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ABSTRACT The core technique of unmanned vehicle systems is the autonomous maneuvering decision,
which not only determines the applications of unmanned vehicles but also is the critical technique many
countries are competing to develop. Reinforcement Learning (RL) is the potential design method for
autonomous maneuvering decision-making systems. Nevertheless, in the face of complex decision-making
tasks, it is still challenging to master the optimal policy due to the low learning efficiency caused by the
complex environment, high dimensional state, and sparse reward. Inspired by the human learning process
from simple to complex, we propose a novel progressive deep RL algorithm for policy optimization in
unmanned autonomous decision-making systems in this paper. The proposed algorithm divides the training
of the autonomous maneuvering decision into a sequence of curricula with learning tasks from simple to
complex. Finally, through the self-play stage, the iterative optimization of the policy is realized. Furthermore,
the confrontation environment with two unmanned vehicles with obstacles is analyzed and modeled. Finally,
the simulation leads to the one-to-one adversarial tasks demonstrate the effectiveness and applicability of
the proposed design algorithm.

INDEX TERMS Unmanned systems, reinforcement learning, autonomous maneuvering decision-making,
obstacle-avoidance.

I. INTRODUCTION
With the development of sensors, computers, and commu-
nication technology, the performance of unmanned vehicles
have been significantly improved. Compared with manned
vehicles, unmanned vehicles are used to complete more dif-
ficult and complex tasks in the military and civilian fields.
Thus, research papers on unmanned vehicles are emerg-
ing in an endless stream, ushering in a spurt of innovation
[1], [2], [3], [4]. In civilian applications, unmanned vehi-
cles give more advantages in safety, economy, and appli-
cability [5], [6], [7]. In addition, they are far superior to
manned vehicles regardless of applicability or performance.
Nevertheless, there are multiple practical hurdles to deploy-
ing unmanned vehicles in real-world robotics problems. For
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example, most unmanned vehicles are still controlled by
the remote manual operation system. This control mode
makes the applications of unmanned vehicles depend on
the maneuvering decision ability of the remote operators,
which is often not applicable to complex and fast-changing
scenarios. Therefore, improving the maneuvering decision
capabilities for complex tasks is still a key problem in
the current unmanned vehicle systems, such as automatic
polite of unmanned vehicles [8], [9], [10], [11], autonomous
obstacle-avoidance [12], and the autonomous confrontation
of unmanned fighters [13], etc.

For the design of autonomous maneuvering decision sys-
tems of unmanned vehicles, optimization principles and arti-
ficial intelligence (AI) algorithms are widely used in current
research. Theoretically, the design methods of autonomous
maneuvering decisions are divided into three categories:
the game theory [14], [15], [16], [17], the optimization
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algorithm [18], [19], [20], [21], [22], [23], [24] and artificial
intelligence methods [25], [26], [27], [28], [29], [30]. Among
them, the methods based on the game theory address the
confrontation tasks as a dynamical game and then make the
optimal decision through the differential game [14], [15] or
the influence diagram algorithm [17]. For confrontation tasks
with a highly dynamic characteristic, it is often difficult to
obtain the optimal real-time policy due to the complexity of
computation [17]. For the methods based on the optimiza-
tion algorithms, such as genetic algorithm [19], Bayesian
inference [20], and statistical theory [24], they transform the
maneuvering decision problem into an optimization problem
and solve it mathematically to obtain an autonomous optimal
policy. However, for large-scale complex non-convex opti-
mization, it is also difficult to ensure the optimal solution
of the solution. Furthermore, the above methods are mostly
offline [19]. AI-based methods include expert systems [26],
neural networks [27], and RL methods [28], [29], [30], [31].
The expert system models the maneuvering decision system
as a rule inference system. On the one hand, it is hard to trans-
form expert experiences into a rule inference system. On the
other hand, the fixed expert experience usually difficult to
guarantee the optimal decision for complicated dynamics.
The neural network-based methods represent the decision as
an artificial neural network (ANN); theoretically, the training
algorithms will obtain the optimal decision. However, it is
difficult to obtain effective training data in practical appli-
cations, and the resulting performance of the autonomous
maneuvering decision is usually limited. Compared with the
above methods, the RL algorithm requires no model or prior
knowledge of the processes, but only through the interac-
tion between the agent and the environment. The policy of
the agent will be constantly optimized until the optimal or
suboptimal policy is obtained [32]. In addition, the policy
of RL is represented by a deep neural network that not only
has the capability for nonlinear approximation but also has
good generalization [33], which possibly leads to optimal
decision-making and better robustness. Therefore, deep RL
algorithms are a powerful and advantageous method for com-
plex environments.

In the autonomous maneuvering decisions of unmanned
vehicles, the autonomous navigation and confrontation
decision-making of Unmanned Aerial Vehicle (UAV) have
received extensive attention. Currently, most of the RL algo-
rithms applied to UAVs are based on the deep Q-learning
(DQN) algorithm [29], [33], [34], [35], [36]. By describ-
ing the maneuvering decision of the UAVs as a sequence
of some simple fixed actions, the complexity of the design
problem is reduced significantly. However, it leads to a
significant difference from reality, and the confrontation per-
formance is difficult to be guaranteed. Furthermore, the effi-
ciency is very low in the process of learning the optimal
policy for complex scenarios. In the practical system, the
action and the state of the UAV are considered in the con-
tinuous time and high-dimensional space, which causes a

dimensional disaster and sparse reward problem. Although
the deep deterministic policy gradient (DDPG) [37], a kind of
RL algorithm is used for policy optimization problems with
continuous state and action, many hyperparameters need to be
appropriately determined. Although Soft Actor-Critic (SAC)
[38], [39] algorithm is a way to deal with simple scenarios
with continuous action space, its low learning efficiency leads
to low adaptability to difficult scenarios.

This paper proposes a Progressive RL algorithm
to overcome low learning efficiency for the complex
decision-making adversarial tasks of unmanned vehicle sys-
tems. It is a straightforward development inspired by the
human learning process from simple to complex. To illustrate
the specific training algorithm and demonstrate its feasibility
and effectiveness, the one-to-one autonomous confrontation
and obstacle-avoidance of two unmanned vehicles is con-
sidered as the practical scenario in this paper. Firstly, the
confrontation environment is modeled, and the corresponding
performance indexes are presented for confrontation and
obstacle-avoidance. Then, a progressive RL algorithm is
proposed based on the SAC framework with the reward func-
tion, state information, and progressive learning curricula
designed properly. All the simulation results demonstrate
that the proposed design algorithm not only gives a feasible
policy for confrontation and obstacle-avoidance but also
realize the iterative optimization by the training course of
the self-play. Furthermore, compared with the conventional
reinforcement learning algorithm, the proposed design algo-
rithm has superior learning efficiency and better performance
in autonomous confrontation and obstacle-avoidance. The
experimental results demonstrate that the proposed algorithm
is feasible for the autonomous maneuvering decision system.

A. CONTRIBUTIONS
In summary, compared with previous studies in confrontation
and obstacle-avoidance of unmanned vehicles, our contribu-
tions are two-fold.

• Wepropose a progressive RL algorithm based on the soft
actor-critic (SAC) RL framework to improve learning
efficiency for the complex decision-making adversarial
tasks of unmanned vehicle systems, especially imitating
the process of human learning, and designed a learning
curricula with increasing difficulty in the algorithm.

• All the simulation results show that our algorithm
not only has higher learning efficiency but also
provides feasible strategies for confrontation and
obstacle-avoidance.

B. PAPER ORGANIZATION
The rest of the paper is organized as follows: In Section II,
we present the environments with the one-to-one con-
frontation and obstacle-avoidance of the unmanned vehicles,
including the dynamic description of the vehicle and the per-
formance indexes of confrontation and obstacle-avoidance.
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In Section III, the SAC is briefly introduced, then based
on SAC algorithm, the progressive training algorithm for
autonomous confrontation and obstacle-avoidance policy is
developed and discussed; In Section IV, the numerical simu-
lation of the proposed algorithm is conducted to the one-to-
one autonomous confrontation and obstacle-avoidance, and
the simulation results are discussed. Conclusions are drawn
in Section V

II. MODELING OF VEHICLE CONFRONTATION AND
OBSTACLE-AVOIDANCE
In this section, the one-to-one autonomous confronta-
tion and obstacle-avoidance of unmanned vehicles on a
two-dimensional plane are considered practical scenarios.
The proposed design method is directly extended to more
complex scenarios, such as the autonomous driving of ships,
the air combat of UAVs, etc.

A. DYNAMICS OF THE UNMANNED VEHICLE SYSTEM
For the simplicity of description, the unmanned vehicle is
considered a two-wheeled vehicle with self-balancing ability.
Therefore, the structure of the vehicle is similar to a bicycle,
and its motion space is a two-dimensional plane. Figure 1
shows the structure schematic of the unmanned vehicle.

As shown in Figure 1, the dynamics of the vehicle is
described by the following differential equation:

ẋ = v cos(ϕ + β) (1)

ẏ = v sin(ϕ + β) (2)

ϕ̇ = v
sinβ

lr
(3)

v̇ = a (4)

β = tan−1
(

lr
lr + lf

tan(δ)
)

(5)

where (x, y) indicates the position of the vehicle; v denotes the
velocity scale of the vehicle; ẋ and ẏ are the velocity scales on
the ox-axis and oy-axis, respectively; ϕ is the angle between
the body direction and the ox-axis; lr represents the distance

FIGURE 1. Structure schematic of the two-wheeled vehicle.

between the rear of the vehicle and the steering center; lf
represents the distance between the head of the vehicle and
the steering center, and β represents the angle between the
direction of the steering center and the body.
Assumption 1: Assume that the control angle of the front

wheel of the vehicle relative to the direction of the body is
δ, and the driving force is described by the acceleration a.
In the above model, a and δ are the manipulated variables
that control the motion of the vehicle.

B. MODELING AND EVALUATION OF ONE-TO-ONE
CONFRONTATION AND OBSTACLE-AVOIDANCE
The scenario considered in this paper is the autonomous
maneuvering decision system with two vehicles in a
two-dimensional environment with obstacles [40]. It is
assumed that vehicle A represents the tracking vehicle, and
vehicle B is the tracked vehicle.

Design Objective:Based on the RL algorithm, the optimal
policy of vehicle A is learned to avoid dangerous collisions
with obstacles and maintain the best tracking advantage as
much as possible during the confrontation.

To evaluate the performance of the autonomous maneu-
vering decision system, the confrontation advantage and
obstacle-avoidance performance are defined and designed,
respectively.

FIGURE 2. Modeling schematic of one-to-one confrontation and
obstacle-avoidance.

Figure 2 shows the position status of two vehicles and the
nearest obstacles at any time, where pA = (xA, yA) represents
the spatial position of vehicle A; pB = (xB, yB) represents
the spatial position of vehicle B; vA and vB represent the
velocity vectors of vehicle A and vehicle B respectively. pd
represents the position of the nearest obstacle in the move-
ment direction of vehicle A, and dvA (pA,pd ) represents the
distance between the vehicle A and the nearest obstacle in
the movement direction. When there is no obstacle in the
movement direction, the distance is assumed infinite. The
gray fan-shaped area behind vehicle B represents the effective
confrontation (attack) area of vehicle A. This area is moving
with the movement of vehicle B. p0,B denotes the center point
of the confrontation area, indicating the best confrontation
(attack) position of vehicle A.
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1) ATTACK ADVANTAGE INDEX
Figure 2 shows that vehicle A needs to keep itself in the
effective confrontation (attack) area and close to the best
confrontation position as possible to maintain the dominance
in confrontation. In addition, vehicle A must also have an
attack advantage in the direction of movement. Considering
these two factors, the attack advantage index of vehicle A at
any time t is defined by:

I1,A =
w1 cos ⟨vA, vB⟩ + w2 cos ⟨vA,pB − pA⟩∣∣pA − p0,B

∣∣+ d0
(6)

where ⟨·, ·⟩ is the vector angle operator; |·| indicates the norm
of vector; ⟨vA, vB⟩ describes the angle between the velocities
of vehicle A and vehicle B; ⟨vA,pB − pA⟩ describes the angle
between the moving direction of vehicle A and the position
direction between vehicle B and vehicle A, which is the attack
angle of vehicle A. If α is defined as the maximum angle
within which vehicle A can attack possibly, then vehicle A has
an attack advantage when ⟨vA,pB − pA⟩ ≤ α · d0 is a positive
constant to ensure the denominator higher than zero, w1 and
w2 are the weighting factors determined by the importance of
the two angles.

Definition (6) shows that the attack advantage of vehicle A
is determined by three aspects:

•

∣∣pA − p0,B
∣∣. The distance between vehicleA and the best

confrontation (attack) position. The closer the distance
means the higher attack advantage.

• cos ⟨vA, vB⟩. The consistency between the velocity
directions of vehicle A and vehicle B, The higher con-
sistency results the higher advantage.

• ⟨vA,pB − pA⟩. The attack angle of vehicle A. The lower
the attack angle indicates the higher attack advantage.

2) PERFORMANCE INDEX OF OBSTACLE-AVOIDANCE
To be suitable for more complex confrontation environment,
the obstacles is also considered in the model. It is assumed
that the vehicle is equipped with a front lidar, which detects
the distance of the nearest obstacle in the movement direc-
tion. It means that the real-time information dvA (pA,pd ) is
obtained. Based on this assumption, the performance index
of obstacle-avoidance of vehicle A at time t is defined by:

I2,A =
− |vA|

dvA (pA,pd ) + d0
(7)

where d0 is a positive constant to ensure the denominator is
higher than zero, and the other symbols are the same as attack
advantage index (6).

Considering the attack advantage index and the perfor-
mance index of obstacle-avoidance comprehensively, the
overall advantage index at time t of vehicle A is defined by:

IT ,A,t = k1I1,A,t + k2I2,A,t (8)

where k1 and k2 are the weighting factors.

III. PROGRESSIVE RL ALGORITHM
A. RL FRAMEWORK AND SOFT ACTOR-CRITIC (SAC)
ALGORITHM
RL is mainly used to solve the optimal decision problem
of the Markov decision process (MDP). For complex and
unmodeled decision processes, reinforcement learning gen-
erates an optimal control policy by interacting with the envi-
ronment. As shown in Figure 3, the basic composition of the
framework includes two components: the environment and
the agent [32]. Mathematically, the MDP is described by a 4
-tuple (S,A,R, γ ), where S indicates the state space of the
environment; A is the action space; R is the reward; γ is the
reward discount factor.

FIGURE 3. RL framework.

Under this framework, the agent is responsible for the
real-time interaction with the environment. It gives a control
action at based on the real-time state feedback information
st from the environment. At the same time, the agent also
receives the reward information rt to optimize the policy.

In summary, the RL system includes the following five
elements [32]:
(1) State st : the system information feedback from the

environment to the agent.
(2) Action at = π (st) : the control policy π (st) indicates

the mapping function from st to at , which is determined
by the agent conditions on the state information.

(3) State transition probability p (st+1 | st , at) : the response
of the environment to the action, describing the dynamic
characteristics of the environment.

(4) Reward r(st , at ) : the instant reward provided by the
environment according to the state and action.

(5) State value function V (st) and state-action value func-
tion Q (st , at) : the cumulative discounted reward
defined by

Q (st , at) = Eπ

(
∞∑
i=0

γ irt+i | st = s, at = a

)
(9)

which is also the optimization objective of the RL.
If the optimal control policy at time t is π∗ (st), and

the optimal state-action value function is Q∗ (st , at), then,
according to the optimal principle, we have the optimal Bell-
man equation:

Q∗ (st , at) = Eπ∗
(rt + γQ∗ (st+1, at+1) | st = s, at = a)

(10)
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The objective of RL is to find an optimal policy π∗(s, a) max-
imizing the state-action value function Q (st , at). If Q∗(s, a)
is the solution of the optimal Bellman equation (10) for any s
and a, then the optimal control policy is

π∗(s, a) = argmax
a∈A(s)

Q∗(s, a) (11)

The entropy of policy reflect the diversity of the policy
or action. SAC just adds policy entropy to the optimization
objective. Therefore, in order to explore the environment
more efficiently, we use the SAC algorithm as the design
framework. The SAC is another RL algorithm based on
the Actor-Critic framework proposed by the team of Pieter
Abbeel and Sergey Levine [39]. Different from the DDPG
algorithm, the optimal policy of the SAC is defined as
follows:

π∗ = argmax
π

E(st ,at )∼ρπ

(∑
t

r (st , at) + αH
(
π (· | st)

))
(12)

whereH (π (· | st)) indicates the information entropy of pol-
icy π (· | st) ; α is the temperature factor weighting entropy
H (π (· | st)).
Similarly, in the SAC algorithm, the optimization is based

on the following Bellman residual value:

JQ(θ ) = E(st ,at )∼D

(
1
2

(Qθ (st , at)

−
(
r (st , at) + γ

(
Qθ̄ (st+1, at+1)

)))2 ) (13)

where θ, θ̄ presents the parameters of the online value net-
work and the target value network, respectively. The state
value function V (st) is defined as follows:

V (st) = Eat∼π (Q (st , at) − α log (π (at | st))) (14)

According to expression (13), the gradient of the residual
value is calculated by:

∇̂JQ(θ ) = ∇θQθ (st , at) (Qθ (st , at) − (r (st , at)

+γ
(
Qθ̄ (st+1, at+1) − α log

(
πφ (at+1 | st+1)

))))
(15)

where the ∇̂ denotes the approximate gradient operator.
The loss function of the policy network in the SAC is

defined as follows:

Jπ (φ) = Est∼D
(
Eat∼πφ

(
α log

(
πφ (at | st)

)
− Q (st , at)

))
(16)

where φ denotes the parameters of the policy network.
In order to use the backpropagation algorithm to train the
neural network, the action at needs to be reparametrized,
which is sampled from some fixed distribution function, such
as spherical Gaussian distribution, described by:

at = fφ (εt ; st) (17)

where εt is an input noise vector. Substituting the above
formula into the loss function (16), we have:

Jπ (φ) = Est∼D,εt∼N
(
α log

(
πφ

(
fφ (εt ; st) | st

))
−Q

(
st , fφ (εt ; st)

))
(18)

Then the gradient of the loss function is determined as
follows:

∇̂φJπ (φ) = ∇φα log
(
πφ (at | st)

)
+
(
∇atα log

(
πφ (at | st)

)
−∇atQ (st , at)

)
∇φ fφ (εt ; st) (19)

In the SAC algorithm developed in 2019 [39], the tempera-
ture coefficient α also needs to be updated automatically by
defining the loss function as follows:

J (α) = Eat∼πt

(
−α log

(
πφ (at | st)

)
− αH

)
(20)

The loss function’s gradient of the temperature coefficient is
given as follows:

∇̂αJ (α) = ∇αEat∼πt

(
−α log

(
πφ (at | st)

)
− αH

)
(21)

The above shows that the SAC algorithm maximizes the
cumulative reward and the policy entropy simultaneously. It is
precisely by maximizing the entropy of the policy to ensure
the exploration ability of the algorithm, so that it is not easy
to fall into the local optimal. In additions, the temperature
coefficient α is automatically updated during the training
process. By setting the large α in the early stage of training
to ensure that the agent has good exploration.

According to the unmanned vehicle system modeled in
Section II, Figure 4 illustrates the proposed RL framework
of the autonomous confrontation and obstacle-avoidance
maneuvering decision based on the SAC algorithm. In this
framework, the state of two vehicles and the state information
of the nearest obstacle to vehicle A are defined as state
information st of the environment. Action at of the agent
and the attack advantage index of vehicle A is determined
according to state st . After the action is executed, and the
state of the environment is updated, an instant reward rt
is calculated and feedback to the agent at time t + 1. The
interaction data D = (st , at , rt , st+1) is obtained and stored
into the experience replay buffer. According to the SAC algo-
rithm, the interaction data in the replay buffer will be sampled
to update the critic network and actor network, so that the
policy of the agent is gradually optimized until the satisfied
autonomous maneuvering decision policy for confrontation
and obstacle-avoidance is realized.

B. DESIGN OF THE STATE AND ACTION SPACES
According to the framework of RL shown in Figure 3, at each
time t , a set of observable information is defined as the
state information, and at the same time, it will be used to
evaluate the advantage of the current situation. For the one-
to-one confrontation system, the state information is defined
as follows:[

xA, yA, ϕA, vA, xB, yB, ϕB, vB, dvA (pA,pd )
]

(22)
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FIGURE 4. Design scheme for the autonomous maneuvering decision of the unmanned vehicle based on the SAC algorithm.

and the action is defined by:

[aA, δA] (23)

where aA represents the acceleration of vehicle A, corre-
sponding to the drive force of the vehicle, and δA represents
the steering angle of vehicle A, corresponding to the direction
of the vehicle.

C. DESIGN OF THE REWARD
In this paper, the instant reward is defined based on the
attack advantage index (8). During the confrontation, when
the distance between the two vehicles exceeds a certain range,
a sparse reward will lead to a large number of invalid samples,
which will lead to the low efficiency of learning. To solve this
problem, the following penalty is used when the distance d
between the two vehicles is great than a certain value:

PA,t =

−w4, d > 0.5
√

(xmax − xmin)
2
+ (ymax − ymin)

2

0, d ≤ 0.5
√

(xmax − xmin)
2
+ (ymax − ymin)

2

(24)

where w4 > 0, xmin and ymin respectively represent the
minimum boundaries along the x axis and y axis, and xmax and
ymax respectively represent the maximum boundaries along
the x axis and y axis.

According to the overall advantage index (8) and the
penalty (24), the instant reward at time t is defined by:

rA,t = IT ,A,t + k3PA,t (25)

where k3 is the weighting factor of the penalty.
Based on the overall advantage index function, the

autonomous maneuvering decision problem of vehicle A is
described as the following optimization problem:

max
a,δ

M∑
t=1

γ t−1rA,t

s.t.


Equation (1) − (8)
Equation (24) − (25)
amin ≤ a ≤ amax
δmin ≤ δ ≤ δmax

(26)

where M is the number of optimization steps; amin and amax
represent the permitted minimum andmaximum values of the
vehicle acceleration A; δmin and δmax represent the permitted
minimum and maximum wheel angles of the vehicle.

Problem (26) is essentially a complex nonlinear optimiza-
tion problem that is difficult to solve. Based on the RL
framework, the advantage index of the vehicle is adopted as
the instant reward, and then the SAC algorithm is employed
to solve the optimization problem (26).
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D. PROGRESSIVE SAC ALGORITHM
While the RL algorithm presented in section III-A is directly
used to solve the autonomous confrontation and obstacle-
avoidance problems, there are two issues at the initial training
stage:
(1) Since vehicle A has not any tracking policy at the initial

stage of the training, it is easy to have a bad tracking
performance, resulting in:∣∣pA − p0,B

∣∣ ≫ (w1 cos ⟨vA, vB⟩

+w2 cos ⟨vA,pB − pA⟩) (27)

(2) Since vehicle A has not any tracking policy at the initial
stage of the training, it is easy to have a bad tracking
performance, resulting in:

dvA (pA,pd ) ≈ 0 (28)

At this time, (7) shows that

lim
dvA (pA,pd )→0

I2,A,t = −∞ (29)

Therefore, (6) shows that I1,A ≈ 0 and (7) shows that a
large number of negative rewards interrupted the training
process, which cause the sparse reward problem. To solve the
above problems, we propose a progressive RL algorithm by
imitating the learning of humans from simple to complex. The
detailed schematic of the RL scheme is shown in Figure 5.
In this learning scheme, a set of curricula with different tasks
of confrontation and obstacle-avoidance are designed, and the
learning procedure is divided into the following four stages:

• Curriculum I: Simple confrontation learning stage.
In this curriculum, vehicle B is designed to move along
some simple trajectories at a uniform or varying velocity,
such as a straight or a circle way shown in Figure 5.
At the same time, a few of obstacles are configured in
the environment. In addition, both vehicle A and B are
assumed to start randomly from the initial area. The
learning task of the agent in this curriculum is to obtain
basic tracking performance in this simple confrontation
scenario.

• Curriculum II: Random confrontation learning stage.
In this curriculum, it is assumed that vehicle B is con-
trolled by a random maneuvering policy πrandom. Com-
pared with Curriculum I, there are more fixed obstacles
and larger random initial areas of the two vehicles con-
figured in the environment. The main learning target for
the agent of vehicle A is to improve the autonomous
confrontation policy to ensure the tracking performance
when vehicle B moves randomly.

• Curriculum III: obstacle-avoidance learning stage.
In this curriculum, it is assumed that vehicle B is driven
by the policy of vehicle A obtained in the last cur-
riculum. Moreover, more obstacles are continuously
added to the environment with the geometry and dis-
tribution randomly changed during the training. The

main training target in this curriculum is to improve the
obstacle-avoidance performance of the vehicle A based
on the confrontation policy obtained in Curriculum II.

• Curriculum IV-VI: Iterative self-play stage. After
vehicle A gets a good confrontation and obstacle-
avoidance performance, transfer the policy of vehicle A
to vehicleB, and iteratively improve the policy of vehicle
A through the confrontation between the two vehicles.
At the same time, in this curriculum, the quantity and the
distributions of the obstacles are continuously changed.
The training purpose of these curricula is to optimize the
maneuvering policy of vehicle A through the self-play
until a satisfactory autonomous confrontation perfor-
mance is obtained.

The difficulties of the curricula are gradually increased
in terms of training complexity. It is seen that from the
simulation results given in the next section that through the
proper design for the difficulties of the learning stages, the
proposed algorithm not only improve the learning efficiency
but also ensure the iterative optimization of the confrontation
and obstacle-avoidance performance.

E. POLICY OPTIMIZATION BASED ON THE PROGRESSIVE
SAC ALGORITHM
The specific pseudo code of the specific RL algorithm is
described in algorithm 1:

For the algorithm 1, we give some remarks as follows:

(1) The design algorithm is essentially a data-driven opti-
mization algorithmwithout any requirement for the prior
knowledge of the environment. It can be extended and
applied to more complicated confrontation and obstacle-
avoidance problems.

(2) Through appropriate environment configuration of the
curricula, the problem of the sparse reward is avoided,
and then the learning efficiency of the algorithm is
improved.

(3) In the final curriculum (Curriculum IV), the self-play
is adopted to realize the iterative optimization of the
confrontation and obstacle-avoidance policy.

(4) The multi-task of confrontation and obstacle-avoidance
is considered in the curricula, resulting in the solution
for the complex maneuvering decision problems.

IV. SIMULATIONS AND DISCUSSIONS
In this section, to demonstrate the feasibility and effectiveness
of the proposed design algorithm, the one-to-one autonomous
confrontation and obstacle-avoidance of two unmanned cars
are considered and simulated.

A. DESIGN OF THE TRAINING CURRICULA
As given in Table 1, not only the policy complexity of the
car B gradually increseas but also the specified ranges for
the quantity and the size of obstacles extended. After cur-
riculum V , the policy obtained by Car A in the previous
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FIGURE 5. Schematic of autonomous maneuvering decision learning framework for unmanned vehicles based on progressive training curricula.

FIGURE 6. Learning curves of the progressive (red line) and
non-progressive (blue line) RL algorithms.

curriculum is transferred to Car B, forming the iterative opti-
mization (self-play) of the policy.

B. PERFORMANCE INDEXES
In the training algorithm, it is assumed that there are M
maneuvering decision steps in each episode. To evaluate the
confrontation and obstacle-avoidance performances of the
obtained policy during the training, it is necessary to calculate
the advantage time ratios of Car A and Car B after each
training episode, respectively. If we define the difference of

TABLE 1. The hyperparameters of the training curricula.

the attack advantage index between Car A and Car B in each
maneuvering decision step t as:

1I1,t = I1,A,t − I1,B,t (30)

where1I1,t >0 indicates that Car A has confrontation advan-
tage over Car B, and the larger value of1I1,t means the higher
advantage. By counting the step numbers, mk , (k = 1, 2, 3),
for 1I1,t > 0, 1I1,t = 0, and 1I1,t < 0 in each episode,
respectively, the time ratios of the advantage for Car A in each
episode is computed by:

pk =
mk
M

, (k = 1, 2, 3) (31)
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Algorithm 1 Progressive SAC Algorithm
1: Initialize the value network parameters θ1, θ2 and policy network parameters φ

2: Initialize target value network parameters θ̄1 = θ1, θ̄2 = θ2, and target policy network parameters φ̄ = φ

3: Initialize the experience replay buffer R
4: Loop for each curriculum j (Curriculum I → Curriculum II → · · · ):
5: According to the configurations of curriculum j, initialize the motion policy of vehicle B
6: According to the configurations of curriculum j, initialize the obstacle setting in the environment
7: Initialize target entropy according to current policyHj
8: Loop for each episode:
9: Get the initial state s0 of the environment

10: Loop for each step t:
11: For state st , choose an action: at ∼ πφ (at | st)
12: vehicle A executes action at and vehicle B executes the given motion policy according to the configurations of the

curriculum.
13: The environment moves to the next state st+1, and vehicle A gets instant reward r (st , at)
14: Store the experience data (st , at , r (st , at) , st+1) in the replay buffer R.
15: Randomly collect m samples from the experience replay buffer R to update the networks as follows:
16: Update the value network, according to the gradient (15):

θi = θi − λQ∇̂θiJQ (θi) , i ∈ {1, 2}

17: Update the policy network, according to the gradient (19):

φ = φ − λπ ∇̂φJπ (φ)

18: Update the temperature coefficient, α, according to the gradient (21):

α = α − λ∇̂αJ (α)

19: Update the target value network: θ̄i = τθi + (1 − τ )θ̄i, i ∈ {1, 2}
20: Update the target policy network: φ̄ = τφ + (1 − τ )φ̄.
21: end loop
22: end loop
23: end loop

Furthermore, to evaluate the confrontation performance more
accurately, the cumulative advantage of Car A in each episode
is calculated by:

M∑
t=1

(
I1,A,t − I1,B,t

)
(32)

Note the episode numbers of
∑M

t=1
(
I1,A,t − I1,B,t

)
> 0,∑M

i=1
(
I1,A,t − I1,B,t

)
= 0 and

∑M
t=1

(
I1,A,t − I1,B,t

)
< 0 are

n1, n2 and n3, respectively, then the episode ratios of the
confrontation advantage is defined by:

Pk =
nk
N

, (k = 1, 2, 3) (33)

where N = n1 + n2 + n3 is the total episode for validation.
The larger value P1 means that, statistically, the Car A has
more time in the confrontation advantage. Both time ratio
p1 and episode ratio P1 of the advantage will be used as the
performance indexes of the confrontation policy.

C. LEARNING CURVES
In order to evaluate the learning efficiency of the progressive
RL algorithm, the classical SAC algorithm is also designed

and conducted as the baseline method. Figure 6 shows the
cumulative rewards of the non-progressive learning algorithm
(blue line) and the progressive learning algorithm (red line)
with 6 curricula given in Table 1. Due to the relatively simple
curriculum in the early stage of the training (Curriculum I
and Curriculum II), the learning efficiency of the progressive
RL is significantly higher than that of the non-progressive
learning algorithm. After 20,000 training episodes, with the
difficulty of the curriculum increased, the learning efficiency
gradually decreases, but the cumulative reward of the pro-
gressive RL algorithm (red line) is always better than that of
the non-progressive RL algorithm (blue line). Therefore, the
proposed progressive RL algorithm in this paper not only has
higher learning efficiency but also guarantee a more optimal
policy.

D. SIMULATION RESULTS
To demonstrate the autonomous maneuvering decision per-
formances of the proposed progressive RL scheme, the poli-
cies obtained in different curricula are implemented in the
one-to-one confrontation, and the simulation results indicate
the improvement of the policy.
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FIGURE 7. The tracking performances of Car A when Car B moves with a fixed velocity (a)(d) and varying velocity (b)(c) along a
straight and circle way.

1) PERFORMANCES OF THE MANEUVERING DECISION
POLICY AFTER CURRICULUM I AND II
In the curriculum configurations given in Table 1, Car B
adopts a simple policy to train the basic tracking policy of
Car A. Figure 7 shows the tracking performance of Car A
based on themaneuvering decision policy obtained in the first
curriculum when Car B moves with a uniform (Figure 7(a))
and variable (Figure 7(b)) velocity alone a straight line. In the
following figures, the two cars are plotted and numbered
to indicate the instant positions sampled during the con-
frontation. The same number denotes the same instant time.
Figure 7 shows that after the curriculum I, Car A already
obtains a good autonomous maneuvering decision policy for
the simple tracking tasks. Figure 7(c) and Figure 7(d) show
the tracking performance of Car A when Car B performs
circle-like movements. It is also shown that Car A has a good
autonomous maneuvering decision ability to track a circle-
like movement. These results demonstrate that the training
objectives of the curriculum I have been achieved.

For the curriculum II given in Table 1, the goal of training is
to acquire the autonomous decision policy to track the random
motion of Car B. The policy obtained after 20,000 episode
training is applied to the confrontation. Figure 8(a) and (b)
show the autonomous tracking performances of Car A

TABLE 2. The time ratios for confrontation scenario shown in Figure 8(b)
and episode ratios of confrontation advantage in total 100 episode
confrontation after curriculum I and II.

starting from a random point when Car B performs the ran-
dom movements. These results show that for any starting
point, Car A always performs a good tracking to Car B.

For the one-to-one confrontation scenario shown in
Figure 8(b), Figure 8(c) show the distance curve between
Car A and Car B, where the pink area indicates the superior
attack distance of Car A. Figure 8(d) gives the attack angles
of Car A and Car B, where the pink-shaded area indicates
the superior attack angle of Car A. It is easy to see from
these figures that Car A has much more attack advantage
than Car B. Moreover, we calculated the time ratios of the
attack advantage of the two cars in this episode and the
episode ratios of the confrontation advantage of the two cars
in 100 episodes. The results are given in Table 2. These
results show that Car A has an absolute advantage in the
confrontation. All of the simulation results illustrate that the
training objectives of curriculum II are fully achieved.
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FIGURE 8. The track performance of Car A for the random movement of Car B starting from different initial points.

FIGURE 9. The autonomous maneuvering decision performances under the environments with obstacles.

2) PERFORMANCES OF THE MANEUVERING DECISION
POLICY AFTER CURRICULUM III AND IV
In the curriculum designs given in Table 1, more and
more obstacles are randomly set in the environment

from 20000 to 40000 episodes, and the goal of train-
ing for these two curricula is to improve the ability
of autonomous obstacle-avoidance of Car A. After the
3000 episodes of training, the autonomous maneuvering
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FIGURE 10. Performance of Car A and Car B in two combat scenarios with random obstacle setting.

FIGURE 11. The trajectories of Car A and Car B in two combat scenarios with random obstacle setting.

TABLE 3. The time ratios for confrontation scenario shown in Figure 9(f)
and episode ratios of confrontation advantage in total 100 episode
confrontation after curriculum III and IV.

decision policy is applied to a confrontation with random
obstacles. Figures 9(a)-(b) give the autonomous maneuver-
ing decision performances of Car A under the environments
without or with some obstacles. These results show that

Car A shows a good autonomous obstacle-avoidance per-
formance. Figures 9(c)-(d) give the simulation results under
the environments with more obstacles. These results show
that the policy of Car A gives good maneuvering decisions
not only for obstacle-avoidance but also for confrontation.
Figures 9(c)-(d) show the simulation results of confrontation
under two different obstacle settings, where Car A shows
good autonomous maneuvering decision ability for tracking
and obstacle-avoidance.

For the confrontation scenarios shown in Figure 9(f),
Figure 10(a) gives the distance curve between the Car A
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TABLE 4. The time ratios for confrontation scenario shown in Figure 11(c) and episode ratios of confrontation advantage in total 100 episode
confrontation after curriculum V and VI.

and Car B, where the pink-shaded area indicates the supe-
rior attack distance of Car A, and Figure 10(b) gives the
attack angles of Car A and Car B. These results show that
Car A has the significant confrontation advantage in this
scenario. Moreover, we compare the time ratios of the attack
advantage of the two cars in each episode and the episode
ratios of the confrontation advantage of the two cars over
100 episodes, as given in Table 2. All the results demonstrate
that in themore complex obstacles simulations, Car A still has
the significant advantage in confrontation, and the training
objectives of curricula III and IV are achieved.

3) PERFORMANCES OF THE MANEUVERING DECISION
POLICY AFTER CURRICULUM V AND VI
In this simulation, themaneuvering decision policies of Car A
in curriculum IV and V are transplanted to Car B as the cor-
responding confrontation policies of curriculum V and VI,
which leads to the self-play stage of the maneuvering deci-
sion policy. The training goal is to improve the autonomous
confrontation and obstacle-avoidance performance of Car
A until the expected performance is obtained. Figures 11
show the confrontation results of the two cars under the
environments with random obstacles. These results show that
Car A has more confrontation advantage than that Car B.
Figure 11(d) gives the distance between Car A and Car B
during the confrontation, where the pink-shaded area indi-
cates the superior distance of Car A. Figure 11(e) gives the
attack angles of Car A and Car B during the confrontation,
where the pink-shaded area indicates the superior attack
angle of Car A. In Table 4, we give the time ratios of
attack advantage of the two cars for the scenario shown
in Figure 11(c) and the episode ratios of the confronta-
tion advantage of the two cars under 100 episode combats
after curriculum V and VI respectively. These results show
that through the self-play of the policy, the episode ratio
of Car A is significantly increased, which demonstrates the
improvement of the maneuvering decision policy by the
self-play.

V. CONCLUSION
For the autonomous confrontation and obstacle-avoidance
policy design of unmanned vehicles, this paper proposes a
progressive RL algorithm based on the SAC framework. The
proposed learning algorithm divides the training procedure
of the agent into different curricula. By properly planning the
learning objectives and the difficulty of the training curricula,
the algorithm not only significantly improves the learning
efficiency but also improves the ability of multi-task learn-
ing. In addition, the proposed algorithm realizes the iterative

optimization of the confrontation policy, resulting in the
confrontation performance improved persistently. This paper
takes the autonomous confrontation and obstacle-avoidance
of unmanned vehicles as the practical scenario and conducts
the modeling and performance index design for the one-
to-one confrontation and obstacle-avoidance. The effective-
ness of the design algorithm is demonstrated through the
numerical simulations. It is noted that the proposed design
scheme is not only used for autonomous confrontation and
obstacle-avoidance policy design of unmanned vehicles but
also provides a feasible AI-based solution for the design of
the automatic pilot system and the autonomous air combat
maneuvering decision system for the UAVs.
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