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ABSTRACT The increase in energy consumption, environmental pollution issues, and low-carbon agenda
has grown the research area of demand side management (DSM). DSM programs provide feasible solutions
and significantly enhance the efficiency and sustainability of electrical distribution systems. This paper
classifies and discusses the broad definition of DSM based on the comprehensive literature study considering
demand response and energy efficiency. The implementation of Artificial Intelligence algorithms in DSM
applications has been employed in many studies to help researchers make optimal decisions and achieve
predictions by analyzing the massive amount of historical data. Owing to its simplicity and consistent
performance in fast convergence time, Particle Swarm Optimization (PSO) is widely used as a part of the
swarm AI algorithm and has become a prominent technique in the optimization process to exploit the full
benefit of the demand-side program. The variants of PSO have been developed to overcome the limitations
of the original PSO and solve the high complexity and uncertainty in the DSM optimization process. The
proposed PSO-based algorithm can optimize consumers’ consumption curves, reducing the peak demand and
hence minimizing the electricity cost when integrated with the DR programs or EE measures. The research
works of the PSO algorithm in DSM have seen an increasing trend in the past decade. Therefore, this paper
reviewed the application of the PSO-based algorithm in DSM fields with some constraints and discussed the
challenges from the previous work. The potential for new opportunities is identified so that PSO methods
can be developed for future research.

INDEX TERMS Demand side management (DSM), demand response (DR), energy efficiency (EE), meta-
heuristic algorithms, particle swarm optimization (PSO), swarm intelligence.

I. INTRODUCTION
The increasing crisis of global warming has made it more
challenging for the world to move toward a climate-resilient,
low-carbon, and sustainable future in the 21st century. Burn-
ing fossil fuels and deforestation are two outcomes of human
activity that have contributed to the rise in CO2 emissions [1].
CO2, the dominant greenhouse gas (GHG), has become a
major global concern due to climate change. Based on the
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assessment report by Intergovernmental Panel on Climate
Change (IPCC), the global net anthropogenic GHG emissions
in 2019 have increased by about 6.5 GtCO2-eq compared to
2010. This increase directly came from the energy supply
(34%), industry (24%), agriculture, forestry, and other land
use (22%), transport (15%), and buildings (6%) sectors [2].
Scientifically, the average global temperature on Earth is
closely related to the concentration of GHGs in the earth’s
atmosphere. Global warming caused by human activities is
predicted to have increased by 1.0◦C above pre-industrial
levels, and if it remains to rise at the current rate, it will
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probably hit 1.5◦C between 2030 and 2052 [3]. The charts in
the global climate effort, including United Nation Framework
Convention on Climate Change (UNFCCC), Kyoto Protocol,
and Paris Agreement have reached a target to combat climate
change by limiting the global average temperature to 1.5◦C
above pre-industrial levels by reducing CO2 emission sub-
stantially before 2030 [4]. However, national pledges are not
enough to overcome this climate issue alone. These targets
would necessitate swift, extensive, and significant systemic
changes, including a variety of technologies and behav-
ioral improvements, investments in clean energy sources,
and energy efficiency increases of five times by 2050 [5].
Accordingly, reducing human-caused emissions to as close to
zero as possible to reach the Net-Zero emissions target around
mid-century [6]. Enhancing energy efficiency and lowering
energy demand are widely recognized as the quickest, safest,
and cheapest ways to combat climate change [7].

In recent years, Demand Side Management (DSM) has
been one of the approaches to optimize energy efficiency
in electricity distribution. DSM is the practice of planning,
installation, and monitoring by the electricity utility that can
impact energy use by changing the consumption patterns of
consumers to achieve the necessary changes in load shape.
DSM aims to flatten the load profile by encouraging con-
sumers to reduce the demand in peak hours or transfer the
demand from peak to off-peak hours and preferably follow
the generation pattern [8]. The main categories for DSM
activities are demand response (DR) and energy efficiency
(EE), as shown in Fig. 1. The demand-side solutions pro-
vide maximum benefits and are integrated with lesser risk
compared to supply-side options [8], as they are potentially
improving the network load pattern [9], lowering air pollu-
tion [10], reducing emission [11] and healthcare cost [12]
due to its positive environmental impact. Therefore, the sus-
tainable energy transition required a momentous effort from
various scales, such as government, industry, and academia.
The bright potential of DSM in industries due to the high
power consumption of individuals, which encourages and
facilitates involvement in DSM activities, low cost is needed
because the infrastructure for metering is already in place
and industrial processes are conducted in isolated locations,
resulting in minimum effort for occupant comfort [13]. In line
with Industrial Revolution 4.0, DSM plays a significant role
in attaining efficient energy generation and utilization, par-
ticularly for transitioning business operations toward smart
factories [14].

In the research area, significant references focus on the
concept of DSM. A comprehensive review of the DSM,
which explained the basic idea, main subjects, and prac-
tical methods by evaluating the DSM’s theoretical foun-
dation has been overviewed in [15]. The detailed issue
of DSM has been emphasized in a few studies, such as
demand response [16], [17], price-based program on DR
concept [18], microgrid [19], energy efficiency [20], and
its co-benefits [21]. Reference [22] presented the design of

FIGURE 1. Categories for DSM activities. EE is the measure to be taken by
consumers, while DR is the program introduced by the utility.

DR programs and policy in European states, while strategies
to accelerate the UK consumer’s participation in DR have
been discussed in [23] with the implementation of technolo-
gies. Furthermore, the application of DSM integrates with
renewable energy [24], storage systems [25], electric vehi-
cles (EV) [26], and building energy management systems
(BEMS) [27] has been widely adopted to promote a sustain-
able environment and reduce environmental pollution.

The growing innovation of Internet-of-Things (IoT) mon-
itoring, advanced metering infrastructure (AMI), automation
technologies, and distributed energy resources have encour-
aged entities of the energy demand side to be active pro-
sumers (producers and consumers) in the operation of the
electrical grid rather than passive energy consumers. More-
over, these data acquisition technologies associated with the
advancement of artificial intelligence (AI) can potentially
widen the opportunities for researchers to combine inter-
disciplinary knowledge, examine energy consumers’ opera-
tional environment in further detail, and formulate new data-
driven demand-side management strategies. The appliance
level energy characteristic (ALEC) can be utilized to monitor
the usage of electricity appliances and energy consumption
behavior closely, thus assisting the utilities and stakeholders
in implementing practical DSM activities for the residential
or other sectors through intrusive load monitoring (ILM) or
non-ILM (NILM) techniques as discussed in [28]. Further,
AI approaches forecast power demand and generation and
provide better stability and efficiency for power systems [29].
On the other hand, evidence shows that developments of
AI could enhance the knowledge of climate change and the
modelling of its potential effects, particularly when it comes
to achieving Sustainable Development Goal (SDG) number
13 on climate action. In addition, AI will also promote
low-carbon energy systems with the integration of energy
efficiency and renewable energy necessary to combat climate
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change [30]. For instance, the various industrial sector in
China could obtain the optimal path for energy efficiency
enhancement which could reduce CO2 emission by 58.31%
through the prediction of the AI algorithm model [31].

Metaheuristics algorithms (MA) are a prevalent part of AI
for solving optimization problems. These techniques have an
acceptable performance to solve any optimization problems
by finding a near-optimal solution with a limited computation
burden [32]. Moreover, they are more efficient and converg-
ing than the classical approaches because of their efficiency
in exploring the search space to reach a global optimum solu-
tion [33]. MA can be applied in problems with a large number
of decision variables and easily adopted to a problem that
has several constraints [34], such as real-world engineering
design problems [35], [36]. MA optimization techniques are
currently used to overcome the limitations of mathematical
optimization with some great features such as fine-tuning
to improve their performance, fast computing time, effi-
cient exploration and exploitation due to nature-inspired
approaches, and the independent nature of the objective
function. As a result, they are effective methods for resolv-
ing optimization challenges [37], [38]. The newly formed
MA methods have been very beneficial to the engineering
field. Many issues, including multi-objective optimization
issues as well as continuous, discrete, constrained, and other
challenges, have been resolved using them. As a result of
their extensive use, new scientific subfields have arisen [39].
Some of the most prominent MA found in the literature
are Particle Swarm Optimization (PSO), Ant Colony Opti-
mization (ACO), Genetic Algorithm (GA) and Differential
Evolution (DE).

Numerous models have been developed with MA in the
DSM optimization field. For instance, ACO based method
has been proposed to optimize the residential load profile
with DSM techniques while analyzing the impact of DR tariff
on the user’s electricity bill [40], [41]. The DE with toroidal
correction has been utilized to achieve a good convergence of
the algorithm and reduce the possibility of stagnation in local
optima in solving the industrial load optimization considering
the energy and labour costs [42]. The GA is adopted in [43]
to minimize the cost and maximize the load factor simultane-
ously for DR residential. The newly introduced MA, namely
the virulence optimization algorithm (VOA) and earthworm
optimization algorithm (EWOA) are utilized individually
in solving the microgrid scheduling optimization problem,
which effectively shifts the energy consumption from peak
to off-peak hours. As a result, the proposed method is able to
minimize the mismatch between total generation and demand
and the overall electricity bill [44]. Meanwhile, Grey Wolf
Algorithm (GWA) shows high efficiency in solving a com-
plex problem in energy management strategies considering
hydrogen storage systems and multiple renewable sources
to reduce its final operating cost [45]. The integration of
DR with distributed generation in managing the transmis-
sion congestion deduced the overall cost, CO2 emission, and

maximum line loading using theMulti-Objective Salp Swarm
Algorithm (MOSSA) [46].

For effective scheduling of intelligent home appliances in
the energy management system, the Dragon Fly Algorithm
(DA) [47], ACO [48], a hybrid of the Harmony Search Algo-
rithm and GWA (HGWA) [49], and a hybrid of Bird Swarm
Optimization and Cuckoo Search Optimization (HBCO) [50]
are proposed for minimizing the consumer electricity bill,
peak to average ratio and waiting time. The dynamic pricing
scheme schedules the appliances in off-peak times while
considering user comfort. Despite their great performance
in solving complex problems, there is no ideal algorithm
to deal with any kind of problem, as stated in the No-Free
Lunch Theorem by Wolpert and Macready, due to rises con-
cern about the nature of these algorithms that are not ade-
quately mathematics-based, and the convergence is not guar-
anteed [51]. Recently, the variant of a well-known approach
in MA, Particle Swarm Optimization (PSO), has been widely
developed to improve its performance. The fact that it can be
utilized directly in continuous real number space is one of
its advantages. Also, it does not use the gradient of objective
function like others. It looks to be a straightforward tech-
nique that efficiently optimizes several different functions.
Although the PSO was first developed to address uncon-
strained problems, it has now been used to address con-
strained problems by utilizing several distinct strategies [50].
Thus, this study aims to overview the PSO-based algorithm
in solving the constrained problems in the DSM applications.

The literature survey indicates plenty of review studies
on the optimization of DSM. References [52] and [53] has
reviewed the application of AI in the energymanagement sys-
tem to improve energy efficiency in a smart building. A com-
prehensive overview of optimizing and controlling the energy
system for DR applications in the smart grid, such as
smart appliances, EVs, batteries, heating ventilation air-
conditioning (HVAC) by using reinforcement learning (RL;
an agent-based AI algorithm) is presented in [54]. An inter-
esting review in [55] discussed the application of AI in DSM
techniques while analyzing its objective function and con-
straints. However, the limitation of the work only focuses
on the residential sector. Scholars in [56] and [57] presented
a review on the optimization of DSM in district heating
with a few similar goals: profit, renewables deployment, and
operation cost. On the other hand, [58] provided a review of
the MA based on the energy management system according
to different objectives (forecasting, demand management,
economic dispatch (ED), and unit commitment). The authors
conclude that MA like PSO and machine learning approaches
are suitable for forecasting and ED-based application. More-
over, the variety of PSO models for residential load schedul-
ing considering DR has been discussed in [59]. A detailed
review of each study is presented in Table 1.
The studies demonstrate that AI modelling in the applica-

tions of DSM is a developing research area with opportunities
for further review, as each scholar emphasizes the subject
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FIGURE 2. Number of publications with respect to years.

differently. While exploring the DSM optimization tech-
niques, we noticed that no study had gathered the research
conducted on applying PSO-based models in the DSM and
its subfields, such as demand response and energy efficiency.
Thus, the authors believe a review within this field could
address this research gap and and not duplicate existing
work to benefit future researchers. On the other hand, PSO
contributes more to swarm intelligence literature than any
other SI-based technique in the past years, indicating the
significance of PSO and its easiness and practicability in
various fields of application [60]. Thus, the PSO models are
chosen to support the review work in the DSM application
since the abundance availability of research studies related
are published in the search engine such as SCOPUS when
the following queries are used, which are found in the title,
abstract, or keywords.

• Particle AND Swarm ANDOptimization ANDDemand
AND Response

• Particle AND Swarm AND Optimization AND Energy
AND Efficiency

• Particle AND Swarm ANDOptimization ANDDemand
AND Side AND Management

Fig 2 depicts the number of publications according to the
queries used with respect to years. During these ten years, the
research of PSO-based algorithms in DSM applications is ris-
ing and become more dominant in the EE than DR programs.
Based on this background, this paper aims to systematically
review the literature on PSO-based algorithm applications,
covering several challenges and opportunities in demand-side
management. The contributions of this review paper can be
summarized as follows:

• It provides an overview of the theory and implemen-
tations of DSM activities considering DR and EE
programs

• The application of the PSO-basedmethods is specifically
reviewed in different categories of DSM for different
objective functions considering the practical constraints

• It discusses challenges and potential opportunities for
investigation of future research areas in the modelling
and optimization of DSM

The structure of this paper is organized as follows.
Section II presents the overview of PSO. Section III
reviews research works on PSO-based algorithm applications
in demand response. Section IV emphasizes an overview
of PSO-based algorithm application in energy efficiency.
Section V discusses the challenge and limitations of the
PSO models in the DSM field based on the previous works.
Section VI outlines the suggestion for the future direction
of research works, and Section VII summarizes the main
findings of this paper as a conclusion.

II. OVERVIEW OF PARTICLE SWARM OPTIMIZATION
(PSO)
Designing novel computational approaches are usually
inspired by a natural and biological system. In the context
of MA, natured-inspired algorithms have been utilized for
searching and planning, such as finding the sequences of
actions required to reach the agent’s goals [61]. In partic-
ular, swarm intelligence (SI) is a subset of MA featuring
the intelligent behavior of biological swarms by the indi-
vidual’s interaction in this environment to solve real-world
engineering problems through the simulation of such biolog-
ical behavior [62]. The Particle Swarm Optimization (PSO)
algorithm, which is the major branch of swarm intelligence,
is based on the random-search optimization technique [63]
and was inspired by social behavior observed in nature,
such as schools of fish, a swarm of bees, flocks of birds,
and even human social behavior [64]. Each particle in the
search space refers to the candidate solution, whereas the
food sources represent the global optimum of the problem.
The best experience obtained by each PSO particle is called
personal best (pBest), and the entire population, known as
global best (gBest) throughout the optimization process can
be used to modify the search trajectory for that particle. The
updated velocity and its position are presented in (1) and (2)
respectively.

V t+1
ij = ωvtij + c1r1(ptbest,ij − x tij) + c2r2(gtbest,ij) (1)

x t+1
ij = x tij + vt+1

ij (2)

where t is the repetition number of the algorithm, ω denotes
the inertia weight of each agent, v shows the speed of the
agent at t (at the i-th row and j-th column), x t is the position
of the agent at t (at the i-th row and j-th column), c1 and c2
are the learning factors of the algorithm, r1 and r2 denote
the accidental numbers, pbest is the optimal fitness of each
particle and gbest is the global of each agent [65]. PSO
has been effectively used to resolve a variety of real-world
optimization issues because of its simple implementation and
promising convergence feature [66], [67], [68], [69]. Since
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PSO is guided by two mathematical equations which direct
the particles to the optimal point, it is much faster than the
other heuristic optimization techniques [70]. A few advan-
tages and disadvantages must be considered when applying
PSO, as summarized below [71], [72].
Advantages:
• Good memory capability

– Strong robustness and quick convergence to opti-
mization

• Has only a few parameters to adjust
• Easier to implement and hybridize with other

algorithms
• Computational ability is less influenced by the initial
solutions

• Flexibility in modifying its operators
• Suitable for optimizing a global search
Disadvantages:
• Easy to trap in the local optima
• Premature convergence
• Challenging to deal with discrete variables
Numerous works of hybrid and modified versions based

on PSO have been introduced since its advent in 1995 to
improve the convergence speed and prevent premature con-
vergence [72], [73], [74]. Generally, research on the devel-
opment of PSO can be classified into three categories:
hybrid versions, topological structure, and parameter selec-
tion [75]. Table 2 illustrates some of the well-known PSO
variants which have been used in past research. However,
researchers have shown that PSO variants may have different
performances level when solving different problems, thus,
it is necessary to find suitable PSO variants for different
problems at different stages to efficiently solve the opti-
mization problem [76]. According to the modern intelligent
optimization theory, it is essential for an optimization algo-
rithm to keep a balance between exploration and exploitation,
an excessive emphasis on one of them will adversely influ-
ence another [77]. Thus, the variants of PSO are proposed
to strike a balance between exploration and exploitation and
overcome the limitations of the conventional PSO.

III. CLASSIFICATION OF DEMAND RESPONSE PROGRAM
DR can be interpreted as the responsive actions by the
end-users from their usual consumption pattern to the
changes in the electricity price over time or to incentive
payments designed to mitigate electricity consumption use
when wholesale market prices are high or when the reliability
of the system is jeopardized [89]. In other words, DR is
the reduction of hourly power consumption in response to
high electricity prices [90]. It is noteworthy that involve-
ment in these programs causes the load consumption to be
shifted from peak hours to off-peak hours, thus improving the
system’s adaptability, stability, and dependability [91]. The
primary objectives of the DR program include minimizing
the total power consumption, reducing the total power gener-
ation needed, adjusting demand to match supply availability,

and reducing or even eliminating the overloads in the distri-
bution system [92]. Thereby, the issues of peak generation
and demand mismatch, peak regulating capacity, and a lack
of reserved capacity can be resolved [93].

The research efforts on DR programs can be presented
into three methodologies; 1) the control mechanism of the
DR procedure, 2) the motivations offered to customers to
reduce or shift their consumption, and 3) the DR decision
variable [94]. In this sub-section, the discussion is focused on
the motivation method offered to consumers for load shift-
ing and lower energy consumption as the initiatives. Fig. 3
illustrates the prominent classes to adjust the electricity load
in this method which are the incentive-based DR programs
and price-based DR programs. In the incentive-based, the
utility incentivizes the consumers to follow the electricity
consumption guided from the supply side, meanwhile, in the
price-based, the different rates are charged to consumers
depending on a certain period, thereby the retail electricity
tariff is influenced by the electricity supply cost [92]. The
former class is more suitable for the industrial sector, while
the price-based is more suitable for the residential sector [95].
Cost-sensitive consumers engaged in the DR programs by
modifying energy consumption in response to time-varying
prices. The demand response program offered by the utility
is crucial to avoid potential system problems such as power
imbalances, voltage fluctuations, and blackouts, as well as
to save money on capital expenses related to investing in
greater generation capacity to satisfy peak load demand [96].
Therefore, a vital need for consumer involvement in the DR
program to maintain the supply-demand balance.

A. PRICE BASED-PROGRAM
In this type of DR, the consumers volunteer to adjust their
consumption pattern based on the electricity tariffs designed
by the utility since the energy cost dynamically varies with
time. Time-varying tariffs may be used to utilize the varia-
tions in energy prices on the wholesale market directly to cus-
tomers, causing them to pay for the electricity cost at different
hours of the day as opposed to time-invariant tariffs [97]. The
pricing scheme under this program is discussed as follows:

1) TIME OF USE (ToU)
TOU tariff aims to modify consumers’ daily electricity use
patterns. In general, TOU will encourage users to minimize
electricity consumption in peak periods and shift it to off-peak
periods by adjusting or modifying their electricity usage.
In this way, consumers can mitigate the price of their elec-
tricity bills by consuming more during the low price and
reducing during the high price. Thus, consumers can continue
to consume the same amount of electricity while paying a
lower electric bill [98]. There are two types of TOU pricing
which are static TOU (sTOU) and dynamic TOU (dTOU).
The prices in sTOU change by time of day between prede-
termined price levels and throughout certain time intervals.
Seasonal differences may apply. Contrarily, in dTOU, prices
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TABLE 1. Comparison analysis of related literature reviews for different review targets of DSM.

change between predetermined price levels, but the timing is
not regulated [99]. For example, in Malaysia, a static pricing
scheme is adopted for commercial and industrial consumers

who are charged based on two periods of peak and off-peak
for TOU tariff and the addition of a mid-peak period for
a new tariff, Enhanced TOU (ETOU) within a compatible
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FIGURE 3. Classification of the DR program.

rate [100]. Policymakers have considered TOU pricing as
the feasible DSM option, particularly in regions where smart
metering technology adoption has reached (or will reach)
double-digit prevalence in the near years. TOU pricing does
not need a complicated two-way communication system in
terms of smart metering device functionality. This simplifies
communication technology used in smart meters as well as
data administration for the supplier [101].

2) CRITICAL PEAK PRICING (CPP)
The CPP tariff is an example of an event-based program.
A higher rate of energy consumption is charged when crit-
ical peaks happen, especially in hours when high electricity
demand, thus a higher rate of energy consumption is charged,
and consumers are also offered a lower price for the remain-
ing hours (off-hour) [102]. This is due to the inability of utility
providers to meet the electricity demand and consequently,
the price of electricity will be raised to reduce customer load.
If the electricity price stays fixed throughout this peak hour,
the demand and supply curves will be imbalanced [103]. CPP
specifies the period of the critical peak within an event day,
as well as the highest limit of event days annually, but not the
exact dates on which the events will take place. As a result,
consumers can substantially lower their electricity bill during
CPP events through the limitation of load consumption [104].
A case study conducted in [105] showed that residential con-
sumers exhibit a positive effect of demand response in time
of CPP event, resulting in a reduction of power consumption.
Several advantages of CPP include being easily implemented
because it is based on the rate structure of TOU and addi-
tionally can enhance the responsiveness of the customer’s
price by imposing an extremely high rate during critical peak
periods [106].

3) REAL TIME PRICING (RTP)
The most complex pricing approach is RTP since the price
is established instantaneously according to the supply and
demand of the market, resulting in hourly price fluctuations.
RTP holds the highest risk with the highest reward to con-
sumers compared to TOU and CPP [107]. Generally, the RTP
may be implemented in residential in two ways: (1) as retail

pricing signals, and (2) as an integral element of the home
energy management systems operation [108]. RTP relies
heavily on enabling technology because it must be strongly
linked to wholesale market prices and consumer response
to allow two side communication. Therefore, enabling tech-
nologies such as smart meters are commonly used in RTP
to support measurement accuracy [109]. Currently, RTP is
more adapted to the electricity supply because of the high
penetration of renewable energy like wind and solar into the
energy mix, which has caused the balancing of the system
to be more complex, thus it would be beneficial to have
customer response to wholesale electricity pricing [110].

4) INCLINING BLOCK RATES (IBR)
IBR pricing, as mentioned in the literature, as the demand
charge sets a limit on end-user electricity use. If current
usage exceeds the stated threshold in a specific period, the
consumer will be charged more than the standard rate in that
period [111]. In return, the consumers can receive incentives

when distributing the energy consumption at different
hours throughout the day to save costs and avoid paying
higher electricity prices. Currently, utility companies such
as San Diego Gas & Electric, Pacific Gas & Electric, and
Southern California Edison offer two-level residential rate
structures in which the marginal price in the second level
(the higher block) is 80% or higher than the marginal price
in the first level (the lower block), depending on the utility.
Likewise, the British Columbia Hydro Company in Canada
has a two-tier conservation pricing structure, with the second
level charged 40% more [112]. A case study conducted in
[113] showed that the time-variant tariffs (TOU, CPP, and
RTP) give more electricity bill savings compared to time-
invariant tariffs (flat tariff and IBR) with the deployment
of PV rooftops. Therefore, the authors in [114] evaluate a
combination mechanism of IBR and TOU to mitigate the cost
imposed by IBRwhen the output of PV generation is deficient
with batteries.

B. INCENTIVE BASED-PROGRAM
In incentive-based schemes, the utility can monitor and man-
age end-user appliances and provide financial incentives for
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TABLE 2. List of some PSO variants with their characteristic and mathematical formulation.
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peak-hour demand reduction to engaged customers, and con-
sumers receive a discount rate for their participation. The
following are the main scheme under this program:

1) DIRECT LOAD CONTROL (DLC)
DLC enables utility companies to regulate consumer demand
remotely by rescheduling or switching on and off certain
household appliances. In exchange for the inconvenience
caused to the consumer, the utility provides an incentive pay-
ment or credit. As such, utilities may control lighting, thermal
comfort equipment, refrigerators, and pumps. This includes
benefits such as more precise estimation, deep monitor for
loads that can be reduced during peak periods, and creating
effortlessly simple DSM for customers [115]. A case study of
residential DLC control mechanism on air- conditioning (AC)
has been investigated in [116] which has given impacts on
the demand and environment side through reductions of peak
load and CO2 emission. Nonetheless, issues about a large
number of devices and customer security have been signifi-
cant obstacles to the introduction of DLC [117]. To overcome
this problem, the authors in [118] proposed an active database
for the DLC system to control automatically the on and off
status of the consumer load without the intervention of the
operator.

2) INTERRUPTIBLE/CURTAILMENT LOADS
The option for curtailing load during system outages is
included in retail tariffs with a discount rate or bill credit by
lowering the load consumption. Failure to curb may result in
penalties. Usually, interruptible programswere only available
to the largest industrial (or commercial) users. However,
industrial customers with continuous processes might not be
suitable for this program [119]. The least sizes of customers
required for interruptible/reduced rates for the standard inter-
ruptible program range from 200 kW to 3 MW, depending
on the condition and market. Under these tariffs, consumers
commit to either reduce the consumption to a predetermined
threshold or reduce certain blocks of electricity load. Nor-
mally they are required to curtail between 30-60minutes after
being informed by the utility, which is typically done through
AMI. However, there is a limitation on the number of times
or hours for the utility to request an interruption (less than
200 hours annually) [120]. Therefore, by lowering its peak
demand, the utility savesmoney on expensive power reserves,
improves service quality, and ensures reliability. Customers
benefit from lower energy costs and incentives offered by the
ISO or the local utility [121].

3) EMERGENCY DR PROGRAMS (EDR)
Emergency DR systems offer consumers incentive payments
for lowering their demand voluntarily when durability- trig-
gered events occur. However, consumers have the option of
foregoing payment and not curtailing when notified. Further-
more, no reduction in consumers for their load consumption
will not be punished. Typically, the amount of the incentive

rewards is determined in advance [122]. In the case of the
wholesale market, the Independent System Operator (ISO)
will adopt EDR programs to lower peak demand and prevent
price spikes [123]. A big number of customers voluntar-
ily participate in the EDR program in response to ISO’s
announcement [124]. As an incentive, the customers will
receive a huge amount of money as a payment of approxi-
mately 10 times the off-peak electricity price by ISO [125].
For example, in the United States, the New York Indepen-
dent System Operator (NYISO) provides two EDR programs
which are NYISO-EDRP and NYISO-SCR (special case
resource) to respond to NYISO operating instructions by
reducing load when operating reserves are expected in low
conditions or during an emergency of a system [126].

4) DEMAND BIDDING PROGRAMS
In DBP, the opportunity is given to consumers by the elec-
tricity trading markets to select a time and way for real-time
and day-ahead spot market participation. Thus, by removing
the load, the consumer will receive a market price when
the market operator requests it, similar to the payment for
generators to supply. Customers will negotiate on a certain
price decrease, timeline, and availability, and their offers will
be filtered and chosen according to market demand. In most
cases, for the highest accepted bid offer or for developing
demand-side bidding markets, a minimum fixed rate will be
paid to all bidders [126]. For example, the Quick Bidding Pro-
gram (QBP) is proposed by [127] in Kuwait with features that
the targeted reduction load by the utilities will be displayed
on their websites within the time frame. Consumers can quote
their capability to lower the load for different periods. Mean-
while, a practical example of this bidding mechanism is the
NYISO’s Day-Ahead Demand Response Program (DADRP)
which allows the consumers to bid their load reductions
into the Day- Ahead energy markets as generators do. The
payment of offers that are determined to be economic is paid
at the market clearing price [128].

C. PSO-BASED APPLICATIONS IN DEMAND RESPONSE
The main attributes of each relevant research work are pre-
sented in Table 3. PSO is an effective way of solving large-
scale non-linear optimization problems [129]. The reason for
practicing PSO in DR optimization is because of the tendency
to give impactful and accurate results [130]. It can quickly
locate a near-optimal solution while requiring less effort
than other mathematical methods for solving a non-linear
optimization problem in DR. Moreover, PSO is the most
commonly used optimization algorithm for solving DR opti-
mization problems [94], [131]. Thus, it is proposed to address
the DR management problem in the present works. From the
observation, the authors mostly investigate the working of
PSO models in the different DR programs based on one or
more optimization objectives: (1) energy or electricity cost
minimization, (2) peak-to-average ratio (PAR) minimization,
(3) peak load reduction, (4) maximize operation profit and
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(5) maximize the use of renewable energy resources (RER)
while considering user comfort. This is important to attract
the consumer to respond or participate in DR programs when
several constraints such as temperature regulation, optimal
state of charge (SOC) for EV or energy storage system (ESS),
and favorable timing for appliance use are applied. Moreover,
the integration of RERs such as wind and photovoltaic (PV)
solar with ESS, EV, and the battery has been studied in most
of the research works to achieve those objectives when the
charging is during off-peak hours while discharging is during
peak hour in response to DR pricing or incentives.

IV. CLASSIFICATION OF ENERGY EFFICIENCY
A. ENERGY EFFICIENCY IN BUILDINGS
Energy efficiency (EE) can be defined as a long-term conser-
vation strategy that aims to save energy and reduce demand
through energy-efficient processes [155]. Energy efficiency
gives huge benefits such as the reduction in the required
number of energy resources to achieve a specific amount of
energy service, along with associated effects on depletion
of resources, energy safety, and cost-saving; as well as the
decrease of carbon emissions, other pollutant emissions, and
overall environmental impact linked with electricity con-
sumption [156]. According to the Efficient World Scenario
(EWS), energy efficiency may lower yearly energy-related
emissions by 3.5 GtCO2-eq (12%) based on 2017 levels,
accounting for reductions greater than 40% of the reductions
necessary to comply with the Paris Agreement [157]. There-
fore, the combination of energy efficiency with renewable
energy and other measures is critical to achieving the target
of global climate. Generally, EE practices in buildings consist
of 1) active measures: optimizing the HVAC system, energy-
efficient appliances, and lighting, renewable energy utiliza-
tion, and managing the energy effectively with regards to
occupant’s comfort and 2) passive measures: lowering energy
consumption by utilizing the potential of nature’s lighting,
cooling, and heating [158]. The EE in buildings is determined
by several factors such as the degree of electrification, the
level of industrialization, the amount of building area per
capita, the existing climate, and policies at a local and national
level to promote energy efficiency [159].

Another action under the EE strategy is energy conserva-
tion (EC) which focuses on changing the behavior of people
to utilize energy more efficiently. In the energy pyramid,
EC is the first step to achieving sustainable energy as it is
located at the base with the least cost option [160]. The con-
servation of energy in residential can be implemented either
by changing the consumption of energy services or spending
on energy-efficient appliances [161]. In general, EC behav-
iors are continual and repetitive actions to reduce consump-
tion daily that requires compromising comforts or reducing
economic utility to save energy driven by several factors such
as social-psychological and environmental concerns [162].
Energy conservation measures (ECM) in buildings are classi-
fied into three types: major investments, minor investments,

and zero investments. ECMs have recently drawn increased
attention due to their useful application in both newly con-
structed and existing structures. Initially, the potential of
energy-saving for ECMs is assessed by simulations, and
then the appropriate ECMs are chosen for implementation
in actual buildings [163]. Several passive measures, such
as insulation on a residential house [164] show significant
energy-saving potential and collectively reduce the energy
performance index (EPI) by 34%. The insulation of a building
may maintain the cool or heat of the house internally while
restraining heat flux with the surroundings since the thermal
insulator material can reduce the rate of heat flow [165].
In comparison, the active measures taken in [166] could
reduce energy by 63.5% in EPI, which is significant savings
obtained through the replacement of ordinary appliances with
energy-efficient appliances. Moreover, the modelling results
in [167] show that the most effective way to reduce evening
peak demands is by switching light bulbs to LED, which
results in reductions of total appliance electricity demand by
18.8%, total residential electricity demand by 14.2%, and
total national electricity demand by 5%. Whereas authors
in [168] adopted both active and passive measures in build-
ings and discovered that installing PV systems and decreasing
lighting power density had the best energy-saving ratio.

B. MEASUREMENT AND VERIFICATIONS (M&V)
Measurement and verification (M&V) are necessary to test
the performance of each energy conservation measure to
ensure its efficient implementation and operation. M&V is
a process of employing measurements to accurately identify
the energy savings achieved by an energy efficiency inter-
vention in a specific building or facility. The energy savings
reflect the absence of energy consumption, so they cannot
be analyzed instantly, thus, the evaluation is usually made
through a comparison of energy consumption at the facility
before and after the adoption of a retrofit measure, keeping
any changes in circumstances [169]. The major purpose of
M&V is maximizing the accuracy of energy savings, opti-
mizing financial efficiency projects, increasing the public
understanding of energy management, and addressing the
significance of emission-reduction credit [170]. Part of the
M&V methodologies to be followed is fitting and mainte-
nance of meter calibration, collection and analysis of data
and justifiable results, and verification of reports [171]. The
International Performance Measurement & Verification Pro-
tocol (IPMVP) defines four different M&V options: partially
measured retrofit isolation (A), retrofit isolation (B), whole
facility (C), and calibrated simulation (D) [172].

In any M&V project, three periods occur sequentially,
consisting of the baseline, implementation, and reporting
periods. The engineering or statistical methods are usually
performed to estimate the adjusted baseline in the report-
ing period by normalization calculation [173]. Therefore,
it is important to maintain its accuracy and minimized the
uncertainty throughout the process to determine its success.
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TABLE 3. (Continued.) Research works on PSO-based applications in the DR program.

Measurement, sampling, and modelling are the three key
uncertainty elements to consider when reporting savings with
reasonable statistical precision [174]. The acceptable levels
of uncertainty are determined by the point at which savings
are greater than twice the baseline model’s standard error,
according to the IPMVP, which offers a systematic method-
ology for assessing each element of uncertainty added to a
project [175].

The simulation-based method in Option D necessitates
model calibration using measured data in an hour or month.
The recommended process to verify the whole building or
specific building components for its performance and ver-
ification used is calibration simulation, which is included
in Option D [176]. Building energy models are often cali-
brated by incrementally changing parameters of the model
from audit data until predicted energy use is within specified
tolerances from actual measurements. The parameters that
have the greatest influence on themajor indicators of building
energy performance predicted by the model are often iden-
tified through uncertainty and sensitivity analyses, and dur-
ing the calibration process, these parameters receive heavier
weightage [177]. The acceptable tolerances for the validation
of building energy models are outlined by IPMVP [178] and
ASHRAE Guide 14 [179]. Nowadays, automated calibration
has gained interest compared to conventional methods due
to its faster and more efficient processes such as Bayesian
calibration [180], pattern-based calibration [181], and multi-
stage calibration [182]. Furthermore, the revolution of M&V
2.0 has offered new technologies that might lower the cost
of M&V, generate quicker findings with greater transparency
and confidence, and thus raise the acceptability of the sav-
ings projections [183]. More advanced technologies of M&V
2.0 tools that have been commercially available in the market
have been discussed in [184].

C. ENERGY MANAGEMENT SYSTEM (EMS)
The definition of EMS is a computer system consisting of
a software platform for basic support services and a collec-
tion of applications for the functionality required to ensure
sufficient energy supply security with minimal price and
efficient operation of electrical generation and transmission

facilities [185]. The purpose of EMS is to optimally dis-
tribute various energy sources to consumers while integrating
renewable energy sources without jeopardizing the system’s
dependability, security, or safety [186]. The benefits of EMS
include low operational costs the privacy of consumers, diver-
sifications, and a less computational load [187]. In the smart
grid (SG), the main energy management objectives including
EE, demand profile enhancement, cost optimization, and con-
sumer comfort. SG delivers energy more efficiently, improv-
ing customer utility interaction, and modern management
techniques, and responds to wide-ranged events occurring
in the system [188]. Technologies such as human-machine
interfaces (HMI) and supervisory, control, and data acquisi-
tion (SCADA) are helpful for effective EMS implementation,
especially if a certain demand is supplied by more than one
energy source. The EMS strategy can be classified into a
rule-based approach and an optimization approach as shown
in Fig. 4 [189]. The first approachmanages the power demand
by implementing a fixed rule based on the efficiency maps of
the equipment, whereas the latter approach uses the common
strategies which are equivalent consumption minimization
strategies (ECMS) and model predictive control-based strate-
gies (MPC) [190]. PSO can be used to optimize the struc-
tures and parameters of these methods. The current literature
reviews the various control and operation strategies of EMS in
hybrid renewable energy [191], microgrid [192], and hybrid
electric vehicle [193] applications integrated with optimiza-
tion techniques to have better performance and achieve some
objectives.

Meanwhile, the contribution of the home energy man-
agement system (HEMS) in the residential sector has been
promoted in references [194] and [195] to coordinate and
schedule the home appliances according to certain criteria,
thus improving the energy efficiency and demand flexibil-
ity of the buildings. The several functionalities of HEMS
including providing a detailed overview of the graphical data
of energy consumption have a few advanced functions for
monitoring, information, and automation purposes and to
forecast the loads and local generations at the household
levels [196]. IoT technologies have been incorporated with
HEMS during the past several years and are essential for the
intelligent control and management of the system’s end users.
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FIGURE 4. EMS strategies classification.

Furthermore, the AI and ML technologies that can be trained
and used to forecast the near future are implemented into
modern smart houses [197]. A recent study of consumer
willingness to adopt HEMS was analyzed in [198] based on
different interactions such as technology attributes, attitudes,
and infrastructure.

D. PSO-BASED APPLICATIONS IN ENERGY EFFICIENCY
Table 4 presents the research works on energy efficiency
with different energy systems. In terms of optimization
models, most researchers studied optimizing energy sys-
tems and improving energy efficiency by using single or
multi-objective PSO models. Without being restricted by the
burden of dimensionality, PSO can quickly solve extremely
challenging constrained optimization problems [188]. The
integration of EE measures with RERs is a promising mech-
anism that can effectively drive the low-carbon energy transi-
tion under practical constraints. Meanwhile, the optimization
based on EMS focuses on achieving global optimum by
minimizing cost functions such as energy consumption and
total cost. Besides, optimization-based calibration has been
adopted in the studies and uses accuracy metrics for accuracy
measures such as mean average error (MAE), mean bias error
(MBE), and coefficient of variation of root mean square error
(CV(RMSE)).

V. PSO-BASED ALGORITHMS IN DSM: CHALLENGES
AND POTENTIAL SOLUTIONS
The key challenges of implementing PSO in DSM are cat-
egorized based on the complexity and uncertainty of the
modelling and optimization. The complexity in the mod-
elling is addressed for multi-objective optimization problems

considering the large number of parameters used, the system
architecture, and constraints. Additionally, due to uncertain-
ties in the optimization process, it is quite challenging for
researchers to develop a stochastic model.

A. COMPLEXITY IN MODELING
The complexity of the optimization process directly influ-
ences the convergence speed and accuracy of modelling out-
puts [58]. In the previous work reviews, PSO applications in
DR and EE fields show the intermittent penetration of RERs,
ESS, EV, and multiple household appliances in load schedul-
ing while considering user preferences. Various PSO-based
models are used to determine the optimal schedule for devices
to make the scheduling process simpler, however, there is a
trade-off between optimality and complexity [222]. The high
modelling complexity has increased the risk of infeasibilities
or slow convergence. The consideration of multiple classes
of load scheduling such as shift, fixed, and interruptible
appliances in HEMS caused the longest waiting times for the
appliances to shift to the times desired by the consumer [135]
and longer convergence times [223], thus increasing user
dissatisfaction. In the smart grid, the interruptible loads are
bounded by the time duration specified by users, leading to a
vast number of potential solutions. Thus, the swarm formu-
lation needs to modify ensuring the solutions are within the
user-specified time frames [224]. For large-scale situations,
the original PSOmodel has longer computation times inDSM
problems involving PEV charging and discharging [149] and
PV systems [225] considering multiple homes in the residen-
tial community. Large population sizes and iterations require
additional computation and increase both computation time
and the algorithm’s reliability [226]. In addition, the privacy
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issues of individual homes in the community should be a
concern for the optimization process where the system design
should not collect power usage profiles of all users in cen-
tralized ways. Thus, the practical optimization model must
be modelled concerning privacy issues and other parameters
like cost and carbon emission [227].

The standard PSO is only suitable for the optimization
problems in continuous space, thus its variant model for a
discrete domain such as discrete PSO (DPSO) and binary
PSO (BPSO) are proposed for the combinatorial optimiza-
tion problems in discrete space, in which the trajectories
of particles are defined as the changes in the probability
and the velocity is transformed from real number space to
probability space via a sigmoid function. Moreover, HEMS-
based scheduling often required binary formulation for the
ON and OFF status of the appliances and a large number
of decision factors, thus the optimization problem would be
more difficult than the problem with integer decision vari-
ables [84]. The DPSO algorithm is able of creating adequate
diversity during the search, although it frequently suffers
from the disadvantage of being trapped in local optima [134].
Thereby a hybridization of variant PSOmodels such as hybrid
BPSO and GA (HBPSO) [228] and hybrid DPSO [134] are
proposed for more complex problems. The multi-objective
optimization which is more complex than the single opti-
mization problem often involves constraints and user prefer-
ences, thus the solution to the problem is a challenging task.
Considering user comfort would lead to an increase in cost
and PAR when optimizing the three parameters together in a
multi-objective problem [229]. Therefore, requires a search
for the best trade-off between these objectives by adjusting
the weighting coefficients in different cases to find the best
possible solution [132].

VPP energy management is similarly a challenging task
because of the coordinated functioning of various energy
supplies and the associated uncertainties which requires an
optimal algorithm to ensure smooth and reliable operation
in real-time without sacrificing the optimal operation costs.
A basic PSO model suffers from early stagnation and loses
exploration capabilities during the latter evolution stage when
addressing the complicated issue, thus, a hybrid PSO may be
developed to minimize the iteration number. PSO model suf-
fers from premature stagnation and loses exploration ability
during the later evolution period while solving the complex
problem, thus a hybrid PSO can be utilized to lesser the
iterations number when real-time data is used [230]. Fur-
thermore, when basic PSO integrated with a time-varying
acceleration coefficient (PSO-TVAC) dealing with complex
problems such as optimization of the operation and schedule
of air conditioning system under different conditions, it is
very difficult to search for a feasible solution directed to
more trouble if the scheduling constraints are considered
in the early stage of iteration [231]. Thus, the modified
PSO (MPSO-TVAC) method is introduced to increase the
exploration ability and rate of success for a global optimum

by including a ‘‘random viable solution’’ into the standard
PSO-TVAC.

B. UNCERTAINTY IN OPTIMIZATION
In the optimization process, the consideration of uncertainty
directly reflects the uncertainty in real-life problems, which
might impact model results and the optimum value of the
objective function. Therefore, any global optimization search
includes an addition element of uncertainty [232]. The moti-
vation to develop stochastic modeling in DSM stems from
the challenge of confronting the uncertainty and fluctuation
of RERs, dynamic pricing of tariffs, environmental variables,
and random user behavior. The issue with stochastic vari-
ables is their deterministic constraints. Under such condi-
tions, uncertainty is diminished to a certain extent [233].
Thus, robust optimization has shown to be a promising
technique for addressing the uncertainties in the optimiza-
tion issue problem. Authors in [234] consider the uncer-
tainty of production from wind and PV panels to solve the
day-ahead energy management in buildings. In order to intro-
duce higher exploratory properties in the search procedure,
the fixed parameters in the traditional MOPSO are modified
into a mutation of the strategic parameters in EPSO. This
adjustment increased the cover rate and the overall front of
the non-dominated solutions. In view of the shortcomings
of PSO such as lack of randomness in particle position
changes and numerous parameters, the theory of quantum
mechanics is combined with PSO to solve the non-linear and
non-convex optimization problem considering high uncer-
tainty from the power output of PV and wind turbine in
microgrid [235]. The optimal scheduling method for power
resources in microgrid considering the uncertainty of renew-
able energy output is vital especially when the generation of
actual maximum power from wind and PV is less than the
power arranged in the scheduling plan, increasing operating
costs and frequency fluctuation of the microgrid which may
harm the system [236]. Moreover, the imprecise prediction of
RERs generation output directly led to non-optimal energy
management and programming, and increase households’
electricity costs, thereby restricting the benefits of smart
homes [237].

Dynamic pricing schemes like RTP has the potential to
reward consumer fully but it also has the potential to max-
imize risk when they are unable to manage the use of elec-
tricity prices depending on the predetermined interval [238].
Due to hourly price changes, RTP flexibility may reflect load
patterns or generating costs. RTP is more flexible than both
TOU and CPP, but it has the disadvantage of consolidating
numerous appliances in low-cost energy zones. To handle it,
the author in [239] presented a system by combining IBR and
RTP to adjust energy price rates during the low energy price
period depending on appliance power consumption. When
the overlapping time of appliances is customized with IBR,
the fitness function of PSO integrates a modified IBR to
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TABLE 5. (Continued.) Opportunities for new application under DSM.

lower PAR. Meanwhile, authors in [240] introduced inter-
val number optimization for constraint violation based on
tolerance degree to tackle minor uncertainty in residential
load scheduling related to human behavior and weather con-
ditions by combining PSO with an integer linear program-
ming method. Considering the limitation of transforming the
uncertain into a certain optimization, an extra function or
information, such as probability distribution in stochastic
programming, must be incorporated into household load
scheduling, resulting in difficulty of optimization and
demand for a large quantity of historical data. In specific
scenarios, collecting data for a new home or in the absence of
measurement instruments is challenging [240]. Furthermore,
uncertainties about some input data, such as active and reac-
tive load demands, as well as the unpredictable behavior of
EV owners create unparalleled reliability and security issues
to the overall distribution network. Therefore, probabilistic
studies with a high degree of precision and tractable algo-
rithms are necessary for the evaluation of uncertain behavior
toward output variables of power system safety and balance
operation [241].

VI. OPPORTUNITIES FOR NEW APPLICATION UNDER
DSM
The previous literature reviews the significant work which
has been conducted in the energy optimization field for
different categories of DSM. Nevertheless, there are new
applications that need to be explored as suggested in recent
publications, so that the PSO-based method can be more
relevant and developed in the real-life application of DSM.
Thus, it can attract more consumers to participate and engage
with the programs offered. Table 5 outlined new applications
under DSM for opportunities to further research.

VII. CONCLUSION AND RECOMMENDATIONS
The effective implementation of DSM can encourage the
production of low-cost, high-quality, and excellent services to
consumers in addition to promoting supply-demand balance.
This review paper presents a comprehensive overview of
DSM activities in demand response and energy efficiency
specifically. From the thorough review, DSM activities have
facilitated in solving many of the challenges such as high
electricity bills during peak hours, load curtailment in indus-
trial buildings, and low efficiency of the system when inte-
grated with RERs and diverse energy systems. The most
commonly used DR program is TOU and RTP pricing to opti-
mize electricity consumption and reduce peak demand. Since
the cost of implementing a DR program is less expensive
compared to increasing the capabilities of power generation
to obtain the peak clipping, a DR program can be adopted to
manage the demand and give benefits to both consumers and
utilities. Meanwhile, EE measures allow consumers to save
energy more efficiently.

To achieve the full potential of DSM activities optimally,
the PSO-based method has been reviewed for optimization in
various applications and solved the complexity of the models.
After many years of development, most of the researchers
developed the variants of PSO with the purpose to increase
diversity, avoiding premature and enhancing the local search
ability, thus improving the quality and robustness of the PSO
algorithm. Observations from the study also indicated that
improved and hybrid PSO-based models are computationally
faster and resulted in better efficiency. The main optimization
objectives including minimization of electricity bills, carbon
emission, cost operation, peak demand, and discomfort of the
occupant have been studied in most of the research works
involving different types of consumers considering practical
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constraints. The proposed PSO-based algorithms proved to be
effective in producing substantial cost savings while reducing
the peak demand with the integration of the DR program and
EE measures. Moreover, the key challenges of implementing
PSO in DSM fields were discussed in terms of complexity
and uncertainty in optimization, and several suggestions for
new applications were identified to give insights for future
research. The variants of PSO are used to address the high
complexity and uncertainties of the DSM modelling within
the acceptable timeframe while considering user comfort.

The application of AI algorithms is very important for
the development of various fields in DSM. Therefore,
more research on optimization models is necessary, espe-
cially when dealing with massive data. The integration of
AI with data mining, IoT computing and blockchain, and
advanced digital technologies must be combined to enhance
the optimization models’ performance instead of using them
separately. The suggested research areas under DSM to
review include the performance of intelligent buildings, smart
energy management systems, and the application of demand
response in electric power systems. With the increasing inter-
mittent of RERs, the optimization problem of DSM can be
more challenging considering the multi-objective function,
complex constraints, uncertainties, andmany variables. Thus,
the enhancement of MA through different strategies such as
hybridization, adopting the cooperative approach, and finding
optimal parameter settings to deal with the complex problem
can be further reviewed as the extension of this study. These
applications can be discussed in major classifications of MA,
such as evolutionary algorithms, human-based algorithms,
physics algorithms, and swarm intelligence. The detailed
review can outline the optimal configuration of the MA
in solving the high complexity of the DSM optimization
problem.
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