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ABSTRACT Conventional fundus images (CFIs) and ultra-widefield fundus images (UFIs) are two funda-
mental image modalities in ophthalmology. While CFIs provide a detailed view of the optic nerve head and
the posterior pole of an eye, their clinical use is associated with high costs and patient inconvenience due to
the requirement of good pupil dilation. On the other hand, UFIs capture peripheral lesions, but their image
quality is sensitive to factors such as pupil size, eye position, and eyelashes, leading to greater variability
between examinations compared to CFIs. The widefield retina view of UFIs offers the theoretical possibility
of generating CFIs from available UFIs to reduce patient examination costs. A recent study has shown
the feasibility of this approach by leveraging deep learning techniques for the UFI-to-CFI translation task.
However, the technique suffers from the heterogeneous scales of the image modalities and variations in the
brightness of the training data. In this paper, we address these issues with a novel framework consisting
of three stages: cropping, enhancement, and translation. The first stage is an optic disc-centered cropping
strategy that helps to alleviate the scale difference between the two image domains. The second stage
mitigates the variation in training data brightness and unifies the mask between the two modalities. In the last
stage, we introduce an attention-aided generative learningmodel to translate a givenUFI into the CFI domain.
Our experimental results demonstrate the success of the proposed method on 1, 011 UFIs, with 99.8% of the
generated CFIs evaluated as good quality and usable. Expert evaluations confirm significant visual quality
improvements in the generated CFIs compared to the UFIs, ranging from 10% to 80% for features such as
optic nerve structure, vascular distribution, and drusen. Furthermore, using generated CFIs in an AI-based
diagnosis system for age-related macular degeneration results in superior accuracy compared to UFIs and
competitive performance relative to real CFIs. These results showcase the potential of our approach for
automatic disease diagnosis and monitoring.

INDEX TERMS Conventional fundus images, deep learning, generative learning, ophthalmology, unpaired
image-to-image translation, ultra wide-field fundus images.
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I. INTRODUCTION
Fundus images are widely used in ophthalmology for
the diagnosis and monitoring of various eye diseases.
Conventional fundus images (CFIs) have been one of the
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most popular diagnostic tools used by ophthalmologists due
to their ability to capture the posterior pole of the retina [1].
However, this image modality has two main disadvantages.
First, a CFI examination consumes a large amount of time
and is burdensome for patients. Before having an eye exami-
nation, patients are required to have dilating eye drops applied
to enlarge their pupils, which takes 15 to 30 minutes. While
the pupils are dilated, the eyes become sensitive to bright light
and the patients’ vision is blurry. These negative effects may
last for several hours, which is inconvenient for the patients.
Second, the number of diseases that can be detectedwith CFIs
is limited. CFIs are taken with a small field of view, typically
between 30 and 60 degrees, as shown in Figure 1(a), which
covers the optic disc, macula, and nearby regions, making it
mainly suitable for the diagnosis of glaucoma and macular
diseases. As a result, another image modality are required to
address CFI limitations.

Ultra-widefield fundus images (UFIs) do not require pupil
dilation, making them faster to obtain than CFIs. With a field
of view up to 200 degrees, UFIs are used to detect periph-
eral diseases that do not appear in CFIs, such as diabetic
retinopathy, retinal vein occlusion, and retinal detachment.
These advantages have made the use of UFIs increasingly
popular. However, the quality of UFI images is susceptible
to variations among patients due to factors such as pupil
size, eye position, and eyelashes. Additionally, while UFIs
include the optic disc andmacula, as illustrated in Figure 1(b),
most ophthalmologists are more familiar with CFIs for the
diagnosis of glaucoma and macular diseases. Therefore, gen-
erating CFIs from UFIs using deep learning-based methods
is useful for monitoring these diseases. This computer-based
UFI-to-CFI translation approach not only helps patients avoid
time-consuming and uncomfortable CFI examinations but
also enables ophthalmologists to utilize their expertise in
analyzing familiar CFI images for accurate diagnosis and
treatment of glaucoma and macular diseases.

FIGURE 1. Two modalities of fundus photography. Area covered by CFI is
also included in UFI.

Recent advances in deep learning, particularly generative
adversarial networks (GANs), have enabled the generation
of CFIs from UFIs. The first attempt to generate CFI from
UFI was made in [1], where an intensity-based registration

algorithm was employed to crop a central area in the UFI,
which was then masked before being translated into the CFI
domain using cycleGAN [2]. However, this approach has
limitations in both the cropping step and the quality of the
generated images. Since the registration algorithm is based
on images from different eyes, the cropping may fail or the
cropped images may be distorted. In addition, the variation in
brightness across images poses a challenge in the translation
step, leading to poor performance in generated CFIs.

In this paper, we propose a deep learning-based three-
stage framework to address the limitations of the existing
UFI-to-CFI translation. Our first contribution is an optic
disc-centered cropping strategy that extracts a region of the
UFI covering a similar area to that captured by CFI. This
strategy uses the positions of the optic disc and macula to
crop a portion of the UFI that includes these structures and
nearby regions, ensuring that the cropped portion is useful
for generating the CFI. Second, we introduce a dual illu-
mination correction step and a mask unification method to
preprocess the UFI and CFI, making them more consistent
and suitable for translation. Finally, we use an attention-aided
generative learning model to translate the preprocessed UFI
into CFI. Our model leverages a convolutional block attention
module (CBAM) [3] to improve the realism of the generated
CFI. Experiments on a dataset of 2011 UFIs and 681 CFIs
demonstrate that our approach outperforms existing methods
in terms of visual quality and performance. The high-quality
CFI images generated by our method have the potential to
be utilized in a range of applications, including automatic
disease diagnosis, monitoring, and research.

The rest of this paper is organized as follows: Section II
reviews the related work, while section III provides a detailed
description of our proposed method, including each step of
the three-stage framework. Section IV presents the experi-
mental settings, evaluation metrics, and results of our exper-
iments. Finally, in section V, we draw our conclusions based
on the results obtained from our proposed method.

II. RELATED WORK
A. DEEP LEARNING IN FUNDUS IMAGES
With superior performance compared to traditional methods,
deep learning has been applied to CFI for various tasks such
as multi-disease diagnosis [4], vessel segmentation [5], and
optic disc and fovea localization [6]. For almost all tasks,
deep learning brings impressive results which are sometimes
better than human [7]. In [8], the authors designed a frame-
work to detect 39 fundus diseases and achieved an area-
under-the-roc-curve (AUC) score of 0.9984. This result is
comparable to retinal specialists with more than 10 years of
experience. For the vessel segmentation, the authors of [5]
introduced a model called W-Net which brings state-of-
the-art performance on multiple datasets. A model named
FundusPosNet was designed in [6] to localize optic disc
and fovea. This model is trained based on the regression
of heatmap labels and it outperforms existing methods on
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FIGURE 2. Overall process of generating CFI from UFI. There are three stages in our proposed method. The first stage is to crop a portion of UFI covering
a similar area to that captured by CFI. In the second stage, the brightness of all images is improved and their masks are unified. The final stage transfers
the enhanced UFI into the CFI domain.

three datasets: IDRiD [9], Messidor [10], and G1020 [11].
Recently, researchers have paid more attention to the UFI
because it covers peripheral lesions which cannot be observed
in the CFI. Various tasks on the CFI are also able to conduct
on the UFI. In [12], the authors proposed using 6 contrast
enhancement methods and the model ensemble technique to
boost the performance of a multi-disease detection system.
As a result, the system achieves 97.45% accuracy. For the
task of vessel segmentation in UFI, the authors of [13] uti-
lized UFIs and their corresponding fluorescein angiography
images to iteratively train a multi-modal registration model
and a weakly-supervised segmentation model. Once trained,
the segmentation model can detect vessels without the fluo-
rescein angiography images. To detect optic disc and fovea
in the UFI, the authors of [14] proposed distance-based and
direction-based losses to improve Faster RCNNdetector [15].
Their method obtains an average intersection over union
(IoU) score of 0.82.

B. IMAGE-TO-IMAGE TRANSLATION
The task of transforming images from one domain to another
domain is referred to as image-to-image translation, most
methods for this task are based on GAN [16]. In [17], a con-
ditional GAN model is proposed for image translation using
paired images which are usually difficult to obtain. To tackle
this problem, the authors of [2] introduced a cycleGAN
framework including two generators and two discriminators
to translate images between two domains using unpaired
images. The key point of cycleGAN is cycle consistency:
when an image in domain A is transferred to domain B,
if it is translated back to domain A, the result should be the
same as the original image. For the translation between more
than two domains, many works have been proposed with
impressive results such as [18]. Recently, contrastive learning
approach has been widely used and achieves state-of-the-art
performance [19], [20], [21]. The main idea of contrastive
learning is to create multiple versions of an image, then, their

feature representations extracted by a deep network should be
similar. For different images, the representations should be as
different as possible.

C. FUNDUS IMAGE TRANSLATION
The task UFI-to-CFI translation was first tackled in [1],
where the authors combined an intensity-based registration
method with cycleGAN to obtain CFIs from UFIs. The goal
of this translation is to make use of the additional informa-
tion that CFIs provide for diagnosis. In the registration step,
20 manually cropped UFIs from normal images are used as
templates to register with UFIs to obtain portions covering
similar areas to CFIs. Each template results in one registered
portion, and the final image is calculated based on the nor-
malized cross-correlation between the registered portions and
their corresponding templates. The registration is the affine
transformation and is performed by the imregister function of
Matlab. The registered images are then masked before being
translated into the CFI domain by CycleGAN. In [22], the
authors proposed amodified version of CycleGAN to transfer
CFIs to UFIs, which is used as additional information for
disease diagnosis. One modification made to CycleGAN is
consistency regularization: different translated versions of the
same image should have the same disease label. For each CFI,
multiple versions created by data augmentation are passed
through a generator to obtain UFIs. Labels of these UFIs are
then generated by an inference model, and the consistency
between the labels is represented by a consistency regular-
ization loss.

III. PROPOSED METHOD
Our proposed three-stage framework for generating CFI from
UFI is depicted in Figure 2, with the inputs being a set of
UFIs and a set of real CFIs. The first stage involves an optic
disc-centered cropping strategy, which extracts a portion of
each UFI covering an area similar to that of the CFI. In the
second stage, all images are processed to enhance their bright-
ness and unify their masks across both domains. Finally, the
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FIGURE 3. UFI cropping stage. The optic disc and macula are localized by Faster RCNN detector, then, their positions are used for cropping a desired area.

enhanced UFIs are translated into the CFI domain using an
attention-aided generative model.

A. OPTIC DISC-CENTERED UFI CROPPING
At the first stage of our framework, a portion of the UFI
covering a similar area to the CFI is obtained, as illus-
trated in Figure 3. To achieve this, we use a Faster RCNN
detector [15] to localize the optic disc and macula in the
UFI. These two biomarkers are then used to crop a desired
portion. Specifically, the UFI is passed through a convolu-
tional neural network (CNN) backbone to extract its feature
maps. These feature maps are then used to generate proposals
(anchor boxes) with corresponding objectness scores using
a region proposal network. The objections scores indicate
if the proposals are foreground or background. To reduce
computation complexity, any proposals crossing the image
boundaries are removed and non-maximum suppression is
performed to eliminate boxes that overlap others with an IoU
score of more than 0.7. Finally, the proposals go through a
classifier for accurate prediction of categories and bounding
boxes. Each proposal is classified as either optic disc, macula,
or background, and the bounding box coordinates for each
object are provided. If multiple boxes are predicted as the
optic disc or macula, the one with the highest probability is
selected as the final result, because there is only one of each
object in a UFI.

FIGURE 4. Radius of CFI, it is used for UFI cropping.

After localizing the optic disc and macula, the next step is
to obtain a UFI area that is similar in appearance to the CFI.
To achieve this, we propose an optic disc-centered cropping
strategy based on the relationship between the positions of
the optic disc, macula, and the area covered by the CFI,

as illustrated in Figure 4. The retinal area covered by a CFI
has a shape of a circle, is centered at the fovea (center of the
macula), and includes the optic disc as well as surrounding
regions [23]. Let F denote fovea, O denote the optic disc
center, and OC is half the length of the diagonal of the optic
disc box, then the radius of the CFI can be represented as
follow:

FB = FO+ αOC (1)

where α > 1 is a scaling factor to assure the optic disc
is included in the CFI. This relationship is utilized for UFI
cropping in which the center of the detected optic disc is
represented by O, and F denotes the center of the detected
macula. In practice, CFI is usually not centered at fovea, so,
we randomly shift the center of the cropped image towards O
with a maximum distance of FO2 . We empirically find that this
randomness can bring better results. The value of α is also a
factor affecting the quality of generated CFIs, we will show
our selection in section IV.

B. DUAL ILLUMINATION CORRECTION AND MASKING
In the second stage, we address two problems with the
cropped UFIs and real CFIs: brightness and mask. Specif-
ically, while the cropped UFIs are often underexposed, the
real CFIs are either underexposed or overexposed. Addi-
tionally, the real CFIs contain a mask that is absent in the
cropped UFIs. We empirically find that these issues cannot
be effectively resolved by the image translation model at the
final stage. Therefore, we adopt a dual illumination corrector
in [24] to handle both underexposed and overexposed images,
and a masking operation is performed to address the missing
mask issue. The steps involved in the second stage are illus-
trated in Figure 5.

The illumination corrector contains three steps: dual illu-
mination estimation, exposure correction, and fusion. For an
input image, the forward and reverse illuminations are esti-
mated, and then, based on the estimations, the underexposure
and overexposure corrected images are obtained. Finally, they
are fused with the input to get the corrected image. Let I and
Lf denote the input image and the estimation of the forward
illumination, respectively, then, the underexposure corrected
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FIGURE 5. Dual illumination correction and masking stage. It includes two sub-tasks: dual illumination correction and masking. While the illumination
correction is based on a dual estimation of illumination maps, masking is an element-wise multiplication between the mask and the corrected image.

image is:

I ′f = I ∗ (Lγ
f )

−1,

where ∗ denote element-wise multiplication and γ is a
Gamma adjustment to the forward illumination. A similar
process is applied to the inverted input image Iinv = (1 − I )
and the reverse illumination Lγ

r to obtain the overexposure
corrected image:

I ′r = Iinv ∗ (Lγ
r )

−1,

Details about the estimations of the forward and reverse
illuminations can be found in [24]. The final step of the dual
illumination correction process is the fusion of the original
image with the corrected under- and over-exposed images
using Laplacian pyramid [25].

At the end of the second stage, the mask of images in
the UFI and CFI domains is unified by a masking process.
A circular binary mask, in which, the white area is a circle
centered at pixel ⌊ n2⌋, ⌊

n
2⌋with a radius of

n
2 is created, where

n is the size of the mask. Pixel values at ith row and jth column
of the mask are the same for three channels R, G, and B, it is:

pi,j =

{
1 if di,j ≤ ⌊

n
2
⌋

0 otherwise,

where di,j is the distance from the pixel pi,j to the center
pixel p⌊

n
2 ⌋,⌊ n2 ⌋. The masking process is then performed by

pixel-wise multiplication between the mask and the corrected
image. The pixels inside the white area of the mask have a
value of 1, which means that the contents inside the circle
remain the same as those in the corrected image. On the other
hand, the pixels outside the circle have a value of 0 and appear
black in the enhanced image.

C. ATTENTION-AIDED GENERATIVE TRANSLATION
In the final stage of the proposed method, an attention-aided
generative framework is employed to translate enhancedUFIs

FIGURE 6. Attention aided CycleGAN framework. It includes two
generators and two discriminators to translate images between UFI and
CFI domains. Cycle consistency means that when a cycle of translation
(UFI → CFI → UFI or CFI → UFI → CFI) is performed, the image should
be unchanged. The convolutional block attention module is used to boost
the quality of generated images.

to the CFI domain. It uses a convolutional block attention
module (CBAM) [3] to boost the performance of cycle-
GAN [2]. Figure 6 depicts the framework, which comprises
two generators (GC , GU ) and two discriminators (DC , DU )
for translating images between the UFI and CFI domains. The
inputs of the model are enhanced UFIs and enhanced CFIs
which can be either images of the same eyes or different eyes.
While the generator GC generates images in the CFI domain,
the discriminator DC classifies images into enhanced and
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generated CFI. The same applies to the generator GU and the
discriminator DU which are used for generating and classify-
ing images in the UFI domain. The training procedure of this
framework is the same as that of CycleGAN.As aGAN-based
model, the training process of the attention-aided CycleGAN
includes a competition between the generators and discrimi-
nators, which is reflected by the GAN loss function:

LGAN = [log(1 − DC (GC (u))) + logDC (c)]

+ [log(1 − DU (GU (c))) + logDU (u)],

where u and c denote an image in UFI and CFI domains,
respectively. While the generators want to minimize the loss
by generating images close to real ones, the discriminators try
to classify generated images from the real ones to maximize
the loss. In order to translate images between two domains,
the training process contains two cycles: UFI → CFI →

UFI and CFI → UFI → CFI . The key idea is that when an
image in the UFI domain is transferred into the CFI domain
if it is converted back to the UFI domain, the result should be
the same as the original UFI. This is called cycle consistency
and is characterized by cycle-consistency loss:

Lcycle = ||u− GU (GC (u))||1 + ||c− GC (GU (c))||1,

where ||.||1 denotes norm-1. This loss is a pixel-wise com-
parison that not only assures the image can be recovered
after being translated into another domain, but also has the
role of maintaining the image structure during the translation.
However, the cycle-consistency loss is not enough to transfer
images into the target domain. As long as the image can
be recovered to the original domain, the style of the target
domain is free. For this reason, identity loss is included. The
intuition behind this loss is that because the generator GU is
used to generate images in the UFI domain, if the input is
already a UFI, the generator should keep the image the same,
similarly for the generator GC . Identity loss is defined as:

Lidentity = ||u− GU (u)||1 + ||c− GC (c)||1.

Gather all components together, the loss for training is:

L = LGAN + λ1Lcycle + λ2Lidentity,

in which λ1 and λ2 are parameters to balance three
components.

Our network architectures for the generators and discrim-
inators are improved from those of [1]. We maintain the
generators and upgrade the discriminators by the CBAM
which has been widely used to boost the performance of clas-
sification tasks. The design of the discriminators is illustrated
in Figure 7. Each CBAM contains a channel attention mod-
ule (CAM) followed by a spatial attention module (SAM).
CBAM is inserted after convolutional layers to make the
network focus on useful information. The output of a convo-
lutional layer is a set of channels, each of which has a different
contribution to the final result. The CAM makes the network
pay more attention to important channels and reduces the
impacts of others. Each channel contains many spatial areas

FIGURE 7. Discriminator architecture. Each convolutional layer halving
spatial size of the image is followed by a convolutional block attention
module. The numbers at the bottom and on top of each layer denote the
number of channels and spatial size, respectively.

which have different roles in the final decision of the network.
The SAM identifies the areas having high influences on the
output and makes the network focus on these areas. CBAMs
are injected after the convolutional layers which halve the
spatial size of images. We empirically find that this way of
injection brings better performance than inserting CBAM into
every convolutional layer.

IV. EXPERIMENTS
A. DATASET, IMPLEMENTATION DETAILS, AND
EVALUATION METRICS
1) DATASET AND IMPLEMENTATION DETAILS
For experiments, we collect a private dataset of 2, 011 UFIs
from SamsungMedical Center and manually select 681 high-
quality real CFIs from Eyepacs dataset [26]. This study was
approved by the Institutional Review Board (IRB) at Sam-
sungMedical Center (IRBNo. 2022-06-032).While the UFIs
are used in stage 1&3 of the framework, the real CFIs are
used only at stage 3. For the detection of the optic disc and
macula detection in the first stage, we label the optic disc and
macula in 1, 204 UFIs to train the Faster RCNN detector.
UFIs are resized to the resolution of 640 × 640, and the
implementation of Faster RCNN is from Tensorflow object
detection API [27]. The cropped UFIs are then resized to
256 × 256 before going to stage 2. The code for dual illu-
mination correction is from: https://github.com/pvnieo/Low-
light-Image-Enhancement. In the third stage, 1, 000 UFIs
and 681 CFIs are used for training, and the rest of the
UFIs is used for validation. All experiment settings of this
stage are the same as those in [1]. Our codes for the
ratio-based cropping, masking, and attention-aided cycle-
GAN are available at our Github: https://github.com/Van-
NguyenPham/FundusImagesTranslation, they are imple-
mented on Tensorflow framework with Tesla V100 GPU.

2) EVALUATION METRICS
Since we use a GAN-based method to generate CFI, we will
use two categories of metrics to evaluate the generated CFIs.
The first category is to validate the quality of images gen-
erated by a GAN-based model, while the second one is to
evaluate the quality of CFIs. For the first category, we select
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Frechet inception distance (FID) [28] which has been com-
monly used in recent years because it agrees with human
perception. A lower value of FID indicates that the generated
images are more realistic. For the second category, we adopt
Qv [29] and an automatic tool in [30].Qv measures the quality
of CFI based on the vessel structure without using reference
images, and has a high agreement with full-reference metrics
such as peak signal-to-noise ratio and structural similarity
index measure [31], a higher value of Qv indicates that the
image has better quality. The automatic tool in [30] classi-
fies CFI quality into three classes: good, usable, and reject.
The quality classification is based on the ophthalmologists’
perspective and determines whether the image’s information
is clear enough for diagnosis. While good quality states that
the image has clear diagnostic information, reject class means
the quality of the image is too low for diagnosis. The usable
class includes images in several poor conditions but the main
structure and lesions are clear enough to be detected by
ophthalmologists. Since the metrics in the second category do
not make sense if the generated CFIs are unrealistic, we use
FID as the main metric for performance evaluation.

B. EXPERIMENT RESULTS
1) COMPARISON WITH EXISTING WORKS
In this section, we first compare our proposed method with
the existing work for UFI-to-CFI translation. We then show
the benefits of our attention-aided generative translation
model in comparison with state-of-the-art techniques for
image-to-image translation.

a: COMPARISON OF UFI-TO-CFI TRANSLATION METHODS
We compare our approach with the work in [1] where they
cropped UFIs by an intensity-based registration method,
masked the cropped UFIs, and then, translated the cropped
images into the CFI domain by CycleGAN [2]. The cropping
is considered as successful if the cropped image includes both
the optic disc and macula. However, in [1], the registration
between images of different eyes results in a successful crop-
ping ratio of less than 10%, leading to too few successfully
cropped images to train the translation model. In contrast,
our framework utilizes the accurate localization of the optic
disc andmacula to implement an optic disc-centered cropping
strategy with a 100% successful ratio. In addition to crop-
ping, we want to demonstrate the benefits of our illumination
enhancement and attention-aided translation model in the
second and third stages. Specifically, we replace the cropped
UFIs of [1] with ours and make a comparison, the result is
shown in Table 1. Our framework leverages a combination of
the illumination enhancement and the attention-aided transla-
tion model, which outperforms the translation-only approach
used by Yoo et al. [1] in all evaluation metrics. Visualization
of generated images is shown in Figure 8. Perceptually, our
method produces images with higher contrast and brightness
than the method of Yoo et al. [1]. Moreover, while exam-
ining the CFIs generated by the approach proposed by [1],

TABLE 1. Comparison of different methods for generating CFI from UFI. ↓

denotes lower is better, ↑ denotes higher is better.

FIGURE 8. Visualization of detail preservation by two UFI-to-CFI-
translation methods. While the first row shows the bad generation of the
optic disc, the second row illustrates the disappearance of drusen (yellow
dots) in the images generated by Yoo et al.

we observed the bad generation of the optic disc and the
disappearance of drusen (i.e., yellow dots), which can poten-
tially result in an erroneous diagnosis. Such limitations were
effectively addressed in our proposed framework, showcasing
its potential to serve as an effective tool for accurate and
reliable disease diagnosis and monitoring. In summary, our
proposed approach improves two weaknesses of the existing
method: cropping and the brightness variation of data. Our
optic disc-centered cropping strategy ensures that all cropped
images contain both the optic disc and macula, leading to
a more robust and accurate translation model. Additionally,
our illumination enhancement and attention-aided translation
model contribute to generating high-quality CFIs with better
brightness, contrast, and preservation of important features.

b: COMPARISON OF IMAGE-TO-IMAGE TRANSLATION
MODELS
Next, we validate the effectiveness of our attention-aided
translation model by comparing it with state-of-the-art tech-
niques: CUT [19], ACL-GAN [20], and DCLGAN [21].
Stages 1 and 2 of our framework are fixed and the image
translation model in stage 3 is replaced with the aforemen-
tioned techniques. Our results, shown in Table 2, demonstrate
that our method achieves the best values for FID and Qv, and

TABLE 2. Quantitative performance of different image translation
models.
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FIGURE 9. Images generated by different image-to-image translation models. The top row shows the failure of CUT, DCL-GAN, and ACL-GAN in generating
the optic cup (the brightest yellow part). The bottom row illustrates the disappearance of a part of the drusen in the images generated by these models.

TABLE 3. Evaluation of UFI and generated CFI made by ophthalmologists.
A higher value means a better result.

has competitive image quality compared to the other tech-
niques. Especially, our model exhibits significant improve-
ments over state-of-the-art methods in terms of FID, with
performance gains of 49.76%, 35.39%, 54.16%, and 16.41%
compared to CUT, ACLGAN, and DCLGAN respectively.
While our model is based on the cycleGAN approach, CUT,
ACL-GAN, and DCL-GAN are contrastive learning-based
methods, which do not include cycle consistency loss. This
loss plays a crucial role in preserving important image fea-
tures such as lesions and biomarkers through a pixel-by-pixel
comparison between the original image and the cycled one.
In Figure 9, the first row shows that CUT, ACL-GAN, and
DCL-GAN fail to maintain the boundary of the optic cup,
a critical feature in glaucoma diagnosis. In the second row,
a part of drusen disappears in the images generated by CUT,
ACL-GAN, and DCL-GAN, which may result in a wrong
diagnosis of age-related macular degeneration. In contrast,
our translation model utilizes an attention module to enhance
the discriminators’ classification ability, thereby generating
more realistic images. Our experimental results demonstrate
that the attention-aided generative translation model enables
the generation of high-quality CFIs from UFIs, which has the
potential to improve clinical outcomes in ophthalmology.

2) EVALUATION OF OPHTHALMOLOGISTS AND AGE-
RELATED MACULAR DEGENERATION CLASSIFICATION
WITH GENERATED CFI
In this section, we demonstrate the clinical applicabil-
ity of our generated CFI for ophthalmologists and for a

computer-aided diagnosis system. First, two ophthalmolo-
gists compare how the features represented in UFI and gen-
erated CFI are close to those in real CFI (UFI and real
CFI are images of the same eye, taken on the same date).
Three main measurements in ophthalmology examinations
are used for comparison: optic nerve structure, vascular dis-
tribution, and drusen. Each measurement contains two sub-
measurements: cup-to-disc ratio and color of the disc for optic
nerve structures; overall morphology and vessel contrast for
vascular distribution; drusen pattern and drusen number for
drusen. Each sub-measurement in UFIs and generated CFIs is
evaluated independently by two ophthalmologists, who score
them as either good (3), moderate (2), or poor (1) based on
their similarity to the real CFIs. If there is a discrepancy in the
scores, the ophthalmologists review the data again to reach
a consensus. The average results of 99 random images are
presented in Table 3. Except for the cup-to-disc ratio, the
sub-measurements for generated CFI are superior to those
of UFI, with the improvement ranging from 10.04% (drusen
pattern) to 80.71% (disc color). Particularly, the scores for
vessel contrast (2.97) and drusen pattern (2.91) are close to
3, meaning that these features are very similar to those in real
CFI. These quantitative results demonstrate the effectiveness
of our UFI-to-CFI translation method in enhancing the qual-
ity of UFIs, as evaluated by ophthalmologists.

TABLE 4. AMD diagnosis accuracy of UFI, generated CFI, and real CFI (%).

Second, we evaluate the use of our generated CFIs for
an automatic diagnosis system, which can support ophthal-
mologists in their diagnostic decisions. To this end, exper-
iments are conducted to compare the performance of UFI,
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FIGURE 10. Generated images with different combinations of three stages. Without cropping (stage 1⃝), almost all
biomarkers and lesions disappear. Without illumination correction and masking (stage 2⃝), the optic cup is not well
generated and a part of drusen disappears. Without domain translation (stage 3⃝), the images are still in the UFI domain.

generated CFI, and real CFI for the automatic diagnosis of
age-related macular degeneration (AMD), one of the major
causes of blindness. Four well-known classification models,
namely Resnet50 [32], Googlenet [33], Efficientnet_B3 [34],
and MobilenetV3 [35] are selected for comparison. For each
network, all parameters were fixed, and then, UFI, generated
CFI, and real CFI are used as input to the network in turn.
We collect another dataset of 1, 200 pairs of UFI and CFI,
with each pair containing one UFI and one CFI of the same
eye, and both images having the same label for AMD. The
dataset is divided into training and validation sets, both with
an equal ratio of AMD to non-AMD images; the training
set consists of 900 pairs. Our results demonstrate that the
diagnosis accuracy of generated CFI is consistently better
than that of UFI across all models tested, with a maximum
improvement of 6.67% using Efficientnet_B3. This improve-
ment indicates the potential of our approach for enhancing the
accuracy of AMD diagnosis. As the lesions of AMD mostly
appear in the surrounding area of the macula, the peripheral
area in UFI contains redundant information. Our UFI-to-
CFI translation method removes this redundancy through the
optic disc-centered cropping stage. Additionally, the color
variation of UFI may be misinterpreted as signs of diseases
by the classifier, leading to incorrect predictions. Thanks to
the generative learning translation in stage 3, the background
color is made consistent, allowing the classifier to focus on
the lesions and produce more accurate predictions. However,
the performance of generated CFI is still inferior to that of real
CFI, which is consistent with the evaluation by ophthalmol-
ogists. In conclusion, the results from both ophthalmologists
and the automatic diagnosis system show that the quality of
generated CFI is better than that of UFI but not as good as that
of real CFI. This performance gap between generated CFI and
real CFI suggests opportunities for future research.

3) ABLATION STUDY
In this section, we conduct experiments to find out a value
of α in equation 1 that brings good results. Besides, there are

TABLE 5. Quantitative result when varying the cropping radius.

TABLE 6. Effects of three stages to generated CFIs.

3 stages in our framework, we will show the contributions of
each stage to generated CFI.

a: EFFECT OF CROPPING RADIUS TO GENERATED CFI
As mentioned above, the radius for UFI cropping is FB =

FO + αOC . Different values of α result in different areas
covered by generated CFI. We want to figure out the value of
α which brings the best result. For this purpose, we perform
a grid search with multiple values of α: {1.5, 2, 2.5, 3}, the
result is shown in Table 5. It can be seen that with α = 2,
generated CFI is themost realistic (smallest value of FID) and
has the best value ofQv. Based on this result, we set α = 2 for
the rest of our experiments.

b: CONTRIBUTIONS OF EACH STAGE TO GENERATED CFI
Our framework contains 3 stages, ablation study is conducted
to figure out the contributions of each stage to the generated
CFIs. For this purpose, we take turns removing each stage
from the framework, the result is reported in Table 6, and
the visualization is shown in Figure 10. It can be seen that
all stages have huge effects on the output images. With-
out cropping (stage 1), the huge scale difference between
the two domains causes difficulty for the translation model.
As a result, almost all biomarkers and lesions disappear in
the generated image. If the cropped UFI is not improved
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brightness and masked (stage 2) before the translation stage,
generated CFI contains faked details near the mask (marked
by yellow rectangles) which may hide useful information
such as lesions. Stage 3 is the key stage to transfer UFI into the
CFI domain, without the translation, the color of UFI remains
and is very different from that of CFI. In this comparison,
we do not use the metricsQv and Image Quality because they
are only used for CFI. In Table 6, high values of FID indicate
the images are very far from the CFI domain, soQv and Image
Quality do not make sense for these cases.

V. CONCLUSION AND FUTURE WORK
In this work, we have presented a novel framework for
multi-scale multi-modal fundus image translation, addressing
the challenges of scale difference and brightness variation
between UFI and CFI. Our extensive experiments demon-
strate that our proposed method outperforms state-of-the-art
approaches, with themajority of the generated CFIs evaluated
as high quality. These results indicate the promising potential
of our approach for clinical applications, such as automatic
disease diagnosis and monitoring, which can reduce patient
examination costs and improve clinical outcomes. Further-
more, expert evaluations confirm significant visual quality
improvements in the generated CFIs compared to UFIs. How-
ever, we acknowledge the limitations of our approach, such
as the unsatisfactory optic disc and the remaining artifacts
that cause a performance gap between the generated CFI
and real CFI. Future work will focus on addressing these
remaining issues and exploring the application of generated
CFIs for tasks such as vessel segmentation and explainable
diagnosis. Moreover, the principles employed in UFI-to-CFI
translation, such as addressing scale differences, brightness
variations, and image quality enhancement, have relevance in
various domains where image transformation and enhance-
ment are critical. While our current investigation focuses
on the specific context of fundus images, we recognize the
transferability of our methodology to other applications and
potential avenues for future research in image translation and
enhancement.
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