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ABSTRACT In order to solve the problems such as the dynamic change of historical attribute
service evaluation indicators, the lack of comprehensive consideration of the interest needs of all cloud
manufacturing participants, and the strong subjectivity of the composition optimization results in the process
of cloud manufacturing service composition. Taking the demands of service demanders, platform operators
and service providers as constraints, this paper constructs a multi-objective optimization model of cloud
manufacturing service composition that comprehensively considers multi-agent interests, and introduces the
time decay function to deal with the service evaluation indicators with historical attributes, which reduces
the impact of the dynamic changes of service evaluation indicators. Secondly, this paper adopts the NSGA-II
with the elite selection strategy to solve the cloud manufacturing service composition optimization (SCO)
model, and uses the grey target decision-making method to select the optimal solution from the Pareto
solutions obtained by the NSGA-II, which avoids the problem of strong subjectivity in service composition
decision-making. Finally, through case analysis, it was found that the bull’s-eye distance of the optimal
solution obtained by the NSGA-II was reduced by at least 34.95% compared to the genetic algorithm,
verifying the feasibility of the optimization model and the effectiveness of the algorithm.

INDEX TERMS Cloud manufacturing, service composition optimization, multi-agent, grey target
decision-making, NSGA-II.

I. INTRODUCTION
With a new round of changes in the global manufacturing
industry, the division of labor in the manufacturing industry
is becoming more and more refined and specialized. A single
manufacturing service can no longer meet the diversity
of user needs. At the same time, due to the shortage of
tasks or unreasonable arrangements, service providers with
core technologies and equipment also have idle resources.
Therefore, the manufacturing industry urgently needs to
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change from the production-oriented mode to the service-
oriented mode to meet the diverse needs of users and realize
the rational utilization of manufacturing resources [1].

Based on the above background, new concepts such as
cloud manufacturing and agile manufacturing are emerg-
ing [2]. Cloud manufacturing refers to the combination of
existing advanced manufacturing technologies with emerg-
ing technologies such as cloud computing and intelligent
science [3]. It is a service-oriented networked intelligent
manufacturing mode. There are three main participants
in the cloud manufacturing process: service demander,
platform operator and service provider. The service provider
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services and virtualizes the manufacturing resources, and
then encapsulates them as cloud services; the service
demander publishes manufacturing requirements to the cloud
platform, that is, submits manufacturing tasks to the platform
operator; The platform operator is mainly responsible for
the maintenance of the platform operation, the management
of manufacturing services and manufacturing tasks, etc.
After receiving the manufacturing demand, the platform
operator will select the appropriate manufacturing service to
perform the task [4]. This emerging manufacturing model
can make full use of a great quantity of widely distributed
manufacturing resources, realize the optimal combination
and allocation of manufacturing resources andmanufacturing
demand, and promote the transformation and development of
manufacturing. SCO is not only one of the key links in the
whole cloud manufacturing system, but also a key way for
cloud manufacturing to realize on-demand distribution and
avoid manufacturing resource waste and idleness [5].

The SCO problem has the characteristics of composition
explosion and is defined as NP-hard problem [6]. The
cloud manufacturing SCO process involves multi-agent
participating together. In addition to meeting the require-
ments of service demanders, the interests of other subjects
are also the key points of service composition research.
Therefore, under the condition of considering the interests
of multi-agent, how to efficiently select the optimal service
composition is the most essential requirement of service
system, and it is also a key step for the transformation
and development of manufacturing industry in the cloud
manufacturing environment.

Aiming at the optimization problem of cloud manufac-
turing service composition, this paper not only considers
the timeliness impact of historical attribute evaluation
indicators of service resources on service resources, but also
comprehensively considers the interests of the three main
participants. Then, this paper constructs a three-objective
cloud manufacturing SCO model, and solves the cloud man-
ufacturing SCO model considering multi-agent interests by
using the non-dominated sorting genetic algorithm (NSGA-
II) and grey target decision-making method.

The contributions of this paper are as follows: (1) In
order to reduce the impact of the timeliness of evaluation
indicators, this paper introduces a time decay function to
process historical data and weights, reducing the impact
of dynamic changes in service evaluation indicators. (2) In
order to comprehensively consider the interests of the three
main participants, this paper constructs a three objective
cloud manufacturing SCO model. (3) The NSGA-II and grey
target decision-making method are proposed to solve the
combinatorial optimization model of cloud manufacturing
services considering the interests of multi-agent. The grey
target decision-making method reduces the negative impact
of subjectivity.

This paper is organized as follows. Section II mainly
summarizes the literature on cloud manufacturing SCO.
Section III constructs the cloud manufacturing SCO model
that considers multi-agent interests. Section IV designs the

NSGA-II to solve the cloud manufacturing SCO model.
Section V conducts the case analysis. Section VI summarizes
this paper and discusses future research directions.

II. RELATED WORK
At present, scholars continue to explore the problem of cloud
manufacturing SCO, and have achieved certain research
results [7], [8]. Cloud manufacturing SCO is a multivariable
and uncertain decision-making problem. Scholars’ research
on cloud manufacturing SCO mainly focuses on three
aspects: service resource evaluation indicators, SCO model
construction, and SCO methods [9], [10], [11].

A. CLOUD MANUFACTURING SERVICE RESOURCE
EVALUATION INDEX
In terms of the selection of evaluation indicators for cloud
manufacturing service resources, Que et al. selected four
basic indicators such as time and cost to construct the problem
model, and proposed a new model from service providers to
users [12]. Yang et al. selected evaluation indicators such as
time, cost, and energy consumption from the perspective of
sustainable development, and constructed a multi-objective
SCO model [13]. In response to the different needs of
multiple users, Yuan et al. established a service quality
index system, which mainly includes six important indicators
such as time, cost, availability, and composability [14].
In addition to the research on basic attribute indicators such
as time, cost, and availability, Mubarok et al. proposed a
multi-level reliability evaluation model [15]. Similarly, using
the multi-level modeling method of manufacturing services,
Ding et al. constructed a cloud manufacturing service
portfolio optimizationmodel based on three different levels of
time, cost and reputation evaluation indicators [16]. Aiming
at the uncertainty of reality, Gao et al. established the SCO
model based on quality of service and robustness [17]. When
studying the trust relationship between the manufacturing
supplier and the demander, Yang et al. established an
evaluation index system for cloud manufacturing service
satisfaction [18].

When studying the evaluation indicators of cloudmanufac-
turing service resources, most scholars ignore the timeliness
of historical attribute evaluation indicators such as reliability
and availability [19]. For manufacturing service satisfaction,
Yang et al. used a decay function to describe the change
in service satisfaction [18]. However, only the historical
attributes of service satisfaction are considered, and the
dynamic changes and timeliness of indicators such as the
sustainability of service resources are not considered.

B. CONSTRUCTION OF CLOUD MANUFACTURING SERVICE
COMPOSITION OPTIMIZATION MODEL
In terms of cloud manufacturing SCO model construction,
Seghir and Khababa constructed a QoS-aware cloud SCO
model from the perspective of service demanders [20]. Also
focusing on meeting the requirements of service demanders,
Bouzary and Chen proposed a grey wolf algorithm based
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on a new evolutionary operator to solve the large-scale SCO
problem [21]. In order to reduce the operating cost and time of
service providers, Aghamohammadzadeh et al. constructed a
SCO model based on logistics planning and manufacturing
operations [22]. Cloud manufacturing SCO is jointly par-
ticipated by multiple agents, and the relationship between
multi-agent is also the research focus of scholars. Wu et al.
considered service quality optimization from the perspectives
of platform operators and service demanders, and established
a multi-objective integer bilevel multi-follower planning
model to meet the needs of platform operators and service
demanders [23]. Considering the interests of the service
demander and the service provider, Guan et al. constructed
a mutual selection model of cloud manufacturing service
composition based on the interests of both the demander
and the provider [24]. To solve the problem of SCO in case
of service exceptions, Wang et al. took business exceptions,
quality of service, etc. as constraints and established the
service composition reconfiguration model based on actual
constraints [25].

The whole process of cloud manufacturing service port-
folio optimization mainly involves three subjects: service
demander, platform operator and service provider [26].
Wang et al. constructed an evolutionary game model of
‘‘service demander-service provider-platform operator,’’ and
studied the trust relationship among the three subjects in
the cloud manufacturing environment [27]. In order to meet
and balance the long-term and short-term utility of each
participant, Zhang et al. established the SCO model that
considers the short-term utility of the service demander and
the long-term utility of the service provider [28]. When
constructing the service resource composition optimization
model, most scholars only consider the needs and interests of
one or two parties, and rarely consider the interests of three
subjects at the same time. Without considering the integrity
of the whole SCO process, the SCO model is not perfect.

C. CLOUD MANUFACTURING SERVICE COMPOSITION
OPTIMIZATION METHOD
In the aspect of cloud manufacturing SCO method,
Akbaripour and Houshmand combined the local search
algorithm with the imperialist competition algorithm, and
proposed a new hybrid algorithm to solve the SCO problem
with sequential composition structure [29]. Yang et al.
proposed a guided artificial bee colony-grey wolf algorithm
to solve a robust SCO model for cloud manufacturing [30].
In order to maintain the balance between algorithm
exploration and development, Gavvala et al. proposed awhale
optimization algorithm based on the new eagle strategy [31].
At the same time, in order to improve the search efficiency of
the algorithm, Gao et al. proposed a hybrid genetic algorithm
based on a novel roulette selection operator to solve the
problem [17]. Feng et al. introduced local search strategies
of other algorithms on the basis of the NSGA-II, and used the
improved NSGA-II to solve the SCO problem [32]. To cope
with the complexity of manufacturing requirements,Wu et al.

proposed a novel optimal service composition path algorithm
based on dual heuristic functions [33]. Xie et al. proposed
a two-stage method consisting of K-means clustering and
the improved PSO algorithm to improve the efficiency of
solving SCO problems [34]. In order to better balance local
and global search capabilities, Jin et al. utilized the uniform
mutation method for global search and proposed an improved
whale optimization algorithm to quickly obtain the optimal
solution [35].

Most of the current researches transform multi-objective
optimization problems into single objective optimization
problems through linear weighting, which makes the final
solution more subjective and affects the final solution quality
to a certain extent [36]. For the complex multi-objective SCO
problem, Zhou et al. integrated the differential evolution oper-
ator into the artificial bee colony equation and proposed an
improvedABC algorithm [37]. Zhang and Zhao constructed a
two-level programmingmodel and used the NSGA-II to solve
the multi-objective SCO problem [38]. When solving two-
dimensional and three-dimensional objective optimization
problems, NSGA-II algorithm better maintains the diversity
of populations and solves the problem faster than other multi-
objective evolutionary algorithms, and has achieved good
results [39], [40].

The above related work has made many contributions
to the cloud manufacturing SCO, and have also achieved
many research results [41], [42]. However, there are still
some issues with the cloudmanufacturing SCO. Firstly, when
studying the evaluation indicators of cloud manufacturing
service resources, scholars have established the system of
service quality indicators and continuously improved it.
However, some scholars have overlooked the timeliness of
historical attribute evaluation indicators such as reliability
and availability. Secondly, from the perspective of con-
structing SCO models, most scholars consider the needs
and interests of one or both parties, but rarely consider the
interests of the three parties simultaneously. Third, from the
perspective of SCOmethods, scholars use different intelligent
algorithms to solve the SCO problem and improve the
quality of service composition. However, some scholars have
transformed multi-objective problems into single objective
problems, which makes the final solution subjective and to
some extent affects the quality of the final solution.

The problem of cloud manufacturing SCO needs further
research. Therefore, on the basis of existing literature
research, when solving the problem of cloud manufacturing
SCO, this paper first considers the timeliness of the historical
attribute evaluation index of service resources, and introduces
a time attenuation function to avoid the impact of the time
dynamic change of the historical index. Secondly, this paper
also comprehensively considers the interests of the three
main participants. Taking the needs of the service demander,
platform operator and service provider as constraints, this
paper constructs a three objective cloud manufacturing
SCO model, and uses NSGA-II algorithm and grey target
decision-making to solve the cloud manufacturing SCO
model considering the interests of multi-agent.

53762 VOLUME 11, 2023



K. Guo et al.: Multi-Agent Interests SCO in Cloud Manufacturing Environment

TABLE 1. Cloud manufacturing service resource evaluation index system.

III. CONSTRUCTION OF CLOUD MANUFACTURING
SERVICE COMPOSITION OPTIMIZATION MODEL
CONSIDERING MULTI-AGENT INTERESTS
A. SELECT SERVICE EVALUATION INDICATORS
The selection of cloud manufacturing service evaluation
indicators should fully consider the service quality require-
ments and the comprehensiveness of indicator selection.
This paper comprehensively considers the needs of the
three participants in the process of manufacturing service
composition and the relevant characteristics of manufacturing
resources. The evaluation index system of the optimization
model is shown in Table 1. The whole evaluation system is
divided into three parts: quality of service indicators (QoS),
sustainability indicators (SuS) and financial performance
indicators (FP). Among them, quality of service indicators
are oriented to the service demander, including the service
time and service cost in the process of task completion,
which are mainly used to measure the status of service
execution; Sustainability indicators are oriented to platform
operators, including historical service reliability and histor-
ical service satisfaction, which are mainly used to measure
the sustainable development of the platform itself; Financial
performance indicators are oriented to service providers,
including financial profit rate and service idle rate, which
are mainly used to measure the financial performance of
enterprises.

B. PROBLEM DESCRIPTION AND ASSUMPTIONS
Manufacturing is a multi-agent collaborative manufacturing
service network, which is mainly composed of three parts:
service demander, service provider and platform operator,
as shown in Figure 1. During the manufacturing process,

the service demander is responsible for releasing production
tasks and personalized requirements to the cloud platform;
The service provider is responsible for encapsulating manu-
facturing resources and related information as services and
sending them to the cloud platform; The platform operator
is responsible for decomposing tasks into manufacturing
subtasks and selecting appropriate service combinations
to undertake each manufacturing subtask. Cloud manu-
facturing service composition refers to selecting the best
service that meets the constraints from a large number
of candidate service collections according to the four task
execution structures of series, parallel, selection and cycle
to complete the tasks provided by the service demander.
In the process of cloud manufacturing SCO, the service
paths of parallel, selective and circular structures can be
transformed into serial structures. Therefore, it is assumed
that the relationships among the decomposed subtasks are in
series.

In the entire manufacturing service portfolio optimization
process, the complex manufacturing task CMT initiated
by the service demander needs to be decomposed into n
manufacturing sub-tasks CMST i according to the functional
characteristics and resource types of the task, that is,
CMT = {CMST i | i = 1, 2, · · · , n}. Each subtask CMST i
corresponds to a candidate service set CMSGi, and CMSGi
contains several candidate services CMS ij, that is, CMSGi ={
CMS ij | j = 1, 2, · · · ,mi

}
. Among them, CMS ij indicates

that the subtask CMST i is completed by the jth candidate
service in CMSGi, and mi indicates the number of candidate
services in CMSGi. When all the subtasks CMST i get
the corresponding CMS ij through combination optimization,
a service composition CMSL is formed at this time, that is,
CMSL =

{
CMS1j,CMS2j, · · · ,CMSnj

}
. Different service

composition schemes have different time, cost and service
quality to complete the manufacturing task, so it is necessary
to select the optimal service composition to complete the
complex manufacturing task in order to maximize the
benefits.

C. BUILDING A MULTI-OBJECTIVE SERVICE
COMPOSITION OPTIMIZATION MODEL
1) OBJECTIVE FUNCTION
First define the decision variable xij:

xij =


1, Candidate services CMS ij

execution task CMST i
0, Candidate services CMS ij

does not execution task CMST i

(1)

s.t.
mi∑
j=1

xij = 1, i = (1, 2, . . . n) (2)

Equation (2) indicates that each manufacturing resource
can only provide services for one manufacturing subtask at
a time, which is the constraint condition of the decision
variable.
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FIGURE 1. Cloud manufacturing service composition process.

a: QoS OPTIMIZATION OBJECTIVES OF SERVICE DEMANDER
i) MINIMUM SERVICE TIME

The optimization objective of manufacturing service time
refers to the minimum total service time of the whole service
composition process in cloud manufacturing. The objective
function is shown in Equations (3) - (5):

min T = min(Tm + Tl) (3)

Tm =

n∑
i=1

mi∑
j=1

xij ∗ T ijm (4)

Tl =

n∑
i=1

mi∑
j=1

m(i+1)∑
j∗

xijx(i+1)j∗ ∗ T (ij,(i+1)j∗)
l (5)

where, Tm represents the total processing time of the service
composition, T ijm represents the processing time of the service
CMS ij to complete the task CMST i. Tl represents the total
operation time between services in the service composition,
T (ij,(i+1)j∗)
l represents the logistics operation time from

service CMS ij to service CMS i+1j∗ .

ii) MINIMUM SERVICE COST
The optimization objective of manufacturing service cost
refers to the minimum total service cost of the whole service
composition process of cloud manufacturing. The objective
function is shown in Equations (6)-(8):

minC = min(Cm + Cl) (6)

Cm =

n∑
i=1

mi∑
j=1

xij ∗ C ij
m (7)

Cl =

n∑
i=1

mi∑
j=1

∗m(i+1)∑
j

xijx(i+1)j∗ ∗ C(ij,(i+1)j∗)
l (8)

where, Cm represents the total processing cost of the service
composition, C ij

m represents the processing cost of the service
CMS ij to complete the task CMST i. Cl represents the
total operating cost of services in the service composition,

FIGURE 2. Decay trend of the time decay function.

C(ij,(i+1)j∗)
l represents the logistics operating cost from

service CMS ij j to service CMS i+1j∗ .

b: SuS OPTIMIZATION OBJECTIVES OF PLATFORM
OPERATOR
The manufacturing service cloud platform needs long-term
development and planning. In this paper, the success rate,
security and satisfaction of service resources are taken as
the sustainable development indicators of platform operators.
Sustainable development indicators are subjective evaluation
indicators with historical attributes. The previous evaluation
methods give the same weight to the historical service
evaluation indicators in different time periods, ignoring the
dynamic and timeliness of the historical evaluation data.
In order to reduce the impact of timeliness of historical
attribute evaluation indicators, a time decay function will be
introduced to process historical data and weights, as shown
in Equations (9) - (10):

f (t) = e−λ t (9)

λ = 1/T0 (10)

In the above Equation, T0 represents the time interval
that determines the size of the parameter λ . Time t is an
independent variable, and the value range of function f (t)
is [0, 1]. In Equation (9), the time t is negatively correlated
with the time effect function. When the value of t is larger,
the value of f (t) is smaller, which means that the longer the
historical evaluation time is, the smaller the weight of the
historical evaluation function is, and the smaller the impact
on the existing service combination effect is. The parameter
λ is related to the decay rate of the time effect function.When
the time interval T0 is shorter, the time effect function decays
faster, as shown in Figure 2.

Combined with the characteristics of time effect function,
this paper takes the cooperation time of cloud manufacturing
entities as the total time, divides the total time evenly into
multiple timewindows, and calculates theweight of historical
evaluation function in different time periods. The specific
Equation is as follows:

Wl =

∫ t2
t1
e−λ1t ldt

1t l
(11)
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In Equation (11), t1 and t2 represent two time points of
the time interval, 1t l represents the l-th time window, Wl
represents the historical evaluation function weight of the l-th
time window, that is, the average weighted value of the time
effect function the l-th time window.

i) HIGHEST HISTORICAL SERVICE RELIABILITY
The optimization objective of manufacturing service relia-
bility refers to the highest successful execution rate of the
whole service composition process of cloud manufacturing.
The objective function is shown in Equations (12) - (13):

max HR = (
n∑
i=1

mi∑
j=1

Rij ∗ xij)/n (12)

Rij =

∑L
l=1 R

ij
l ∗Wl∑L

l=1Wl
(13)

where, Rijl represents the service reliability of the service
CMS ij in the l-th time window, Rij represents the service
reliability of the service CMS ij in the total time.

ii) HIGHEST HISTORICAL SERVICE SECURITY
The optimization objective of manufacturing service security
refers to the highest probability that task execution will not
be disturbed by impact during the whole service composition
process of cloud manufacturing. The objective function is
shown in Equations (14) - (15):

max HS = (
n∑
i=1

mi∑
j=1

Sij ∗ xij)/n (14)

Sij =

∑L
l=1 S

ij
l ∗Wl∑L

l=1Wl
(15)

where, S ijl represents the service security of the serviceCMS ij
in the l-th time window, Sij represents the service security of
the service CMS ij in the total time.

iii) MAXIMUM HISTORICAL SERVICE SATISFACTION
The optimization objective of manufacturing service satisfac-
tion refers to the maximum satisfaction of the whole service
composition process of cloud manufacturing. The objective
function is shown in Equations (16) - (17):

max HSA = (
n∑
i=1

mi∑
j=1

SAij ∗ xij)/n (16)

SAij =

∑L
l=1 SA

ij
l ∗Wl∑L

l=1Wl
(17)

where, SAijl represents the service satisfaction of the service
CMS ij in the l-th time window, and SAij represents the service
satisfaction of the service CMS ij in the total time.

c: FP OPTIMIZATION OBJECTIVES OF SERVICE PROVIDER
i) HIGHEST FINANCIAL PROFIT MARGIN

The optimization objective of the financial performance of
manufacturing services means that the financial profit margin
of the whole service composition of cloud manufacturing is
the highest. The objective function is shown in Equation (18):

max Fp = (
n∑
i=1

mi∑
j=1

Fpij ∗ xij)/n (18)

where, Fpij represents the profit brought by the serviceCMS ij
to the service provider.

ii) HIGHEST RESOURCE PERFORMANCE
In the process of service composition, services with a high
idle rate should be selected to ensure that the system con-
figuration is reasonable and to avoid congestion of individual
services. The optimization objective ofmanufacturing service
resource performance means that the service idle rate of the
whole service composition of cloud manufacturing is the
highest. The objective function is shown in Equation (19):

max SI = (
n∑
i=1

mi∑
j=1

SI ij ∗ xij)/n (19)

where, SI ij represents the idle rate of service CMS ij.

2) OVERALL MODEL
The model of cloud manufacturing SCO is as follows:

F = (min Qos,min SuS,min FP) (20)

min Qos = w1 ∗ T + w2 ∗ C (21)

min SuS = 1 − (β1 ∗ HR+ β2 ∗ HS + β3 ∗ HSA) (22)

min FP = 1 − (α1 ∗ Fp+ α2 ∗ SI ) (23)

Equation (21) - (23) represent three expressions for
primary indicators, where the values of primary indicators
are obtained from the weighted sum of secondary indicators.
The weights in the above equations are obtained based on
user preferences. w1,w2 are the weights of the secondary
indicators of the service demander; β1, β2, β3 are the weights
of the secondary indicators of the platform operator; α1, α2
are the weights of the secondary indicators of the service
provider.

The constraints of the SCO model considering multi-agent
interests are as follows:

s.t.



T ≤ Tmax
C ≤ Cmax
HR ≥ HRmin
HS ≥ HSmin
HSA ≥ HSAmin
Fp ≥ Fpmin
SI ≥ SImin

(24)

where, Tmax is the maximum service time acceptable to the
service demander, and Cmax is the maximum service cost
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FIGURE 3. Basic process of NSGA-II.

acceptable to the service demander. HRmin is the minimum
service reliability acceptable to the platform operator, HSmin
is the minimum service security acceptable to the platform
operator, and HSAmin is the minimum service satisfaction
acceptable to the platform operator. Fpmin is the minimum
financial profit margin acceptable to the service provider, and
SImin is the minimum resource idle rate acceptable to the
service provider.

IV. SOLVING THE OPTIMIZATION MODEL OF CLOUD
MANUFACTURING SERVICE COMPOSITION CONSIDERING
MULTI-AGENT INTERESTS
The cloud manufacturing SCO problem considering multi-
agent interests is a NP-Hard problem. Heuristic approach are
often used to solve NP-Hard problems, which is one of the
most suitable methods to solve this problem. At the same
time, considering multi-agent interests means considering
multiple objective functions. NSGA-II is one of the more
popular multi-objective algorithms. It reduces the complexity
of genetic algorithm (GA), has the advantages of fast running
speed and good convergence, and is also the benchmark
for the performance of other multi-objective optimization
algorithms. Therefore, this paper adopts an improved NSGA-
II to solve the cloudmanufacturing SCO problem considering
the interests of multi-agent.

A. BASIC PROCESS OF NSGA-II
The basic process of NSGA-II is shown in Figure 3:
The steps of NSGA-II are described as follows:
Step 1: set the population size, crossover, mutation and

other relevant algorithm parameters according to the solution

FIGURE 4. Elite selection strategy.

problem, and select an appropriate coding rule to convert the
solution space of the problem into the coding space.

Step 2: Randomly select N individuals in the above coding
space to generate an initial population P1 with a population
size of N.

Step 3: Perform non-dominated sorting on the initial
population, and divide the non-dominated level of the
individual. On this basis, crossover, mutation and other
operations are performed on individuals to generate a new
offspring population P2.

Step 4: Merge the parent and child populations into a
new population P3, and the number of individuals in this
population is 2N. Perform fast non-dominated sorting on
the new population and calculate the crowding degree of
individuals at each level. According to the size of the non-
dominated level and the crowding degree, the N individuals
with the best fitness value are selected to form a new
population P4, as shown in Figure 4. The population P4
performs operations such as mutation again to generate new
offspring.

Step 5: Determine whether the algorithm has reached the
maximum number of iterations. If the termination condition
of the algorithm is satisfied, output the Pareto solution
set, and select the optimal solution through the grey target
decision method; If the algorithm termination condition is not
satisfied, repeat the above steps 3, 4 and 5.

B. ALGORITHM DESIGN OF NSGA-II
1) ENCODING
According to the characteristics of cloudmanufacturing SCO,
this paper uses integer coding to encode chromosomes, and
establishes the mapping relationship between chromosome
genes and service resources, as shown in Figure 5. The cloud
manufacturing platform decomposes complex manufacturing
tasks into n manufacturing subtasks. Each manufacturing
subtask corresponds to a separate service candidate set, and
each service candidate set has m candidate services. In the
above-mentioned service candidate set, n candidate service
resources matching subtasks are selected and combined into
a service solution. At the same time, each chromosome
represents a service combination scheme, and the number of
genes in the chromosome represents the number of subtasks.
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FIGURE 5. Mapping relationship between service composition and
chromosomes.

2) SELECTION OPERATOR
The selection operation of NSGA-II algorithm aims to
select individuals with better performance in the population
and continuously optimize the population. The selection
operation of NSGA-II algorithm aims to select individuals
with better performance in the population and continuously
optimize the population. Compared with roulette and other
selection methods, tournament selection method is not only
easy to implement, avoiding the sorting steps of fitness
values, but also superior to other selection methods in
solving speed and accuracy. According to the characteristics
of cloud manufacturing SCO problem, this paper adopts
the binary tournament selection method, and makes the
selection according to the non-dominated sort ranking level
and crowding degree of individual population.

3) CROSSOVER OPERATOR
NSGA-II algorithm generates new individuals through
crossover operations to maintain the diversity of the popu-
lation. The crossover operation simulates the reproduction
process in nature. The chromosomes of the parent exchange
some genes according to the rules of the crossover operator,
thereby forming two new individuals. For different opti-
mization problems, the algorithm chooses different crossover
operators. In this paper, k-point crossover is selected as the
crossover operator according to the integer coding method
and the repeatability of chromosome genes. Determine
k intersection points in the parent generation, and then
perform the intersection operation on the fragments between
the intersections of the two parents. In the meantime,
the crossover probability of crossover operation is very
important. If the crossover probability is too high, excellent
genes will be lost. If the crossover probability is too low,
the diversity of the population will be reduced, thus reducing
the global optimization ability of the algorithm. Therefore,
the value range of the crossover probability of the crossover
operation is generally reasonable in the range of [0.4, 0.9].

4) MUTATION OPERATOR
NSGA-II algorithm uses mutation operation to avoid the
algorithm falling into local optimization quickly and improve
the global search ability. At the same time, the muta-

tion operation also increased the population diversity and
promoted the continuous optimization of the population.
For different optimization problems, the mutation operator
selected by the algorithm is different. For example, bit flip
mutation is suitable for binary encoding. According to the
integer coding method and the repeatable characteristics
of chromosome genes, the reverse mutation method is
selected as the mutation operator in this paper. The reverse
mutation operator first randomly selects a gene sequence,
then reverses the gene sequence in the sequence, and finally
reinserts the gene into the chromosome to generate a new
chromosome. In addition, the mutation probability of the
mutation operation is important to the operation of the
algorithm. Unreasonable mutation probability will affect the
running time and results of the algorithm, and too high
mutation probability will turn the NSGA-II algorithm into a
random search mode. Therefore, the value of the crossover
probability of the crossover operation is generally [0.005,
0.1].

5) TERMINATION CONDITIONS
In order to prevent the algorithm from entering the loop
solution, NSGA-II algorithm must set some termination
conditions to end the operation of the algorithm. The selection
of termination conditions is also crucial, because we need to
ensure that the algorithm has completed the operation of the
problem model. There are two main methods of termination
conditions: the first method is to set the target value in
advance, and when the algorithm reaches this value, the
algorithm ends. This method must know the target value
in advance, which is not suitable for the model constructed
in this paper. The second method is to set the number of
iterations in advance, and when the algorithm runs to a
predetermined number of iterations, the algorithm ends. The
second method not only conforms to the model constructed
in this paper, but also controls the running time of the
algorithm. Therefore, this paper adopts the above-mentioned
second termination method to terminate the operation of the
algorithm.

C. MULTI-OBJECTIVE GREY TARGET DECISION-MAKING
METHOD
The multi-objective optimization problems balance multiple
objectives based on the objective situation of the problem
and the subjective consciousness of the user, and find the
best solution within a certain range. The grey target decision-
making method is suitable for solving multi-objective opti-
mization problems and making decisions for comprehensive
evaluation. In the grey target decision-making method,
events (satisfactory solutions) that meet user requirements
form a grey target range. Within the range of grey targets
mentioned above, the grey target decision-making method
first calculates the effectiveness sample matrix of each
objective, and then assigns weights to each objective function
based on objective data and calculates the bull’s-eye distance,
reducing the negative impact of subjectivity. Therefore, grey
target decision based on entropy is selected as the decision
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method of service composition in this paper, and the optimal
service composition scheme is selected from the Pareto
optimal solution set obtained by NSGA-II algorithm. This
method selects the optimal scheme by calculating the bull’s-
eye distance of each scheme. The specific process is as
follows:

Step 1: Design the effect sample matrix X. The effect
sample matrix is composed of the effect sample values of
the optimization objectives of the decision plan, as shown in
Equation (25):

X =
(
xij

)
n×m (25)

where, n is the total number of decision-making schemes; m
is the total number of optimization objectives constructed by
the model; xij is the effect sample value, which is expressed
as the effect sample value of the j-th optimization objective
of the i-th scheme.

Step 2: Calculate the decision matrix R. The decision
matrix is composed of the effect measure value rij, as shown
in Equations (26) - (27):

R =
(
rij

)
n×m (26)

rij =
Zj − xij

max
{
max
1≤i≤n

{
xij

}
− Zj,Zj − min

1≤i≤n

{
xij

}} ,

j = 1, 2, . . . ,m (27)

where, Zj is the operator of rewarding the good and punishing
the bad, which is as follows:

Zj =
1
n

n∑
i=1

xij, j = 1, 2, . . . ,m (28)

Step 3: Calculate the weight wj of the optimization
objective. The weight of the optimization objective is
obtained according to the entropy value Ej of the optimization
objective. The specific Equation is as follows:

wj =
(1 − Ej)∑m
j=1 (1 − Ej)

(29)

Ej = −
1
ln n

n∑
i=1

yij ln yij (30)

where, Ej is the entropy of the optimization objective, and
the value range is Ej > 0; yij represents the proportion of
the optimization objective value of each scheme, and the
proportion is as follows:

yij =
xij∑n
i=1 xij

(31)

Step 4: Calculate bull’s-eye distance di of the optimization
objective. The bull’s-eye distance represents the advantages
and disadvantages of the selected scheme, so an optimal
scheme is selected from the Pareto solution set. The specific
Equation is as follows:

di =

√√√√ m∑
j=1

wj
(
rij − r0j

)2
(32)

TABLE 2. Partial evaluation index value of cloud manufacturing service
resources.

V. CASE VERIFICATION AND ANALYSIS
A. CASE DATA
Taking the gear manufacturing process of a bearing manufac-
turing company in China as an example, the manufacturing
process of cycloid gear is selected as a complex manufac-
turing task. The manufacturing service demander releases
manufacturing requirements on the cloud platform, and the
platform operator decomposes the complex manufacturing
task into six serial subtasks through task decomposition. After
the supply and demand matching of cloud manufacturing ser-
vices, the non-functional parameters of the service resources
corresponding to each subtask are shown in Table 2, and
the operation cost and operation time of the service resource
candidate set are shown in Table 3.

According to the requirements of the service demander,
platform operator and service provider for the SCO process,
the constraint parameters required by the cycloidal gear
manufacturing SCO model in the cloud manufacturing
environment are as follows: Tmax = 550, Cmax = 780,
HRmin = 75%, HSmin = 75%, HSAmin = 75%, Fpmin =

10%, SImin = 23%. The weight values in the overall model
are obtained based on user preferences. According to the
user preferences of the bearing manufacturing company, the
weight values of the secondary indicators are: 0.31/0.69,
0.3/0.4/0.3, 0.59/0.41. The bearing manufacturing company
makes a major adjustment every year. Therefore, 12 months
were selected as the total time in this experiment, and each
quarter was set as a time interval, for a total of four time
intervals. According to Equations (9) -(11), the historical
weights with time effect are obtained as: 0.644, 0.237, 0.087,
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TABLE 3. Operation time and operation cost of service resources.

TABLE 4. Service composition scheme based on Pareto solution set.

0.032. After the above constraint parameters are brought into
the model, the NSGA-II and the grey target decision-making
method are used to solve the SCO model.

B. CASE SOLVING AND ANALYSIS
Under the above parameter settings, the NSGA-II is operated
by python programming. The experimental environment of
this paper is PyCharm 2021.3.2, windows 10, 2.40GHz CPU.
The parameters of NSGA-II are set by consulting relevant
literature and the characteristics of cloud manufacturing SCO
problem. Among them, the initial population size of the
algorithm is 100, the number of iterations is 300, the mutation
probability is 0.1 and the crossover probability is 0.9.

After 300 iterations, the average fitness change trend of
the cloud manufacturing SCO model is shown in Figure 6.
Figure 6 (a) shows the iterative trend of QoS fitness value
of the service demander, Figure 6 (b) shows the iterative
trend of SUS fitness value of the platform operator, and
Figure 6(c) shows the iterative trend of FP fitness value
of the service provider. It can be seen from Figure 6 that
after 20 iterations of the NSGA-II, the fitness values of the
three objective functions have converged and are in a stable
state.

The Pareto front obtained by NSGA-II is indicated in
Figure 7, where F1 indicates the QoS value, F2 indicates the
SUS value, F3 indicates the FP value of the service provider,

FIGURE 6. Fitness change trend of three objective functions based on
multi-agent interests.

and the points in the figure represent a service composition
scheme. The Pareto front is uniformly distributed in the
solution space and forms a hypersurface, which proves the
diversity of solutions from the side.

On the basis of the Pareto optimal set solved by
NSGA-II and considering the interests of multiple agents,
this paper uses the grey target decision-making method
to select the optimal cycloidal gear manufacturing ser-
vice composition scheme. The specific calculation results
are indicated in Table 4. The optimal cycloidal gear
manufacturing service composition scheme is [2, 3, 2,
5, 3, 2], that is, [CMS12,CMS23,CMS32,CMS45,CMS53,
CMS62].
To verify the validity of the algorithm, this paper takes

three agents as optimization objectives, and uses GA to
solve the SCO problem. Then, compare and make deci-
sions between the three results and the scheme obtained
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FIGURE 7. Pareto front diagram of NSGA-II algorithm.

TABLE 5. Comparison and analysis of algorithm results.

by the above NSGA-II. The operation results are shown
in Table 5.

From the point of view of the optimization objective, the
scheme with QoS of service demander as the optimization
objective is better than the scheme required by the NSGA-
II in terms of objective function values F1 and F3. However,
the scheme obtained by the NSGA-II is better on the objective
function value F2. The scheme with SuS of platform operator
as the optimization objective is better than the scheme
required by the NSGA-II in terms of objective function
values F2 and F3. However, the scheme obtained by the
NSGA-II is better on the objective function value F1. The
scheme with FP of service provider as the optimization
objective is better than the scheme required by the NSGA-II
in terms of objective function valuesF3. However, the scheme
obtained by the NSGA-II is better on the objective function
value F1 and F2. Because when GA algorithm optimizes a
single target, it will optimize it to the extreme, and when
optimizing multiple targets at the same time, it is a trade-
off between multiple targets, and the resulting solution is a
compromise solution. At this time, the four schemes are in
a non-dominated state, and the grey target method is used
for decision-making. Through case analysis, it was found
that the bull’s-eye distance of the optimal solution obtained
by the NSGA-II was shortened by 34.95%, 39.97%, and
58.98% compared to the genetic algorithm. The bulls-eye
distance of the scheme obtained by the NSGA-II is smaller
and better than the other three schemes. The above results
prove the feasibility of the SCO model considering multi-
agent interests and the effectiveness of NSGA-II and realize
themanagement and effective utilization of service intelligent
resources.

VI. CONCLUSION
Aiming at the cloud manufacturing SCO problem, this
paper comprehensively considers the interests of cloud
manufacturing multi-agent, and builds a multi-objective
service composition model. In this model, the time decay
function is introduced to avoid the influence of time dynamic
changes of historical indicators of service resources. On this
basis, this paper adopts the NSGA-II and the grey target
decision-making method to solve the SCOmodel considering
multi-agent interests. Finally, through case analysis, it was
found that the bull’s-eye distance of the optimal solution
obtained by the NSGA-II was reduced by at least 34.95%
compared to the genetic algorithm, verifying the feasibility of
the optimizationmodel and the effectiveness of the algorithm.
In order to facilitate the establishment and solution of the
SCO model, this paper makes some assumptions, which is
somewhat different from the actual situation. In the next step,
we will conduct in-depth and comprehensive research on the
model to make it more relevant to the needs of actual service
composition. At the same time, deep learning, machine learn-
ing and other methods will be integrated into the research of
cloud manufacturing SCO to provide better service solutions
for multi-agent in the cloud manufacturing environment.
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