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ABSTRACT Semantic Segmentation aims to partition an image into separate regions where each region
conveys certain valuable information. In recent years, deep learning models have achieved high performance
in this task. However, when several ground truth segmentations are available, aggregating the information of
these segmentations into a single ground truth becomes a crucial pre-processing step. This task becomes
challenging when the segmentations are contradictory and the existing classes in the segmentations are
imbalanced. An elegant example is the grading of Prostate Cancer in the Gleason 2019 Challenge dataset.
This dataset provides six annotations of relatively high contrast from expert pathologists for each image.
Additionally, the low number of images for Gleason grade 5 has also resulted in an imbalanced dataset.
The Majority Voting and the Simultaneous Truth And Performance Level Estimation (STAPLE) algorithm
are the most popular algorithms for combining annotations. In this paper, we visually show that the outputs
of these algorithms discard the semantics of the image in regions of high inconsistency and point out that
they demote low-frequency patterns, making the final segmentations even more imbalanced. We claim these
drawbacks highly decrease the performance of deep learning models trained on these ground truths. To solve
this problem, we propose a dynamic score function that selects one of the six annotations for each image
while balancing the Gleason grading among the annotations in terms of variability and quantity. Finally,
we train and evaluate a Pyramid Scene Parsing network on the final ground truths to validate our claims.

INDEX TERMS Convolutional neural networks, Gleason 2019 challenge, Gleason grading, Multi-expert
annotations, Prostate cancer, Semantic segmentation.

I. INTRODUCTION
Semantic segmentation refers to the task of identifying sev-
eral regions in an image where all the pixels of each region
belong to the same class. In other words, semantic segmen-
tation assigns a categorical label to every pixel in an image,
which is also regarded as a pixel-wise classification problem.
Due to its nature of dealing with images and recognizing
local features, utilizing the convolution operator is an appro-
priate approach for solving this problem [1], [2]. In recent
years, various convolutional neural networks have been intro-
duced for the task of semantic segmentation that have shown
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promising results on several datasets [3], [4], [5]. However,
the great performance of these networks is partly due to the
ground truths in the dataset being semantically valid.

In some cases, several segmentations are provided for an
image and it is required to aggregate these segmentations
into a single ground truth before feeding them to convolu-
tional neural networks. One of the most well-known medi-
cal image analysis datasets containing several segmentation
for an image is the dataset of the Gleason 2019 Challenge
[6], which was part of the MICCAI 2019 Conference. This
dataset includes 244 TMA images and their corresponding
pixel-level annotations prepared by six pathologists [7], [8].
Specifically, six expert pathologists were instructed to draw
closed contours around different regions of each of the TMA
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images and mark all pixels inside each specified region as
benign or Gleason grade of 3 to 5 [9]. Some images were not
annotated by all of the six pathologists, but for every TMA
image, four to six pixel-level annotations were available in
the dataset. Furthermore, we observed that few annotations
provided by the pathologists contained Gleason grade 5.
Therefore, the Gleason 2019 Challenge dataset is regarded
as an imbalanced dataset.

Previously, Majority Voting [10] and the Simultaneous
Truth And Performance Level Estimation (STAPLE) [11]
algorithm have been introduced as methods for combining
multiple segmentations. Majority Voting refers to assigning
to each pixel a class that is agreed by the highest num-
ber of segmentations available [10]. On the other hand,
the STAPLE algorithm constructs the final ground truth
by an EM [12] algorithm. i.e., iteratively updates its con-
structed segmentation until convergence. Specifically, the
STAPLE algorithm takes the probabilities of the category
labels for each pixel and updates these probabilities by max-
imizing an objective function through the use of an EM
setting [13].

These methods have shown promising results on many
problems and have been widely used in recent years. How-
ever, in this paper, we indicate that the application of these
algorithms to segmentations of images with high diversity
and imbalanced classes results in two shortcomings: 1) cre-
ating semantically incorrect segmentations in regions of high
contrast; 2) Making the dataset imbalanced even further by
demoting theminority class and promoting themajority class.
Therefore, taking these issues into account is necessary for
improving the performance in the semantic segmentation
task.

In this paper, we propose a dynamic score function (DSF)
to solve these two problems in contradictory segmentations.
Specifically, we assign scores to each available segmentation
map of an image and aim to select one of these segmentations
as the final ground truth for that image. The score assigned to
each segmentation includes a static part and a dynamic part.
To value the class with the highest probability, the static part
of our function assigns higher values to segmentations closer
to the majority voting segmentation, which can be done as a
pre-processing step and therefore, provides scores with static
values. On the other hand, to consider the classes with lower
probabilities and promote a more balanced segmentation set,
the dynamic part of our function assigns higher values to seg-
mentations which can efficiently improve the dataset balanc-
ing and lower values to other segmentations. Since the whole
dataset is required to understand which classes are scarce
and which classes are abundant, this part of the function is
dependent on the current dataset selection and is, therefore,
considered dynamic. To settle with an appropriate selection
set, we implement a hill-climbing [13] method to iteratively
improve our selection set by choosing segmentations with
higher scores and finalize the ground truth selections after-
ward.

The main contributions of our paper are described as
follows:

• We provide an algorithm for selecting a segmentation
map from the several segmentations of a single image.
This algorithm has three properties: 1) It maintains
the semantic information available in the segmentation
maps.We claim that this is an important factor to be con-
sidered for the appropriate training of neural networks.
2) Our algorithm prioritizes segmentations containing
classes that are common in most of the maps. This
imitates the practical result of assigning higher proba-
bilities to commonly agreed regions. 3) Our algorithm
prioritizes segmentations containing rare classes. This
imitates the practical result of assigning high variance
for the rare classes and the common ones.

• We graphically illustrate the difference between our
method, the STAPLE, and theMajority Voting algorithm
on the segmentationmaps to visually show that STAPLE
andMajority Voting algorithms do not necessarily main-
tain the semantic information in the final results.

• We train and evaluate a PSPNet on [14] different
settings, including our segmentation results and the
STAPLE segmentationmaps to verify our claim that seg-
mentation neural networks train better on our proposed
method. Moreover, we provide an ablation study to ver-
ify our claim that data augmentation and resampling
methods [15] are not enough to improve the model’s
performance, and the third property of our algorithm is
fundamental for good performance.

This paper is structured as follows: In the Related Work
section, we outline the previous methods implemented for the
Gleason grading task of the Gleason 2019 Challenge dataset
and provide a general overview of the task of prostate cancer
detection. In the Preliminaries section, we first introduce the
notations that will be used throughout this paper and formu-
late the semantic segmentation problem. Next, we revisit the
application of Majority Voting and the STAPLE algorithm on
the Gleason 2019 Challenge dataset with additional detail.
In the Proposed Method section, we explicitly propose our
method based on the notations provided in the paper and then
introduce the general network structure of the PSPNet and the
details of the training and evaluation of our network. In the
Results And Discussion section, we compare our results with
the top participating teams in the challenge based on several
metrics and different tasks. In the Conclusion section, we con-
clude our contributions.

II. RELATED WORK
In this section, we first review the general approaches for
aggregating maps and then present the recent methods for
histopathological Gleason grading.

A. AGGREGATION APPROACHES
The task of aggregating several mapping functions into a
single function has been extensively studied both directly and
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FIGURE 1. An example of an incorrect annotation provided by one of the pathologists for a TMA image in the Gleason 2019
Challenge dataset [6].

indirectly by researchers focusing on other tasks with similar
ideas. Two of the algorithms that can be directly applied to
sets of image inputs include the Majority Voting and the
STAPLE algorithm. In addition, it is possible to view the
segmentation maps as different domains or views of a single
entity and the goal is to combine the information of these
separate domains into a single global domain. In this way, it is
possible to approach the problem from different perspectives.

One of these viewpoints is the domain adaptation problem,
in which several domains correspond to different segmenta-
tion maps, and the goal is to propose a semantic segmentation
approach that adapts one domain to another, eventually con-
cluding with a final ground truth. Xie et al. [16] proposed
a self-training method for making predictions about a tar-
get domain given labeled source domains. In their work,
they proposed a centroid-aware pixel contrast method that
employs the class centroids of the source domain for learning
discriminative features. To compensate for the imbalance in
the classes, they proposed a distribution-aware pixel contrast
method, in which they approximated the true distribution of
classes from the statistics of the source domain. Specifically,
to calculate the statistics of the source domain, they consid-
ered the mean and the covariance matrix of the pixel features
corresponding to a particular class for each image. Next,
they stacked the mean features for several images as a bank
feature and aggregated the mean and the covariance matrix
features on the total dataset to obtain global features for the
corresponding class.

In a dataset such as the Gleason 2019 Challenge dataset
where several contradictory segmentations are available for
each image, we could consider six source domains for each
image corresponding to the maps according to this paper.
However, since several different classes could be assigned to
the same region of the input image, this has the drawback
that themean feature vectors and the covariancematrices con-
tain similar vectors that come from different classes, making
these features difficult to distinguish among different classes.
In other words, the features of different classes collide with
one another in the feature space, making the mean vectors
and the covariance matrices inappropriate prototypes for the
features. As opposed to our work, we endeavor to pick a

subset of these features, i.e. one segmentation from all the
available segmentations of each image as our final ground
truth.

Another point of view is the image registration problem,
in which the spatial relationship between several images in
the same location is found to obtain the maximum image
information. Ban et al. [17] proposed a weighted spatial
histogram algorithm to extract statistical features. In their
method, they computed the mean and the covariance matrix
of the image pixels with a specific value. They further for-
mulated the similarity of two histograms using a weighted
sum on all the different possible values of pixels. In the
Gleason 2019 Challenge dataset, we could consider the seg-
mentation maps as the inputs of image registration problem.
However, since every input has contradictory segmentations
available, this implementation has the disadvantage that the
mean and the covariance matrices contain similar content
from the classes in regions of high contrast which decreases
the discriminative power of these features among the different
classes. On the contrary, our work aims to select a portion of
these features and assign as the final ground truth.

B. DEEP LEARNING FOR GLEASON GRADING
Computer-aided detection and grading of prostate cancer [18]
can be used as a powerful tool for enhancing the histopatho-
logical Gleason grading and the treatment selection of
prostate cancer [19]. In recent years, deep learning [20]
models have achieved state-of-the-art performance in the
semantic segmentation of histopathology images for medical
analysis [21], [22]. Several papers have presented the superi-
ority of deep neural networks in prostate cancer diagnoses.

Regarding the Gleason 2019 Challenge, Khani et al. [23]
implemented a DeepLabV3+ [24], [25] with a pre-trained
MobileNetV2 [26] backbone for the semantic segmentation
task. To solve the imbalance in the Gleason 2019 Challenge
dataset, they applied data augmentation [16] on the less
frequent Gleason grades. To prevent overfitting and achieve
more generalization, they also applied data augmentation for
the second time on the whole dataset. They further indicated
that some of the annotations provided by the pathologists
in the dataset contained improperly closed contours which
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led to poor training of deep learning models. Fig.1 shows
an example of an annotation with improperly closed regions.
To solve this problem, they manually corrected the annota-
tions by filling in the unclosed regions. For the final ground
truth, they implemented the STAPLE algorithm using the
SimpleITK [27], [28] library.

Qiu et al. [29] utilized the PSPNet with an auxiliary branch
for the semantic segmentation of TMA images. The PSPNet
architecture is composed of the ResNet–101 [30], [31], fol-
lowed by pooling layers and finally, the head of the Fully
Convolutional Network (FCN) [32]. Qiu et al. added an auxil-
iary branch to their network by using the auxiliary loss of the
ResNet–101 and passing the features through an FCN. They
trained their final network by taking a linear combination of
the losses of the two branches and backpropagating through
the parameters. For obtaining the ground truth labels for the
dataset, they utilized the gold-standard STAPLE algorithm
on the annotations provided by the pathologists. Qiu et al.
submitted their code to the Gleason 2019 Challenge and
achieved first place in the challenge.

Zhang et al. [33] implemented a UNet [34], [35] by
exploiting convolutional blocks for feature extraction. They
connected the encoder of the network to the decoder by
concatenating the feature maps of the encoder to the cor-
responding convolutional blocks in the decoder. To obtain
the ground truths of the dataset, they encoded the annotated
values onto six channels and merged annotations by different
pathologists for each channel to reduce the inter-variance
among the annotations. Zhang et al. participated in the
Gleason 2019 Challenge and finished fourth place in the
challenge.

Iqbal et al. [36] conducted a thorough analysis and com-
pared the performance of traditional machine learningmodels
such as SVM [37], Decision Tree [38], and Kernel Naive
Bayes [39], [40] to deep learning models such as ResNet
and LSTM [41] on the task of prostate cancer detection.
They concluded that ResNet–101 and LSTM achieve optimal
results in the feature extraction of prostate cancer images.

The ISIC dataset provides a large set of images containing
skin lesions [42]. Similar to the Gleason 2019 Challenge
dataset, the ISIC dataset provides several skin lesion segmen-
tation boundaries for each image. One of the tasks defined
on this dataset is the segmentation of skin lesions, in which
the problem contains two classes, the malignant class, and
the benign class. Ribeiro et al. provided an analysis of the
different methods used for the segmentation maps of the
ISIC dataset [43]. They also indicated that up to 2018,
the ISIC dataset was the only dataset that provided several
segmentation maps for images. However, we report that the
71670 images publicly made available in the ISIC archive
and the ones in the challenge websites only contain the
input images and do not include the several corresponding
segmentation masks [44]. Moreover, the ground truth images
provided in the challenge website only contain one mask for
each image. Therefore, we only provide our experimental

results on the Gleason 2019 Challenge dataset which contains
four classes with imbalanced frequencies.

III. PRELIMINARIES
First, we provide the notations that will be used throughout
this paper and demonstrate a mathematical formulation for
our problem. Then, we provide a thorough analysis of the
advantages and shortcomings of the Majority Voting and
STAPLE algorithms.

A. NOTATIONS AND PROBLEM FORMULATION
We formulate the problem of semantic segmentation of
TMA core images on the Gleason 2019 Challenge dataset as
follows:

Define g = {0, 3, 4, 5} as the set of all possible Gleason
grades assigned to the pixels of an image, h as the height
and w as the width of the image input. Also, define p =

{0, 1, . . . , 255} as the set of all possible values of a pixel
in an RGB image input channel. Therefore, p3×h×w is the
space of all input images with RGB channels, gh×w is the
space of all possible segmentation results and f : p3×h×w →

gh×w is defined as the function that takes an image input
and outputs a corresponding segmentation using the Gleason
grades 0, 3, 4, and 5. Let the set {Mapi}6i=1 contain instances
of the mentioned functions, whereMapi takes an image input
from the dataset and outputs the segmentation provided in the
i-thmap. With these definitions, we wish to devise a function

f : p3×h×w → gh×w such that f (x) provides us with a suitable
semantic segmentation result where x ∈ p3×h×w is an image
given as input.

B. MAJORITY VOTING
The majority voting algorithm proposes an objective function
as the classification error among the six maps and formulates
the problem as obtaining a function f that minimizes the
value of the objective function [10]. The objective function
is defined as follows:

h∑
i=1

w∑
j=1

6∑
k=1

I
(
f (x)ij ̸= Mapk (x)ij

)
. (1)

We can rewrite the classification error in the following
way:

h∑
i=1

w∑
j=1

6∑
k=1

I
(
f (x)ij ̸= Mapk (x)ij

)
=

h∑
i=1

w∑
j=1

6∑
k=1

(
1 − I

(
f (x)ij = Mapk (x)ij

))
= 6hw−

h∑
i=1

w∑
j=1

6∑
k=1

I
(
f (x)ij = Mapk (x)ij

)
. (2)
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In other words, minimizing the classification error in (2) is
equivalent to maximizing the following expression:

h∑
i=1

w∑
j=1

6∑
k=1

I
(
f (x)ij = Mapk (x)ij

)
. (3)

It is straightforward to see that the objective function in
(3) is maximized when we take the majority vote of all six
maps for each pixel of an image. Therefore, the majority
voting algorithm definesMajVote(x) : p3×h×w → gh×w as the
ground truth segmentation of an image x as follows:

MajVote(x)

:= argmax
f

h∑
i=1

w∑
j=1

6∑
k=1

I
(
f (x)ij = Mapk (x)ij

)
. (4)

Despite the algorithm’s simplicity and its success in find-
ing a solution that globally optimizes the proposed objective
function (3), it has shortcomings described as follows:

• First, in the semantic segmentation task, the ground truth
maps contain semantically different regions where all
the pixels within the same region share the same class.
This implies a correlation between the pixels within each
semantic region. In addition, deep learning [20] models
try to capture the correlation between the contiguous
pixels using convolutional layers and fully connected
layers. Therefore, maintaining the correlation between
pixels of each semantic region in the final suggested
ground truth is fundamental for good performance.
However, the objective function in (3) indicates that the
class of each pixel depends only on the corresponding
pixel among the different maps. This fact implies that
the majority voting equation in (4) cannot guarantee that
the distinct pixels within each semantic region share the
same class.

• Second, the majority voting algorithm is predicated on
the idea that segmentations containing low-frequency
classes are fallacious, and should therefore be removed
from the final representation, and only segmentations
with which most annotators agree should be considered
as ground truth. Thus, there is a bias or preference of
selecting high-frequency classes which may not be suit-
able for problems such as the grading of prostate cancer
in TMA images. For this reason, providing a ground
truth that does not necessarily eradicate low-frequency
segmentation is crucial for a successful implementation.

• Third, the majority voting algorithm’s supremacy dissi-
pates when applied to an imbalanced dataset, which is
the case with the Gleason 2019 Challenge dataset. Our
study on this dataset reveals that for many of the images
in the dataset, at most one expert assigned grade 5 to
some region of the image, while the other experts mostly
agreed with one another on assigning other grades. Fur-
thermore, we observed that there are few images where
most of the experts agreed with one another on assigning

grade 5. As explained in the previous paragraph, discard-
ing low-frequency segmentations for proposing a final
ground truth eliminates the data of the classes that were
available in the low-frequency segmentations. In the
case of the Gleason 2019 Challenge dataset, this has
the consequence that many of the segmentations which
contain the Gleason grade 5 are eliminated from the final
ground truth, making the Gleason grade 5 even more
scarce than the original set of segmentations. Ultimately,
this algorithm decreases the variability of the Gleason
grade 5 patterns in the dataset, which results in poor
training of any deep learning model.

To justify our point, we have implemented the major-
ity voting algorithm on the segmentation maps of various
images from the Gleason 2019 Challenge dataset and showed
the results in Fig.5. In this figure, the Image column
refers to the original image of the dataset, and the columns
Map1,Map3,Map4,Map5, and Map6 refer to the segmenta-
tion maps in the dataset. The entries in which the particular
segmentation maps were unavailable are empty. The MajVot
column refers to the majority voting algorithm applied to
the segmentation maps. It is evident that in regions of high
contrast, unusual shapes have been created by the algo-
rithm which eliminates the required semantic properties for
regions of those classes. Moreover, we can observe that
low-frequency classes such as Gleason grade 5 were com-
pletely discarded in the output of this algorithm. Addition-
ally, Fig.2(a) shows the distribution of the classes among the
original segmentations provided by the experts in the dataset.
Fig.2(b) shows the distribution of the classes among the
segmentations resulting from applying the majority voting
algorithm to the original segmentation maps.

C. STAPLE
The objective function defined in (1) suggests that taking into
account high-frequency classes is beneficial for appropriately
obtaining the final ground truth. This implication has led deep
learning researchers to devise more elaborate algorithms,
the most successful one, to the knowledge of the authors,
is the STAPLE [13] algorithm for the segmentation task. It is
noteworthy to mention that the participating teams in the
Gleason 2019 Challenge were evaluated on the test dataset
with the STAPLE algorithm implemented as the aggrega-
tion method [45]. Moreover, several papers [23], [29] have
implemented the STAPLE algorithm as a preprocessing step
in the Gleason 2019 Challenge to obtain the ground truth
annotations for the training dataset and achieved state-of-the-
art performance with their deep learning models.

The STAPLE algorithm constructs the final ground truth
as an EM [14] algorithm, iteratively updating its constructed
segmentation to maximize the incomplete data log-likelihood
function. Specifically, the algorithm initially constructs a
test segmentation by simple voting on each pixel. Further,
the algorithm calculates the performance level parameters of
each of the annotators compared to the test segmentation,
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FIGURE 2. The Gleason grade distribution in Gleason 2019 Challenge dataset [6]. (a) the distribution in the set of segmentation maps of the
Gleason 2019 Challenge dataset. (b) the distribution after applying the majority voting algorithm to the semantically correct segmentations. (c) the initial
set of ground truths in the hill-climbing algorithm. (d) the final set of ground truths in the hill-climbing algorithm.

as the E-step, and constructs a new test segmentation using
the weights previously calculated as the M-step. This process
is repeated until the test segmentation converges and the
converged test segmentation is considered as the final ground
truth [13].

Despite its widespread application on several datasets as a
novel aggregation method, its performance on the semantic
segmentation task of the Gleason 2019 Challenge dataset has
two shortcomings. First, the EM procedure implemented in
the STAPLE algorithm does not consider the class assigned
to a pixel depending on the classes of its surrounding pixels.
In other words, the same semantic properties of an accept-
able segmentation result that were discussed in the previous
subsection are not taken into account in the result of the
STAPLE algorithm. Second, the STAPLE algorithm performs
poorly on datasets with a high imbalance in the class cate-
gories and full of contradictory segmentations, which is the
case in our Gleason 2019 Challenge. Similar to the majority
voting algorithm, the STAPLE algorithm usually discards the
class with the least frequency, Gleason grade 5, and severely
decreases the frequency of grade 5 in the final ground truth
segmentations.

To justify our point, we have implementated the STAPLE
algorithm on the segmentation maps of various images from
the Gleason 2019 Challenge dataset and showed the results in
Fig.5. In this figure, the STAPLE column refers to the output
of the STAPLE algorithm applied to the segmentation maps.
Similar to the output of the majority voting algorithm, it can
be seen that in regions of high contrast, unusual shapes have
been created that discard the required semantic properties
for regions of those classes. Moreover, it can be seen that
low-frequency classes such as Gleason grade 5 were com-
pletely discarded in the output of this algorithm.

IV. PROPOSED METHOD
In this paper, we shall propose a method that maintains the
necessary semantic properties mentioned in the Preliminaries
section for a successful implementation, and simultaneously
solve the imbalance of classes in the dataset. As explained in
the previous section, it is necessary to consider a ground truth
that identifies groups of glandular cells that share the same
Gleason grade, without containing any peculiarly shaped
regions.

More precisely, if we define D to be the subspace of gh×w

that harbors the necessary semantic properties, we wish to
propose a function f : p3×h×w → D as the ground truth.
As described in the Majority Voting subsection of the pre-
vious section, it is not guaranteed that the maximization of
the objective function in (3) necessarily lies in the subspace
D. However, we explained in the Introduction section that the
pathologists were instructed to draw the contours of regions
belonging to a particular Gleason grade for preparing their
annotation. In other words, the pathologists were instructed
to provide annotations lying in the subspace D.

A. COMPATIBILITY OBJECTIVE
First, we focus on proposing an objective function that helps
the output of our method become compatible with the correct
segmentations provided by the pathologists. Fig.1 shows an
example of an annotation with improperly closed regions.
Various solutions such as manually correcting these mis-
takes have been pointed out by researchers [23]. However,
in our work, we simply manually removed these incorrect
segmentations from the whole set of segmentations provided
by the pathologists. After removing fallacious segmentations,
we are left with only segmentations that lie inside the domain
D in our study. Since we wish to make sure to present ground
truth segmentations that lie inside subspaceD, we opt to skill-
fully select one segmentation from the segmentation maps
available for each image in the dataset and designate it as the
ground truth.

To address the importance of considering segmentations
with high agreement among the annotators, we propose a
function as a measurement of the segmentation’s similarity
to the majority voting result as follows:

F1 (a, x) :=
1
hw

 h∑
i=1

w∑
j=1

I
(
aij = MajVote (x)ij

) (5)

where x ∈ p3×h×w is a TMA image from the Gleason 2019
Challenge dataset and a ∈ gh×w is an arbitrary segmentation
presented for our image input x.

It is evident from (5) that a higher value of F1 (a, x) indi-
cates higher similarity of the segmentation to the majority
voting segmentation. Concretely, the output of the function

VOLUME 11, 2023 64549



P. Esmaeil Akhoondi, M. Soleymani Baghshah: Semantic Segmentation With Multiple Contradictory Annotations

F1 (a, x) always lies in the interval [0, 1], where the function
claims the maximum value 1 when a = MajVote (x).

B. BALANCING OBJECTIVE
In this subsection, we focus on proposing an objective
function that balances the selected segmentations. Initially,
we define a function with which we can identify an arbitrary
segmentation’s ability to contribute to the abundance of a
particular class as follows:

Jk (a) := I

 1
hw

 h∑
i=1

w∑
j=1

I
(
aij = k

) ≥ αk

 (6)

where a ∈ gh×w is an arbitrary annotation, k ∈ g is the
particular class in our study, and αk is defined as the median
of the objective function on the left-hand side among all the
images in the dataset with a positive contribution to the class
k . In other words, we define αk as follows:

αk := Median
({

1
hw

( h∑
i=1

w∑
j=1

I
(
Mapm(x)ij = k

))∣∣∣∣
I
( h∑
i=1

w∑
j=1

I
(
Mapm(x)ij = k

)
> 0

)})
(7)

where m ∈ {1, 2, . . . , 6} is any map index and x is an
arbitrary image input from the dataset. Therefore, considering
a feasible set is essential for correct implementation. With
this definition, approximately half of the segmentation maps
with a positive contribution to the class k would have Jk (a) =

1 and the other half would have Jk (a) = 0.
In particular, we argue that segmentations containing a low

number of a particular class cannot contribute to the balancing
of the dataset, and there should be a lower bound on the num-
ber of pixels that are marked as a particular class. When the
indicator function in (6) takes the value of 1, it is determined
that the particular segmentation at hand can contribute to the
balancing of the dataset. Otherwise, the indicator function
takes the value of 0, implying that the number of pixels
of the particular class in the segmentation is not sufficient
for balancing purposes. In other words, the function Jk (a)
determines whether the chosen segmentation can effectively
contribute to the balancing of the dataset.

Using our defined function Jk (a), we can further extend
our notion to the whole dataset as follows:

Nk :=

N∑
n=1

Jk (an) (8)

where k ∈ g indicates a class, and for every 1 ≤ n ≤ N ,
an ∈ gh×w is the segmentation map chosen for the n-th image
in the dataset and N is the size of the dataset.

Now, we propose a function that determines whether the
dataset is deficient in a particular class as follows:

Q (k) := I

(
Nk∑
i∈g Ni

≤
1

2|g| − 1

)
(9)

where k ∈ g is the class under our study.

The function Q claims the value of 1 when the num-
ber of segmentations among the whole set of segmentations
containing a reasonable amount of a particular class falls
below a threshold, indicating a need for an increase in the
segmentations containing this scarce class.When the function
claims the value of 0, it implies that enough segmentations are
containing the particular class at hand.

The intuition of selecting 1
2|g|−1 as a threshold is as follows:

In our method, to ensure that the variables Ni, where i ∈ g,
are not very distant from one another, we wish to maintain the
following inequality:

max
i∈g

Ni ≤ 2min
i∈g

Ni (10)

With this idea in mind, an acceptable situation in which the
expression on the left-hand side of (9) claims its minimum
value for class k is when Ni = 2Nk for all i ∈ g and i ̸= k ,
in which case the value of 1

2|g|−1 is achieved. In other words,
when the expression on the left-hand side of (9) falls below
the threshold, there exists some class Ni where Ni > 2Nk ,
therefore, class k needs to be increased among the segmenta-
tion maps.

To address the value of an arbitrary segmentation’s con-
tribution to the balancing of the dataset, we propose the
following function:

F2 (a) :=

∑
k∈g

Q (k) Jk (a)wk (11)

where a ∈ gh×w is an arbitrary segmentation, and wk are
positive real numbers defined as follows:

wk :=

1
Nk∑
i∈g

1
Ni

. (12)

The expression Q (k) Jk (a) in each summand equals 1 when
there is not only a need for increasing the frequency of class
k in the set of segmentation maps but also the segmentation
at hand contains class k enough to be considered suitable
for contributing to the balancing of the dataset. In this case,
a reward is given to the segmentation with a value of wk .
Otherwise, the expression Q (k) Jk (a) equals 0, and conse-
quently, the corresponding summand equals 0. Concretely,
the output of the function F2 (a) always lies in the interval
[0, 1] where the function claims the maximum value 1 when
for all k ∈ g, Q (k) Jk (a) = 1. Therefore, the function F2 (a)
can be used as a measurement with which we can express the
value of the contribution of a particular segmentation to the
balancing of the dataset.

C. OPTIMIZATION
Using the mentioned functions, we define a score for each
chosen segmentation as follows:

F (a, x) := F1 (a, x) + CF2 (a) (13)

where C is a positive real number that plays the trade-off
between the two functions.
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To achieve the goal of choosing semantically appropriate
segmentations that are simultaneously close to the majority
voting segmentations and balance the final chosen segmenta-
tions to the best, we adopt a hill-climbing [15] algorithm as
follows:

First, we introduce the general setting of our hill-climbing
algorithm. As mentioned before, we aim to select one map
among all the maps provided for each image as the ground
truth. Therefore, the states in our hill-climbing method can
be regarded as segmentation map indices (i1, . . . , iN ) where
ik indicates that the ik -th segmentation map should be chosen
as the ground truth for the k-th image in the dataset. In this
setting, assuming that there are exactly six maps available
for each image, there would be 6N states. Next, we define
the neighbors of each hill-climbing state. For each state
(i1, . . . , iN ), the state (j1, . . . , jN ) is its neighbor if and only
if ik = jk for all 1 ≤ k ≤ N except for one index. In this
setting, there are exactly six maps available for each image,
i.e., there are 5N neighbors for each state in our hill-climbing
method. For conciseness, we have provided the pseudocode
of our algorithm in Fig.3.

For implementing our algorithm, we first apply the major-
ity voting algorithm on all the segmentation maps for each
image in the dataset, and further, choose the map among the
available maps that is closest to the corresponding majority
voting result, according to the objective function in (5), and
choose this set as the initial situation for our hill-climbing
algorithm. In another sense, we choose a segmentation
map among the available maps that maximizes the function
F1 (a, x) for the corresponding image x, regardless of what
value of F2 (a) is obtained, and choose these segmentations
as the initial setting. Afterward, we calculate the valuesNi for
each i ∈ g according to (8).

Next, we randomly select an image, investigate among the
available segmentation maps, and identify a segmentation
with the maximum score, according to (13). If the observed
annotation achieved a score greater than the score of the
previously chosen segmentation for the corresponding image,
we replace the previous segmentation with the new one, and
update the values Ni for each i ∈ g accordingly.
We repeat this process for many iterations, and finally,

terminate the hill-climbing algorithm. We present the final
ground truth segmentation for each image in the dataset as
the corresponding segmentation found in the terminating state
of the hill-climbing method. In our implementation, we set
the number of iterations in our algorithm to 5N . Since there
are six segmentation maps available in the Gleason 2019
Challenge dataset, this number of iterations gives roughly
5 chances for each image to change its segmentation map
through the process. The segmentation map chosen by our
DSF algorithm can be seen in the DSF column in Fig.5.

We indicate that F1 in (13) is simply a function of the
segmentationmaps of a given image (according to (5)), which
are available in our dataset and do not change over time.
Therefore, this function provides us with a static score. How-
ever, F2 (according to (11)) is a function of Ni for i ∈ g and

FIGURE 3. The pseudocode of our proposed method. The parameter αk is
calculated initially and the parameters Jk , Nk , Qk , and wk is updated in
each iteration. In this pseudocode, all lines containing the subscript k are
executed for all k ∈ g = {0, 3, 4, 5}. Since Nk is the sum of Jk and only
one Jk changes in each iteration, instead of recalculating Nk anew,
we simply add the new term, tempk , and subtract the previous term from
Nk for additional speedup for our algorithm.

the values of these variables change through the hill-climbing
process, and F2 becomes a dynamic score. In the special case
where C = 0, the score in (11) is removed from (13). In this
case, we can refer to this method of segmentation selection
as the Static Score Function (SSF) method. We shall study
this case as an ablation study in the Results And Discussion
section.

D. FINAL DATASET PREPARATION
Fig.2(b) shows the distribution of the classes among the
segmentations resulting from the implementation of majority
voting on the original set of annotations. Fig.2(c) shows the
distribution of the classes among the chosen segmentations
at the initial situation of the hill-climbing method. The fact
that the distribution of the classes in Fig.2(b) and Fig.2(c)
are similar to each other, implies that there are segmentations
among the six maps for each image that achieve a high
F1 (a, x) score, which is reassuring since we would like to
start our hill-climbing algorithm from the state that is agreed
by most experts. Fig.2(d) shows the distribution of the classes
among the chosen annotations by the hill-climbing method.
It is more balanced than the distribution of classes in all of
the previous situations, i.e., Fig.2(a), Fig.2(b), and Fig.2(c).
Furthermore, it can be seen that the distribution of benign and
Gleason grades 3 and 4 have become closer to one another
compared to the previous distributions. This indicates that
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our method was successful in presenting a set of annotations
as the final ground truth that is close to the ideally balanced
distribution. However, it is still possible to bring our dataset
closer to an ideally balanced set in the following ways:

• To further balance the dataset, we randomly select
images that contain the low-frequency classes in their
corresponding ground truth and replicate them until their
frequency reaches the higher-frequency classes.

• Since data augmentation has proven as a powerful
method for increasing the dataset size for training
machine learning models by representing data in differ-
ent forms [16], we also applied augmentation methods
such as Random Rotation, Random Horizontal Flip,
Random Vertical Flip, and Random Crop [16], [46] on
the whole train dataset for further generalization of the
model and to reduce overfitting.

There is also another important note about the signifi-
cance of our proposed hill-climbing method on increasing the
classes with lower frequency for balancing the final segmen-
tation set. Previous works [23] propose data augmentation
of the minority class as a method for balancing the dataset,
whereas, in our paper, we emphasize optimizing the score
function in (11) and replicating the data afterward to obtain
the ideally balanced dataset.

The difference between our hill-climbing method and data
augmentation methods is that in data augmentation, images
with similar semantic contexts are created through the appli-
cation of various transformations. In other words, data aug-
mentation methods do not create genuinely new semantic
patterns from their input. However, in our proposed method,
since we generally assume that different images from the
dataset contain different patterns, switching from one seg-
mentation to another, results in adding a new pattern to the
minority class and removing a pattern from another class.
In the Results And Discussion section, we shall present the
difference in the performance of deep learningmodels trained
on a dataset with sufficient pattern variability and trained
on a dataset with less pattern variability but with more data
augmentation.

V. EXPERIMENTS
Among the convolutional networks, the PSPNet [12] has
shown superior performance in the semantic segmentation of
medical images. The PSPNet is mainly composed of three
parts: ResNet, the pyramid pooling module, and the FCN
head, each of which plays key roles in the performance of the
network. Fig.4 illustrates the internal structure of the PSPNet
architecture implemented in our work.

In PSPNet, the ResNet–101 extracts features from the
image input through its built-in residual blocks. The long
skip connections in the residual blocks help harness category
information of the image input from a global point of view.
Furthermore, as discussed in [36], ResNet–101 is an excel-
lent network for extracting features of medical images and
outperforms traditional machine learning methods.

The feature outputs of ResNet–101, which are weights
of size 96 × 96, are given as input to the pyramid pooling
module, inside of which are several adaptive average pooling
layers [47], [48], [49], [50]. To capture global information
from the ResNet features, different kernel sizes are chosen for
the adaptive average pooling layers. In PSPNet, four different
kernel sizes of 1 × 1, 2 × 2, 3 × 3 and 6 × 6 are applied on
the ResNet–101 output features. After passing these pooling
layers through convolutional layers, these features are upsam-
pled to the original 96 × 96 weight sizes and concatenated
together with the original ResNet–101 output features to
represent features that capture both local information from
the ResNet–101 outputs, and global information from the
upsampling applied on the pooling layers.

Afterward, these concatenated features are given as input
to the head of the FCN. The FCN classifies the image pixel by
pixel from upsampling and ignores the adjacent information
during the downsampling of low-resolution feature images.
Since the concatenated features in the input of the FCN head
appropriately exploit the local and global features of the
image input, the output of the FCN head, which is the output
of the PSPNet, becomes dependent on both local and global
information, resulting in a good performance [29]. In this
way, the weakness of the FCN inmaking good use of category
information from a global point of view is compensated by
the pyramid pooling module deployed after the ResNet–101
features.

As explained in [29], it is also possible to add another
branch to the network by exploiting another FCN on the
output features of the ResNet backbone, referred to as the
auxiliary branch. However, in our work, we did not opt to
consider the auxiliary branch since our experiments from
training both versions reveal no significant improvement in
either case.

Additionally, we noticed a subtle mistake made by the
pathologists in the annotations. Most annotations were not
accurate on the surrounding borders of the tissue, and some
background pixels were mistakenly assigned a Gleason grade
3 or above. To fix this problem, we applied a background
filtering method [51] on the final ground truth, where the
loss of this corrected ground truth and the model out-
put would be backpropagated for the training procedure,
to ensure that the model can learn the border features
appropriately.

We implemented our code using the Python [52] program-
ming language and ran the code on the Google Colab Pro
service [53]. We utilized the numpy [54] and Pytorch [46]
framework for the training and evaluation of the PSPNet,
and used the matplotlib [55], scikit-learn [56] and SimpleITK
[27], [28] libraries for the figures of this paper.

The preprocessing procedure which includes the calcu-
lation of the initial set of annotations for the hill-climbing
algorithm and the iterations afterward took twenty hours to
complete. The appropriate value for the parameter C defined
in (13) can be found in the following way: The static part
of our score function defined in (5) can be calculated as a
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FIGURE 4. The network structure of PSPNet. The internal structure of PSPNet was first introduced and illustrated in [12].

preprocessing step and an average is taken over thewhole seg-
mentation maps. Next, the possible values that the dynamic
part of our score function defined in (11) can be estimated.
Afterward, the parameterC is set to a value that can dominate
the dynamic part of the score function when the dataset
requires major balancing.With this methodology, we used the
value of C = 5 in our experiments.

For training the PSPNet, we used a Stochastic Gradient
Descent optimizer [57]. For better convergence of model
parameters, we deployed a learning rate decay [58] with the
strategy

η = η0

(
1 −

mB
NE

)0.9

(14)

where B = 2 is the batch size, N is the size of the training
dataset, E = 50 is the total number of epochs for our training
procedure, m is an iterator that goes from 0 to NE

B , and
η0 = 0.001.
Due to the limitations in the available RAM, we restricted

our implementation to a size of 2 for the batch size and
reduced the original high-resolution images to the size of
1024× 1024 before the execution of data augmentation [16].
We believe that considering different batch sizes and training
the network with the original resolution improves the perfor-
mance results.

VI. RESULTS AND DISCUSSION
According to [45], the aggregation method applied to
the expert annotations by the organizing committee of
the Gleason 2019 Challenge was the STAPLE algorithm.
However, the STAPLE results obtained by the organizing
committee were not publicly made available [45]. The orga-
nizers provided the TMA images of the training dataset
and test dataset, but the six annotations of the experts were
made publicly available only for the training dataset [6]. The
participating teams trained their models on the 244 TMA
images from the training dataset, without having access to
the annotation maps of the 87 TMA images in the test dataset,
submitted their programs to the official challenge, and were

ranked according to an evaluation metric which includes a
combination of the Cohen’s kappa [59] score and F1-Score
[60] calculated on the test dataset [6]. Furthermore, the con-
fusion matrices of the top participating teams were publicly
made available on the official website of the challenge [6].

Since the annotations of the experts in the test dataset
were unavailable, we divided our training dataset into a new
training dataset of size 200, and a test dataset of size 44. In the
separation of the original training dataset from the latter
datasets, we carefully maintained the relative distribution of
classes between the two datasets, to ensure all patterns of
a particular class would not completely fall in the training
dataset or the test dataset. To make a fair comparison between
our proposed method and some of the participating teams in
the challenge, we trained and evaluated the models of the 1’st
and 4’th ranked teams on the same 200 and 44 partitions we
introduced.

The results of our performance and two of the other teams
in the challenge are shown in Table 1, Table 2, Table 3, and
Table 4. We refer to Table 1 and Table 2 to demonstrate the
superiority of ourmethod in the task of identifying benign and
malignant tumors. Table 3 and Table 4 show the superiority
of our method in the task of distinguishing between the three
distinct malignant classes 3, 4, and 5. Since the organizing
committee evaluated the output of models to the STAPLE
algorithm applied on the whole dataset for providing the
confusionmatrices, we provide the performance of our model
evaluated both on our proposedDSFmethod and the STAPLE
method in all the tables even though we mentioned the short-
comings of choosing STAPLE algorithm as an aggregation
method.

Moreover, we provide an ablation study to emphasize
the importance of our DSF method in all of the tables.
To reveal the importance of including (11) in the final
score of (13), we trained and evaluated our model with the
same setting but only changed the parameter C by choos-
ing C = 0. In this case, the frequency of Gleason grade
5 has not been increased by (11). Therefore, we solely
relied on using data augmentation and resampling methods
to the extent that the frequency of Grade grade 5 reaches the
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TABLE 1. The performance of different methods on the task of Benign vs. Malignant tumor detection on the Gleason 2019 Challenge dataset.
We compared the model outputs using the method applied to the expert segmentation maps written in parentheses next to the titles.

TABLE 2. This table shows the performance of different methods on the task of Benign vs. Malignant tumor detection on an ideally balanced dataset.
We compared the model outputs using the method applied to the expert segmentation maps written in parentheses next to the titles.

TABLE 3. The performance of different methods on the detection of Gleason grades 3, 4, and 5 on the Gleason 2019 Challenge dataset. We compared the
model outputs using the method applied to the expert segmentation maps written in parentheses next to the titles.

TABLE 4. This table shows the performance of different methods for the detection of Gleason grades 3, 4, and 5 on an ideally balanced dataset.
We compared the model outputs using the method applied to the expert segmentation maps written in parentheses next to the titles.

higher frequency classes, as discussed in the Final Dataset
Preparation subsection of our proposed method. This ablated
version of the proposed method is called SSF. As it can

be seen in the tables, the ablation study does not reveal a
significant decrease in the metrics of benign vs malignant
diagnosis. However, it has shown a significant decrease in
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FIGURE 5. Several images from the Gleason 2019 Challenge dataset and their corresponding segmentation maps. The MajVot column refers to the output
of the majority voting algorithm when applied to the segmentation maps. The STAPLE column refers to the output of the STAPLE algorithm when applied
to the segmentation maps. The DSF column refers to the segmentation map chosen by our proposed method. In this figure, unavailable maps or
fallacious maps were left empty. Since none of these images had an acceptable segmentation from the second map, column Map2 has been omitted.
According to our proposed method, it is reasonable that in the third row, Map1 is chosen due to containing a decent amount of Gleason grade 5 and the
other rows indicate selections similar to the MajVot and STAPLE columns. Moreover, the odd-shaped curves and regions mentioned in the paper are clear
in the MajVot and STAPLE column entries [6], [7], and [8].

Table 3 and Table 4, especially the recall metric and the
accuracy metric in the balanced case. This is in agreement
with our previous claim that data augmentation alone is not
enough to improve a model’s performance by increasing the

samples of the low-frequency classes when the dataset lacks
variability.

Additionally, we have implemented our ablation study in
the case where no data augmentation and replication methods
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are used as well. The result of this study is entitled SSF w.o.
any balancing in the tables. As it can be seen from the tables,
the evaluationmetrics of the ablated versions are close to each
other. This finding reveals that when the pattern variety in
a particular class falls below some threshold, complex mod-
els tend to focus on accurately predicting the other classes
and forget the class with the least variability, regardless of
whether data augmentation and replication methods have
been used or not. Consequently, maintaining a relation similar
to (10) is mandatory for good performance.

Since we trained our PSPNet similarly to the 1’st ranked
team, by comparing the results of our proposed method and
the 1’st ranked team’s model in the tables, we validate our
claim that segmentation models cannot learn properly when
their ground truth segmentations do not maintain semantic
properties, and that choosing semantically correct ground
truth segmentations contribute a lot to the model perfor-
mance. In another sense, the first and the second rows in
the tables reveal that training models based on our DSF
method but evaluating them based on other methods still
greatly improves the performance. Additionally, by observing
some of the confusion matrices in the challenge’s website,
we observe that some of the methods had difficulty correctly
classifying Gleason grade 5, whereas our proposed method
can achieve good accuracy in all the classes.

As a final note, in obtaining the results of Table 1 and
Table 2, the Gleason grade 0 is considered as the benign
class, and the grades 3, 4, and 5 as malignant. Moreover,
in obtaining the results of Table 2 and Table 4, the balanced
dataset was achieved by normalizing the number of input
pixels in each class.

VII. CONCLUSION
In this paper, we thoroughly explained the main advantages
and shortcomings of the majority voting and the STAPLE
algorithm on the Gleason 2019 Challenge dataset and high-
lighted the importance of semantic properties of ground truths
on the performance of segmentation models. We argued that
using the segmentations from the original segmentation maps
is a good choice for ensuring that the semantic properties
are maintained. To deal with the high dissimilarity among
the segmentations, we proposed a dynamic score function for
each segmentation that highlights the importance of similar-
ity to the majority voting result and balancing the dataset.
To settle with a decent set of segmentations, we ran the
hill-climbing algorithm for many iterations.

In future work, some extensions can bemade to ourmethod
for other machine learning problems as well. We highlight
that the score in (5) emphasizes choosing semantically correct
annotations which are close to the majority voting annotation,
and the score in (11) emphasizes balancing the annotations.
We anticipate that our SSF method performs well on ideally
balanced datasets which do not require the balancing score
function in (11). We further believe that the scores defined
in our paper can be generalized to advanced versions that
perform well on a broad set of datasets.
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