software packages [3]. This can be a customized network
that blocks the development of new protocols and services.
Network devices must be customized for a particular activity
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to reduce engineering costs. However, there has been a push
toward commodity and universal network devices [4].

Traditional networks are expensive to deploy and manage,
and new-generation networks must overcome the rigidity of
existing network architectures [5]. For large-scale organi-
zations, the cumulative effect of rigidity can be disastrous
concerning architectural investments. It can also take years
to deploy new ideas, from design to simulation, testing,
standardization, and installation of network equipment. Con-
sequently, the network is at a critical stage and must be
programmable [6].

Several technologies are used in these networks. Software-
defined networks are fascinating technologies that encour-
age creativity in network management and design. Although
SDN appears to have emerged rapidly, there has been a
long history of attempts to make computer networks more
programmable [7]. SDN allows network operators to cre-
ate a custom network logic. SDN also enables device
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FIGURE 1. Paper Roadmap.

manufacturers to focus on designing well-defined building
blocks instead of creating products for various client use
cases [8]. A further benefit of programmability is that it
frees device manufacturers from creating products for var-
ious client-use cases. Engineering resources can instead be
devoted to designing well-defined building blocks that can
be used to build logistics specific to a company [9].

Although programmable data-plane technologies have not
become widely used and popular, numerous techniques still
exist [10]. How can fundamental packet-processing primi-
tives be modified and used to provide the broadest range of
network applications with the best performance? How can
the operator know the possible complex processing logic so
that the configuration is quick, safe, and verifiable? How
can we reproduce, monitor, and abstract the state of fleeting
packet processing deeply ingrained by this logic?What are its
most advantageous uses and applications? These are some of
the problems that the networking communities are currently
debating.

A. CONTRIBUTION
The following are the contributions of this paper that is
exceptional and not available in state of art research:

• This paper discusses network generation from tradi-
tional to programmable networks.

• Introduces data plane programmability using P4 in detail
with its architecture and P4 components.

• Discussion on the technical aspect of the P4 language.
• A thorough examination of P4 programmability on the
SDN platform is provided.

• The research gaps and challenges are discussed in depth.

B. PAPER ORGANIZATION
This paper is organized into six sections, as provided in
Figure 1, to understand the SDN and P4 connectivity dur-
ing the tera-byte bandwidth era. Section II gives a detailed
overview of the evolution of SDN and the rise of P4 in
networking technology. Section III explains the aspects of
P4, its Architecture, and its components in detail. Section IV
details the data-plane programmability, and the tabular format
on a few papers surveyed is presented. Section V discusses

FIGURE 2. Traditional to programmable networking.

the research challenges and opportunities, and the final
Section VI concludes the study along with future trends.

II. UNDERSTANDING THE GENERATION OF NETWORKS
Before diving deeper into the survey, we provide an overview
of the various developments that have led to the need for data
plane programmability. This section provides further details
on how network generation has changed from traditional to
programmable networks, as shown in Figure 2. Figure 2 is
explained in-detail in the further sub-sections. Each subsec-
tion outlines the changes that caused the networks to become
programmable. This section concludes with the importance
of P4 in SDN.

A. TRADITIONAL NETWORKS
Traditional networks operate over fixed-function equipment,
such as routers, switches, and application delivery controllers.
SDN provides flexibility to the network and adapts it to
the growing networks and security. Traditional networking
involves using dedicated devices to perform specific tasks.
Traditional networks have always faced challenges in terms
of flexibility and are expensive to deploy and manage. Tradi-
tional networks are hardware-oriented and SDN are software-
oriented. Vendors adopt SDN because traditional networking
lacks flexibility and, most importantly, fails to adapt to the
growing network and security. The control and data plane are
tightly coupled and rigid to the functionalities, as shown in
figure 2.
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B. SOFTWARE DEFINED NETWORKS
SDN is the most prominent technology used by researchers
to make networks programmable. SDN comprises Controller,
Southbound, and Northbound APIs, and has been in the net-
working industry for more than ten years. SDN is a strategy
executed when the network needs to be programmable [11].
The network control and data plane are physically separated,
and the control plane can control multiple devices. The con-
trol plane is programmable with SDN built into it, as seen in
figure 2 but the data plane is not flexible because programma-
bility has not yet reached it. However, management and con-
figuration are pushed to centralized consoles [12]. SDN has
been widely adopted in Amazon, Facebook, and Google Data
Centers [13]. The below sub-sections will take through the
journey of SDN evolution and how did the data-plane layer
was flexible.

1) OpenFlow
Once SDN stabilized, the OpenFlow protocol became pop-
ular and proved as of the most profound SDN protocols.
The OpenFlow protocol is used to configure SDN-enabled
devices. The OpenFlow protocol is a crucial component in
the development of SDN solutions [14]. It acts as a commu-
nication protocol in the SDN controller to interact directly
with network devices in the data plane [15]. All devices that
communicate with the SDN controller must be compatible
with the OpenFlow protocol [16]. Protocol standards have
become increasingly complex in recent years. The SDN con-
troller sends changes to the switch/router flow table via this
interface [17], allowing network administrators to segment
traffic, manage flows for optimal performance, and configure
and apply new information [18].

2) SDN EVOLUTION
Table 1 shows that first, the researchers focused on trans-
forming IT, as it was a challenging task it is termed ‘‘IT
Craftsmanship.’’ It took two decades for IT Craftmanship
to become powerful, which is considered ‘‘IT Industrializa-
tion.’’ Researchers have also focused on functional opera-
tions [19]. Later, they added a control system to reduce the
risks, termed ‘‘Digitization.’’ Finally, they made IT innova-
tive, rapid, and flexible. Once this seemed perfect, there was
rapid innovation in the so-called SDN. SDN has also been
subjected to numerous trial-error methods. SDN 1.0 version
bought up OpenFlow. As there were a few drawbacks from
the first version, the SDN 2.0 version separated the overlays,
and finally, the SDN 3.0 version was applied n-centric [20].
Following the development of IT and SDN. Then, a lot of
changes in the field of technology were seen. In order to
understand the evolution of programmable networks, we need
to understand Figure 2. In this figure, it can be observed
that there is a transition from the Traditional Architecture
(left) to SDN Architecture (middle) and SDN Architecture
with a Programmable Data Plane (right) using P4. Tradi-
tional architecture had tightly bound control and data plane,

TABLE 1. Evolution of IT and SDN.

called ‘‘tightly coupled.’’ As SDN came into the picture,
control, and data plane, are separated and had a bottom-up
design. The information is shared using the OpenFlow Pro-
tocol. Currently, the new architecture seeks programmable
data planes in SDN that followed a top-down approach. The
programmable chip can be user-configured, whereas the SDN
architecture has a fixed set of functions. SDN principles
are well-defined and well-versed. All major cloud providers
and data centers [21] use SDN. In the evolution of SDN
virtualization, the king of virtualization called ‘‘VMware’’,
acquired Nicira and renamed it as VMware NSX, which is
the SDN-style network. NSX, which represents SDN, is used
by hundreds of thousands of virtual machines in data centers
worldwide [22].

3) WHERE IS SDN NOW?
SDN is not dead; it is still alive and it works surprisingly well
responding to what is going on in the current network market.
Many researchers assert that SDN does not exist; however,
this is incorrect. SDN is present in all virtualized networks
and software-defined networks. Instead, it includes an SDN,
allowing it to outperform its prior generations. This is similar
to how analysts have predicted the future of SDN in the past.
However, it is no longer referred to as SDN because it has
been integrated into today’s tools. As a result, it is referred
to alongside its tool name, for example, SD-WAN (Software
Defined Wide Area Networks).

4) WHERE SDN IS IMPORTANT?
SDN is significant and allows network operators to combine
software and hardware from multiple vendors and create
customized network services and infrastructure.

• Software-defined networking improves network con-
nectivity for sales, customer service, internal communi-
cation, and document-sharing.

• SDN enables organizations to create customized net-
work services and infrastructure by combining software
and hardware from multiple vendors.

• A virtual network combines SDN, network function
virtualization, and white boxes.

• SDN allows for faster deployment of new applications,
services, and business models.

5) WHY DOES SDN NEED P4?
There are many challenges faced by SDN. Firstly, it requires
time to implement new protocols and extend the functionality
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of current protocols. Secondly, protocols like ‘‘OpenFlow’’ in
SDN lack operational and administrative interfacing. And the
most important issue is to add new protocols in the OpenFlow
protocol, which is a research-driven time-consuming pro-
cess. Therefore, in comparison to traditional fixed-function
switches, P4 programmability opens up entirely new pos-
sibilities for network stack flexibility from 7-layered OSI
or 5-layered TCP/IP modeling. Second, there is a need for
upgradability (hardware solutions will never have), which
allows adding functions and protocols to network devices
by updating the P4 software running on them rather than
purchasing new switches and their frameworks. In summary,
SDN has become a promising architecture for the central-
ized management of network architectures making networks
dynamic, centralized, flexible, and programmable. Therefore,
it is necessary for the SDN to acquire P4 in its environment.

C. DATA PLANE PROGRAMMING
Data Plane Programmability is a buzzword owing to its varied
scope and functionality [23]. P4 is a programming language
that allows users to write custom protocols, build complex
match/action pipelines, and include external functions in the
code [24]. A programmable data plane is a flexible way to
forward packets that can handle various formats and pro-
tocols [25]. Programmable data plane in the next step in
enabling switches to perform complex packet operations.
However, they cannot perform all tasks alone [26], [27]. P4
is used to configure the forwarding actions. P4 [28] was
created for data-plane programming. As a result, P4 defines
the actions that can be performed on packets [29], where the
control and application plane are already programmable, and
data plane programming is the missing link.

1) RISE OF P4
With the enormous growth in data traffic, new protocols, and
private-public clouds, the rate of innovation in the networking
world is increasing. The transition from traditional silicon
switches to flexible programmable switches has now been
completed and requires a new standard language. This new
language must meet the following three basic requirements.

• The language should allow the network to be flexible.
• The language used should be expressive and comprehen-
sive.

• The language must be portable from one architecture to
the next.

The figure 3 P4 language’s evolution and development
are depicted. The P4 language draft was submitted in 2014,
and it was first introduced globally in May 2015. The P4
community clarified the distinction between the OpenFlow
and P4 languages in 2016, after many misunderstandings.
In May 2016, the second version was introduced as P416,
while the older version was known as P414.

The figure 3 depicts the evolution and development of the
P4 language. The P4 language draft was submitted in 2014,
and it was first introduced globally in May 2015. The P4

TABLE 2. P4 Versions.

community clarified the distinction between the OpenFlow
and P4 languages in 2016 after many misunderstandings.
In May 2016, the second version was introduced as P416,
while the older version was P414. P4Runtime was introduced
and embedded into the control plane in July 2017 to run P4
programs. Many large-scale networks have adopted P4 due
to scalability, feasibility, and reconfigurability. P4Runtime
v1.0 was released in 2019, and P4Runtime v1.2 was released
in 2020.

As listed in Table 2, various versions of P4 have been
developed since 2013. The initial idea began with a team of
researchers in May 2013. Finally, the researchers submitted
their first draft proposal for P4 to SIGCOMM in July 2014.
Once they received approval, they transformed the paper and
submitted it in August 2014. Finally, P4 is accepted as a pro-
grammable language. It was calledP414.P414 was introduced
in four different versions. However,P416 was introduced with
new data types and control statements to fill loopholes in the
P414. The programming language P4 is gaining popularity in
the network industry [30].

P4 is the name of the first language release and P414 is the
current language specification. P414 is a simpler language,
but P416 has additional features that may not be compatible
with P414 [31]. The current language P416 will be syntacti-
cally correct with the future versions of the language. Simul-
taneously, many native P414 language features have migrated
into libraries of fundamental constructs required for writ-
ing effective P4 programs [32]. This includes target-specific
implementations of certain functions (counters, meters, and
checksum calculations), referred to as externs.

P4 (Programming Protocol-independent Packet Proces-
sors) is a domain-specific language used to control packets
sent to data plane in networking devices. It consists of con-
structs, such as counters, registers, header field specifications,
and support for matches and action tables. It is specially
designed for the data plane, which checks the correctness of
SDN switch behavior. With P4, custom header formats can
be defined, and dynamic header parsing can be performed.
The P4 program is written in a specific format and must
include the following: header, parser, deparser, match +

action, checksum verification, ingress, egress, and checksum
computations. One section depends on the other in the pro-
gram, which performs functions.
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FIGURE 3. Evolution and history of P4 language.

2) WHY COMMUNITY DESIRES P4?
P4 is a network programming language that describes the
packets processed using a programmable forwarding details.
It is a programming language that allows network devices to
be programmed with new features [33]. P4 provides a simple
set of tools for imposing a community stack on the developer
switching hardware. The tables with user-described keys with
actions, counters, meters, and abstractions can be used as
header types and partners. P4 has no understanding of how
the Ethernet or IP headers look. Only the developer can tell
the hardware of an Ethernet header, how to parse, match, and
depart, and finally, which port the packet should be forwarded
to. This programmability opens up new opportunities for
flexibility of the network stack compared to traditional fixed-
function. It can upgrade network devices with new features
and protocols instead of buying a new switch.

D. RECENT TECHNOLOGY
Recent chip design schemes have demonstrated that flexibil-
ity can aachieve terabit-level speeds in custom ASICs [34].
Therefore, it is difficult to create a new generation of switch-
ing chips. Similar to microcode programming, each chip had
its low-level interface. The switch was configured using P4.
The forwarding table was sent to the fixed-function switch
via an existing protocol interface (such as Open-Flow). P4
raises the abstraction level for the programming control net-
work [35] and functions as a standard interface between
the controller and the switch. In other words, researchers
believe that the future OpenFlow protocol generation allows
the controller to tell the switch how to do so without being
constrained by the inherent design of the switch [36].

III. P4 ECOSYSTEM
This section provides an in-depth understanding of the
P4. P4 is a domain-specific language used to program
the data plane of the switch. It is target-independent and
protocol-independent and allows the controller to define its
packet analysis and header-processing process.While writing
P4 program, three major goals must be met:

1) Target Independence: The P4 compiler should con-
sider the switch’s capabilities when converting the

target-independent P4 description into a target-related
program for configuring the switch.

2) Protocol independence: A switch doesn’t need to be
bound by a specific packet format. However, the con-
troller should be able to specify the following:

• A packet sniffer can extract header fields of spe-
cific names and types.

• These header regions were processed using a col-
lection of ‘‘match-action’’ tables.

3) Re-configurable: The controller should be able to refine
the packet analysis process of the data packet and the
processing process of the header area

A. P4 ARCHITECTURE
It is necessary to concentrate on understanding how P4
enters various functional processing blocks. P4 enters dif-
ferent blocks of the functionality and processes. Figure 4
and figure 5 describe how data packets are transmitted on
various forwarding devices (such as Ethernet switches, load
balancers, and routers). This has enabled the researchers to
develop a universal language to describe how to process data
packets by using the universal abstraction model. There are
two different architectures: P414 and P416 architectures.

1) P414 ARCHITECTURE
Figure 4 depicts the P414 architecture. P414 architecture is
called as ‘‘P4 Abstract Forwarding Model’’. P414 has tar-
geted PISA-like devices and P416 has outgrown PISA. The
PISA architecture in P414 is a protocol-independent switch
architecture that is a single-pipeline forwarding architecture.
It consists an input block, ingress match-action, buffers,
egress match-action, deparser, and an output block connected
to each other in a linear pipeline. The limitation of this
architecture is: it does not know to express the packets which
are processed in the pipeline. All the blocks are explained in
detail in further sections.

2) P416 ARCHITECTURE
P416 uses a portable switch architecture, which allows it to
target multiple programmable devices with different architec-
tures. P416 uses a programmable parser and performs a multi-
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FIGURE 4. P414 Architecture.

FIGURE 5. P416 Architecture.

stage matching-action process to forward incoming packets,
which can be either serial or parallel. This architecture is
widely used as it makes use of additional constraints to solve
the problems.

Figure 5 depicts the P416 architecture. P416 follows a
Portable Switch Architecture and can be implemented on
any switch target. The multiple networking functions imple-
mented in the PSA are combined into a single pipeline. The
pipeline has the following components: parser, checksum
validate, ingress match-action, packet buffer, egress match-
ing action, checksum update, deparser, and buffer queuing
engine.

The switch uses a programmable parser and performs a
multi-stage matching-action process to forward incoming
packets, which can be serial or parallel. The ABS model [37]
contains three generalizations based on OpenFlow research.
OpenFlow assumes that the ‘‘matching-performing actions’’
stages are sequential, and the model allows for parallel/serial
execution. The model assumes that ‘‘actions’’ are written
using switch-supported protocol-independent primitives.

B. P4 COMPONENTS
The P4 program contains definitions of the following key
elements:

1) Headers: The sequence and structure of the series of
header areas are described in the header-definition
section. Each header is processed by a state machine
that uses the value of the current header to trigger the
next transition in the state machine. This specifies the
length of the area and limits the value of data in the area.
The header-type P4 was similar to the C structure.
In addition to the standard packet headers, P4 allows
custom headers to be processed, including Ethernet, IP,
TCP, and UDP. The standard and custom headers were

explicitly processed. For example, standard ethernet
and ipv4 headers in P4 are specified as below.

2) Parser: A parser’s definition explains how to recog-
nize the header and the effective header sequence in a
data packet. The parser in the program specifies how
packet headers are parsed. It checks and identifies the
header present in the incoming packets. After parsing,
the parsed packets were sent to the control block. The
underlying switch can implement a state machine that
traverses each header of the data packet from start to
finish, thereby extracting the value of the header area
while it is running. The extracted header area value
is sent to the ‘‘match-action’’ table for processing. P4
describes the statemachine as a collection of transitions
from one header to another. The current header value
can then be used to trigger the transition. For example,
the standard structure of the parser is specified below.

3) Table: The mechanism for packet processing is the
‘‘Match-Action’’ table. The P4 program’s header area
can be used for matching or performing specific actions
on it. The programmer then describes how the defined
header fields should be matched in the match+action
stages, as well as what actions should be taken when
a match occurs. The programmer creates a table based
on these fields and then performs an action to add the
mTag header. For example, the standard structure of the
table is specified below.

4) Actions: P4 includes a set of actions from which more
complex actions can be constructed. Every P4 pro-
gram declares a set of action functions made up of
action primitives; these action functions make table
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specification and population easier. P4 allows complex
execution actions to be created using simple, protocol-
independent primitives. The ‘‘Match-Action’’ table can
be used to implement these complex actions. For exam-
ple, the standard structure of the actions is specified
above within the table structure.

5) Deparser: This serializes the modified headers back
into the packet as the packet moves from one switch to
another. The function considers the packet-out variable
and header values as two arguments in the pipeline.
For example, the standard structure of the deparser is
specified below.

6) Control Program: Defining the flow of control from
one table to the next is the only task left after defin-
ing the tables and actions. Through a combination of
functions, conditionals, and table references, control
flow is specified as a program. The control program
determines the sequence of processing data packets in
the ‘‘Match-Action’’ table. A simple and necessary pro-
gram describes the control flow between the ‘‘match-
action’’ tables. These control blocks were used to per-
form matching and action tables for packets based on
different header fields. The imperative representation
of this packet processing pipeline is as follows:

C. P4 WORKFLOW
This section discusses the working flow of P4 in detail.
Figure 6 shows the workflow for P4. The P4 program com-
prises two operations: configuration and delivery. The con-
figuration operation determines the order of each stage of
the ‘‘matching-perform action’’ and specifies the protocol
header area to be processed in each stage. By configuring the
switch, we can determine which networks are supported and
how the data packets can be handled. The operation issued
adds or removes the entry from the ‘‘Match-Action’’ table.
The table itself is one of these, and it is specified during the
configuration operation. The issuing process determines the
execution strategy used by the data packet at any given time.

The working flow of the P4 program is depicted in
Figure 6. Each program block performs a unique function.
Each section of the P4 program is linked to a different block
that performs a specific function. Furthermore, as shown in
6, the P4 program is divided into four major sections: data

FIGURE 6. Working Flow of P4 Program.

declaration, parser logic, a match-action table with control
flow, and deparser logic. A parser, ingress, scheduler, egress,
and deparser are required to run the P4 program successfully.

The packet parser is the first to process the arriving data
packets and search for specific areas from the packet header,
specifying switch protocol support. This model makes no
assumptions about the meaning of the protocol header.
Instead, the parsed data packet representation defines a set of
header regions on which the ’matching-performing actions’
process is performed.

Data packets contain metadata, which is extra information
that can be passed between processing stages. Metadata can
be used as a packet header area as well. Examples of metadata
include ingress port numbers, transmission destinations and
queues, timestamps used for packet scheduling, and data
passed between the tables. Data such as the virtual net iden-
tification number did not change the performance of the data
packets after parsing.

The match-action table received the extracted header area.
There are two sections in the match action table: the entry
and exit tables. The entry table determines the queue in
which a data packet is placed. Data packets can be forwarded,
copied, discarded, or triggered by flow-control-based ingress
processing. When a packet is copied by multi-cast, the egress
‘‘match-action’’ is modified separately for each action target
on the packet header. An action table is linked to tracking the
status of each frame.

IV. DATA PLANE PROGRAMMABILITY
Data-plane programmability refers to the ability of a network
device to expose low-level packet-processing logic through a
standardized API, facilitating comprehensive and methodical
reconfiguration. The creation and acceptance of the SDN
paradigm have greatly expanded the flexibility, and dynamic-
ity of device functionality [38]. Conventional network equip-
ment cannot often be updated throughout its lifetime because
the data plane functionality is tightly integrated into the hard-
ware and software of the device. In software-based packet-
processing systems, considerable vendor-software changes
are required to alter the functionality of the data plane. This
survey is broadly classified into six sections: SDN with data-
plane programmability, data-plane architectures, data-plane
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abstractions, data-plane network monitoring with data-plane
Programmability, P4 challenges, and data-plane applications.
Tables 3, 4, and 5 present a detailed review of the exist-
ing studies. The primary contributions of this study are as
follows.

• This study analyzes and highlights the key factors that
have evolved from traditional network architectures to
P4-Programmable SDN architectures.

• Detailed understanding of P4 components, their archi-
tecture, and workflo is explained in-detail

• Literature review is done on the following parameters:
performance, security, load balancing, along with its
strengths and weaknesses. It which gives overall novel
summary for P4-based solutions.

• A major problem in the data plane programming area is
identified and discussed in the further section.

A. SDN WITH DATA-PLANE PROGRAMMABILITY
According to the survey, softwarization and current SDN
platforms may not be able to handle the complexity and
heterogeneity of many needs, such as strict latency, jitter,
high-accuracy traffic, and advanced monitoring. SDN/NFV
[39] must be upgraded to enable these services, considering
data plane programmability in addition to orchestration and
control plane [40]. A software layer for softwarization was
created to overcome these limitations, allowing the switch
data plane to be programmed using high-level programming
languages and APIs. Thus, the P4 language curriculum is
becoming increasingly essential and well-planned. With its
cutting-edge SDN/NFV softwarization, P4 initially devel-
oped for intra-data census scenario, has rapidly gained promi-
nence. The difficulties encountered by P4 are discussed,
along with the solutions, in Table 3.

B. DATA-PLANE ARCHITECTURES
A survey of the data plane architecture showed that low-level
programmability is now supported by a larger range of
devices and operations, despite the fact that switches are
initially the primary focus of data plane programmability
(particularly in data centers) [41]. Programmable data plane
hardware or software is increasingly used for middleboxes
(such as firewalls or load balancers) and general network
processing, in addition to packet switching. Additionally,
programmable NICs at the network edge enable data plane
programmability [42]. These gadgets can be realized on top
of one or more architectural designs. However, the difference
between the software and hardware data plane was hazy.
For instance, a hardware-based device might nevertheless use
a general-purpose CPU to execute activities in which the
underlying hardware is not designed to handle or that do not
require significant performance. Current software switches
increasingly rely on domain-specific hardware features, such
as SmartNIC, which offloads packet processing logic to hard-
ware via Data Direct I/O (DDIO) and Receive Side Scaling
(RSS) [43].

C. DATA PLANE ABSTRACTIONS
Control plane technologies differ in a number of aspects,
such as the primitives for packet processing they offer and
the language constructs that can be used to combine these
incentives to build specific pipelines [44]. The following
sections examine some of themost common abstractions used
and disclosed in programmable data plane systems in light of
this inherent architectural relationship. The first step involves
discussing programmable packet-processing pipelines before
moving on to abstraction for packet parsing and scheduling.
The final step in our exploration of programming languages
and compilers is their examination.

1) PROGRAMMABLE PACKET PROCESSING PIPELINES
The main advantage of programmable data plane is the adapt-
able packet processing. The two main abstractions on top
of which modern packet processing pipelines are frequently
built are the match-action pipeline abstraction and dataflow
graph abstraction. To create programmable switches, early
packet processing systems adopted data flow graph abstrac-
tion [45] and machine learning [46]. In addition, stream pro-
cessing frameworks, such as Apache Flink and Spark, heavily
utilize this architecture. When representing the processing
logic as a graph, a data flow graph uses nodes to represent
the basic computing steps and edges to indicate the data
movement between these stages.

2) MATCH-ACTION PROCESING
Data-plane applications are described using a hierarchical
set of lookup tables (flow tables) in match-action abstrac-
tion [47]. Proposed a model for the effects of match-action
tables on the routers. For packets to be processed cor-
rectly, a table query is performed based on portions of the
header fields. This allows the switch to perform actions,
such as rewriting packet components, encapsulating or decap-
sulating tunnel headers, dropping packet, forwarding pack-
ets, and packet processing delays until flow tables are
created [48].

3) PROGRAMMING LANGUAGES AND COMPILERS
SDN initiatives, such as OpenFlow, ForCES, and NETCONF,
have taken the field beyond low-level protocols over the
past few years. The declaration of packet processing policies
within a specific switch architecture is made possible by
new high-level data plane programming languages in terms
of abstract, general, and modular language constructs [49].
Operator expectations for more complex SDN applications
are the main driving forces behind these initiatives. Owing
to the availability of more programmable line-rate network-
ing hardware, linguistic methods have been used to specify
line-rate switching architectures (i.e., match-action tables and
protocols supported by the parser) [44].
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TABLE 3. SDN with Data-plane Programmability.

TABLE 4. Network monitoring with Data-plane Programmability.

D. NETWORK MONITORING WITH DATA-PLANE
PROGRAMMABILITY
The most exciting data-plane offloading applications are net-
work metering, measurement, monitoring, and de-bugging.

This is primarily due to the fact that these applications share
certain characteristics that make them especially well-suited
for data plane-based implementations: They must meet strict
performance standards and handle a tremendous amount of

VOLUME 11, 2023 54381



B. Goswami et al.: Survey on P4 Challenges in Software Defined Networks: P4 Programming

TABLE 5. The current P4 Challenges in the programmable data-planes.

traffic. The data plane can directly and quickly access the
input data used by the monitoring program, such as, the net-
work packets or data plane measurements. The performance
of P4, when combined with modern networking tools, is pre-
sented in Table 4. Furthermore, we examine P4 performance
in more detail and show how P4measures up in terms of TCP,
Black Box approach, CPU cores, and PAM, among other
metrics.

In [50], a number of solutions were presented to improve
insight into network behavior. One of these solutions is the
Tiny Packet Program (TPP) interface, which allows end hosts
to actively access and modify internal network data. It is
based on the Active Network concept and works on Smart
Packets [51], which were first presented for switch network
administration and monitoring. The ‘‘division of labor’’ the-
ory forms the basis of the strategy: End hosts perform flexible
computation on the network state switches move forward
while carrying out TPPs in-band at line rate.

E. P4 CHALLENGES
Both the science and art of designing programmable switches
are based on abstraction. An abstraction should ideally be
basic enough to encapsulate the optimal amount of change-
able data plane functionality, while also being expensive
enough to enable the top layers to synthesize complex packet
processing behavior. Additionally, the control plane should
be able to use such an abstraction with ease, owing to a
reliable and secure data plane API [53]. It must provide a
well-defined consistency mechanism and effectively handle
the global states in the data plane. It should also allow auto-
matic program alterations to improve performance [54] and
analytical performance models. It must distinguish between
dynamic behavior and static semantics. Additionally, a use-
ful conceptual framework should be included. The survey
demonstrated that P4 worked well, and could be applied

to extensive networking. The OpenFlow Protocol and P4
Language explanations are provided in Table 5. Both are
unique and fulfill functions that are unique to them. discusses
the P4 programming language and SDN. The P4 language
and the OpenFlow Protocol are both confusing. The majority
believe that P4: eventually replaced OpenFlow, and P4 and
OpenFlow became interchangeable. However, this was not
the case. Both are distinct from each other and excel in their
role.

F. DATA PLANE APPLICATIONS
With the introduction of programmable data plane, net-
work devices can be configured to perform specific generic
information-processing capabilities, such as telemetry, mas-
sive data processing, machine learning, and even whole key-
value stores. The ability to configure network devices allows
a dumb pipe that can only move data to suddenly become a
complete and, a sophisticated data-processing pipeline that
can transform data as it passes. Load balancing can be
achieved by connecting resilient routing to programmable
data plane, which can then be used to distribute traffic dynam-
ically across several forwarding channels, workers, and back-
end servers. For example, Hedera [55] compared their results
to those of a load balancer. The ‘‘resource pooling’’ idea is
to be realized via horizontal scaling, which makes a group
of different resources behave like a single pooled resource in
order to benefit from statistical multiplexing, load dispersion,
and improved failure resilience. HULA [56] is a scalable
load-balancing approach that uses programmable data planes
to overcome the shortcomings of ECMP routing and currently
employs congestion-aware load-balancing techniques, such
as CONGA [57]. HULA is adaptive and scalable because
each switch tracks only the congestion for the shortest path to
a destination through an adjacent switch. Another example of
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FIGURE 7. Distribution of surveyed research works per year.

a load-balancing application is SilkRoad [58], which employs
programmable ASICs to produce faster load balancers.

V. RESEARCH GAPS AND CHALLENGES
The authors noted significant research voids in P4- pro-
grammable switches, which they intended to fill by demon-
strating that P4-based solutions for DDoS detection, load
balancing, packet aggregation, and disaggregation are the
components of community monitoring. The paper distribu-
tion of the surveyed research papers is depicted in Figure 7
from 1999 to 2023. The 75 papers are currently being
reviewed.

Figure 8 depicts the distribution of studied papers across
various categories. SDN, P4, Large-Scale Networks, Data
Plane Programming, P4 Switch, Data-Plane Load Balancing,
Data Center Networks, and Network Performance are the
broad categories of the papers.

A. RESEARCH GAPS
From the reviewed papers, the observed research gaps are as
follows:

• Most researchers test their operation on non-functional
BMv2 switches because they do not support configura-
tion, monitoring, and operating protocols, such as Open-
Config, gNMI, and gNOI. Furthermore, compared with
physical hardware switches, the computing power of
the BMv2 switches is quite low. The authors noted that
there are significant research voids in P4- programmable
switches and that production-ready platforms such as
stratum-based switches will allow the research commu-
nity to test P4-based solutions.

• The currently available P4-based solution does not dis-
tinguish flash traffic from attack traffic, and attack-
ers can use low-frequency DDoS attacks to circumvent
security solutions.

• Some DDoS defense solutions use synthetic data sets
generated by local traffic generation tools. There are no
reference data sets that include both malicious and nor-
mal traffic. Some research papers use small topologies
in their experiments, making validation impractical.

• For switch ASICs, some authors implemented load-
balancing algorithms using P4. However, data

FIGURE 8. Distribution of studied papers based on different categories.

connections must be stored in a large amount of memory
within a switch. Another research area is the develop-
ment of efficient load-balancing solutions for data plane
switches with limited memory.

• Most network-monitoring solutions require a signifi-
cant amount of computational resources, which may
cause performance bottlenecks. Only a few studies have
divided monitoring tasks among data plane switches.
Although these solutions improve network performance,
they have synchronization and communication over-
heads. A major research challenge is to perform dis-
tributed monitoring in programmable data planes with
a minimum amount of synchronization and communi-
cation overhead.

• The implementation of network-monitoring solutions is
expensive. Research is required to identify the root cause
of network problems, but none of these solutions uses
popular open-source SDN controllers. Therefore, flow
statistics are reported only in the event of a network
issue. However, it is possible to result in the omission
of some information that is required to determine the
source of the problem. Debugging network problems
and identifying root causes.

• Ryu, OpenDaylight, or ONOS are used to control the P4
programmable data plane. Therefore, a major research
topic is integrating P4 programmable data planes with
SDN controllers because it facilitates the migration of
existing SDN applications to the SDN-programmable
data plane model and enables the centralized manage-
ment of P4 programmable data planes.

• Despite reducing the control plane computation and
communication overhead, P4-based solutions can
increase or reduce switch complexity in the data plane.
Research is still needed to determine how to deploy
P4-based algorithms in switches while minimizing com-
plexity effectively.

• Currently, research is focusing on programmable
switches. However, the real challenge in fully deploying
these solutions is replacing all the existing switches with
programmable switches with fixed functions. It is an
unresolved research problem to integrate fixed-function
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switches alongside programmable switches and check
the performance of the network.

B. CHALLENGES
In this section, we discuss the research challenges based on
state of art literature.

1) DESIGN ISSUES IN P4
P4 did not support loop constructs, pointers, references,
or dynamic memory allocations. Consequently, algo-
rithms that require deep packet inspection are difficult to
implement [59]. Because P4 does not support arithmetic
logarithmic functions, the DDoS detection algorithms were
implemented by estimating the entropy value rather than
computing the exact entropy using the longest prefix match
tables. This is an open research challenge, owing to the
inclusion of linguistic constructs. As a result, the research
community is confronted with an open research question.

2) COSTS AND P4-PROGRAMMABLE SWITCH AVAILABILITY
Only a few firms produce P4 ASICs [60], and replacing a
fixed-function device with a programmable device is more
expensive than adding a traditional device to an existing
network [61]. P4 specialists are also required to define the
behavior of the programmable switches [62], and their inte-
gration of SDN and traditional networks remains a research
challenge. To define the behavior of programmable switches,
P4 specialists are also needed. The integration of SDN with
traditional networks [63] remains a research challenge. SDN
networks have also become more complex owing to the addi-
tion of programmable data planes. To solve these problems,
incremental deployment is necessary. This requires gradually
introducing programmable and fixed-function SDN devices
into traditional networks as viable options. The Paxos proto-
col [64] is the foundation for several fault-tolerant distributed
systems and services. The implementation of Paxos is a criti-
cal use case for P4 andwill help shape the data plane language
requirements in general. PISCES [65] is a software switch
derived from OpenvSwitch (OVS), a hard-wired hypervisor
switch whose behavior can be customized using P4. PISCES
is not hardwired to any specific protocol, making it simple to
add new features.

3) DATA PLANE SECURITY
Active networks [66] was the first research effort on pro-
grammable networks in the late 1990s. Therefore, the con-
cept of programmable networks is a new one. However,
it has not been widely adopted owing to its lack of secu-
rity. Similarly, the P4-Programmable data plane has some
security issues. Bugs are used more commonly in software
applications than in hardware applications. In addition, the
forwarding behavior of the [67] data plane is usually deter-
mined by less experienced and less prudent end users than
by providers. Second, attackers can use programmability to

change the forwarding behavior of the device to mitigate new
attack vectors. Therefore, it is necessary to add assertions to
programs and perform verifications to improve the security
of the programmable data planes. To protect network links
between P4-based SDN switches, MACsec [68], a widely
used IEEE standard for securing Layer-2 infrastructures, will
be deployed automatically. The MACsec is supported by a
wide range of switch and router manufacturers. It has only
minor performance limitations on these devices compared to
VPN technologies such as IPsec. P4-MACsec is a MACsec
data-plane implementation proposal.

4) ABSTRACTIONS
Both the science and art of designing programmable switches
are based on abstraction. In a perfect world, an abstraction
would be simple enough to encompass just the right amount
of configurable data plane capability while simultaneously
being expressive enough to allow the top layers to synthesize
complicated packet processing behavior. Additionally, the
control plane should be able to easily use such an abstraction,
owing to a reliable and secure data-plane API [69], [70].

5) RECONFIGURABILITY
The goal of moving from OpenFlow to P4 is to expose
a switch’s processing capabilities flexibly and efficiently,
including programmable packet parsing and general schedul-
ing and queuing systems [71]. It extends beyond how
packet-processing regulations are modeled in the data
plane, including how packets are linked to specific pro-
cessing operations. In particular, changing the data-plane
behavior at runtime is difficult without affecting packet
processing [72].

6) SCALABILITY
Designers are investigating more complex solutions to handle
the application states in the data plane [73]. However, stateful
techniques for packet processing are still in their infancy,
and no clear leader has yet been identified, whereas state-
less approaches are currently steady. Stateful abstraction is
challenging because it must address state management chal-
lenges (such as consistency) in a manner that is user-friendly
for programmers and that guarantees high performance.
This is particularly difficult because one of the leading
causes of performance problems in contemporary computer
systems is still frequent reading and writing to memory,
which is constantly required in workloads involving packet
processing [74].

7) DATA PLANE VULNERABILITIES
The data plane composition, or downward mapping of the
data plane from the intent layer, is a part of this issue. The
difficulty of automatically adjusting the network to changing
environments is closely tied to the need to verify the accuracy
and intended impact of the configuration adjustment. The
control loop must include an upward mapping of the data

54384 VOLUME 11, 2023



B. Goswami et al.: Survey on P4 Challenges in Software Defined Networks: P4 Programming

plane from the intent layer, and the data plane must be oper-
ated securely, because programming increases the possibility
of introducing vulnerabilities.

Recent discoveries suggest that the network should be built
with security and verifiability in mind from the very begin-
ning [75], demanding new abstractions that must be operated
securely because programmability increases the possibility
of introducing vulnerabilities and additional attack surfaces.
This is performed to verify the accuracy of the proposed
method.

VI. CONCLUSION AND FUTURE TRENDS
This article provides a survey of programmable data plane
and the related taxonomy is discussed. The P4 language is
briefly described, along with research gaps and future trends.
This survey examines the transition from traditional, to SDN
to programmable SDN using P4. Following this, the evolution
of networking, the importance of data-plane programmabil-
ity, and the abstract model structure of P4 are discussed in
detail. P4, the de-facto language used for programming the
data plane of SDN is briefly described. The survey sheds
light on numerous significant works and compares schemes
within each category in the taxonomy, as well as with the
legacy approaches. In the research challenges, we discuss
various future trends and initiatives. This research leads us
to the conclusion that open-source architectures and data
network programming will dominate the network domain in
the future. Thus, SDN + P4 would be an ideal environment
in the upcoming years.
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