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ABSTRACT Recently graph auto-encoders have received increasingly widespread attention as one of
the important models in the field of deep learning. Existing graph auto-encoder models only use graph
convolutional neural networks (GCNs) as encoders to learn the embedding representation of nodes. However,
GCNs are only suitable for transductive learning, have poor scalability and shallow models with a poor
perceptual field, and have limitations in node feature extraction. To alleviate these problems, we propose
to use an adaptive weight integration graph attention network (GAT) and GCN’s random walk graph auto-
encoder (EGRWR-GAE) to better learn the embedding representation of nodes. There is a large amount of
noise in the graph data, which interferes with feature extraction and the GAT model is sensitive to noisy
data, we propose a random walk graph auto-encoder (EGSRWR-GAE) that integrates GAT, GCN, and
self-supervised graph attention networks (SuperGAT) using adaptive weights. The effectiveness of ourmodel
is well demonstrated by three publicly available datasets (Cora, Citeseer, and Pubmed) with optimizations
of up to 2.2% on the link prediction task and up to 12.9% on the node clustering task.

INDEX TERMS Graph auto-encoder, adaptive weight, ensemble, EGRWR-GAE, EGSRWR-GAE.

I. INTRODUCTION
Usability has been demonstrated in low-dimensional vec-
tor representations of nodes in graphs for a wide range of
machine-learning tasks [1], [6]. These tasks mainly include
node classification, recommender systems, social networks,
and link prediction. A large amount of graph data exists in real
life, especially in structures such as social networks, traffic
forecasting, and proteins [1], [26], [27]. Graph embedding,
link prediction, and node clustering are important tasks in
graph mining [26]. Graph auto-encoders are an important
object of research in graph neural networks, and the ear-
liest graph auto-encoder model was proposed by Kipf and
Welling [15]. The model is better able to obtain embedding
representations of nodes, learn low-dimensional vector rep-
resentations of nodes, and better apply them to tasks such
as graph embedding, link prediction, and node clustering [1],
[26], [33]. As a result, a great deal of research has been carried
out by researchers to better learn node feature representations.
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Graph embedding is a process of converting high-
dimensional dense graph data into low-dimensional vectors
through some mapping [5], [18], [19]. To obtain better graph
embeddings, researchers have continuously proposed new
models. Pan et al. [25] proposed a graph auto-encoder based
on adversarial regularization, which solved the problem of
lower embeddings due to the traditional graph auto-encoder
model ignoring the underlying data distribution in the graph,
but the model is not an optimal solution to alleviate the
low embedding problem. For the optimization scheme pro-
posed by Pan et al. [25], Huang and Frederking [26] argued
that the method is not optimal and therefore proposed a
graph auto-encoder based on the random walk regularization
technique. The random walk graph auto-encoder can alle-
viate the problem of ignoring node features in the recon-
struction matrix and can better alleviate the low embed-
ding problem [26], but the model can only alleviate the
low embedding problem and does not solve it. Although
several graph auto-encoder models have been proposed in
recent works, none of them consider graph structure and node
features. To address this problem, Salehi et al. [6] proposed
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a graph attention encoder that can be used on induction
tasks but the model is only applicable to shallow structures.
Dou et al. [27] merged the ideas from [25] and [26] and
proposed a graph auto-encoder based on adversarial and ran-
dom walk strategies to solve the low embedding problem.
The existing graph auto-encoder models all use GCNs as
encoders [1], [7], [8], [10], [11]. GCNs are only applicable to
transductive and cannot be applied to inductive learning [9].
At the same time, GCN as an encoder only uses a shallow
structure [18], which makes the convergence of the model
poor and will lose some node features causing some limi-
tations in node feature extraction [2], [10], [11], [33], [38].
To solve these problems, we proposed the EGRWR-GAE
model. However, there is also a large amount of noisy data
in the graph data [23], and to solve the interference caused by
noisy data for feature extraction, we proposed the EGSRWR-
GAE model. The specific contributions of this paper are as
follows:

• We use adaptive weights to integrate GAT and GCN as
new encoders, which can solve the limitations and poor
scalability problems of traditional graph auto-encoder
feature extraction.

• We use adaptive weights to integrate GAT, GCN, and
SuperGAT as new encoders that can resolve the interfer-
ence caused by noisy data to better obtain the embedding
representation of the nodes.

• We change the disadvantage of the traditional graph
auto-encoder model that only applies to transductive,
in this paper the model can be applied to both transduc-
tive and inductive learning, enhancing the generalization
ability of the model. At the same time, our model can
also be used for directed graphs, solving the drawback
that the traditionalmodel is only applicable to undirected
graphs.

II. RELATED WORK
The essence of graph embedding is a compression tech-
nique that compresses higher-dimensional vectors into lower-
dimensional vectors. Perozzi et al. [12] proposed a DeepWalk
model based on a depth-first search, which computes simi-
larity ranking to obtain nearest-neighbor recommendations.
Tang et al. [13] proposed a LINE model based on breadth-
first search, which is a model that uses neighborhood sim-
ilarity to compute first-order and second-order similarity to
obtain the embedding representation of nodes. Grover and
Leskovec [14] propose a Node2Vec model with structure and
homogeneity, which is essentially an extension of DeepWalk.
Ribeiro et al. [16] propose the Struc2Vec model, which cap-
tures structural similarity through the structure of the graph.

With the continuous research in deep learning, graph
embedding research nowadays is more likely to use graph
auto-encoder models, which are simple in the overall archi-
tecture, easy to use, and efficient [26]. Tran [17] proposed the
MTGAE model, which can obtain the latent representation
of a node using the graph structure. Most graph auto-encoder

models only consider undirected graphs, ignoring the more
complex directed graphs [8], [19]. Salha et al. [19] applied
graph auto-encoder to the task of link prediction of directed
graphs, solving the situation where most models only con-
sider undirected graphs. However, real-life graph data often
exists with hundreds of thousands of nodes, and the struc-
ture of the graph is very complex. For the processing of
large graph data, traditional models are difficult to handle
and poorly scalable [1]. To obtain better node embedding
methods, Salha et al. [1] proposed the FastGAEmodel, which
uses random subgraphs to scale millions of nodes and com-
plex graph structures and can rapidly accelerate the conver-
gence speed and performance of the model. Although several
models have been proposed recently, many of them have
shortcomings in reconstructing the original graph, model
robustness, and error metrics. For this reason, Hou et al. [34]
proposed a self-supervised training GraphMAE model to
alleviate these problems associated with the graph training
process. To make better use of node relationships and graph
structure, Chen et al. [36] proposed the LGCN-FF model,
which learns feature representations of nodes from heteroge-
neous graphs and then uses DSA functions to achieve graph
fusion. GCN uses graph structure to obtain node information,
but the extant models are shallow models that have limita-
tions in solving multi-view tasks. Wu et al. [37] proposed
the IMvGCN model, which uses reconstruction error and
Laplace matrix learning tasks to better establish the connec-
tion between GCN and multi-view learning from a feature
and structural perspective, and to better learn node features.
Existing graph auto-encoder models all use only shallow
structures [18], and there are limitations of non-Euclidean
data on the link prediction task. The DGAE model proposed
by Wu et al. [18] for this problem can effectively solve the
problem. The graph auto-encoder of the shallow model has
poor perceptual field and convergence and will lose some
node features causing some limitations in node feature extrac-
tion [11]. Instead, we use the integration idea to integrate
different networks to learn node features and use adaptive
weights to combine them. Experiments have shown that the
encoder integrating multiple networks is much better than the
encoder of a single network.

III. METHODOLOGY
This section focuses on the relevant technologies used.

A. GAT
The GCN model assigns identical weights to neighbors of
the same order of neighborhood [3], [20], which limits the
model’s ability to capture spatial information relevance, while
how GCN combines features of neighboring nodes is closely
related to the graph structure, limiting the model’s ability to
generalize [21]. Velikov et al. [21] proposed a GAT model
that uses an attention mechanism to weigh the summation of
neighboring node features. Essentially, GAT simply replaces
the original normalization function of GCN with an aggre-
gation function of neighboring node features using attention
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weights. both GAT andGCN are essentially feature extractors
that predict new node features for N nodes according to their
input node features [21].

GAT is an optimized version of GCN, which addresses the
shortcomings of GCN in terms of its inability to be applied
to inductive learning and directed graphs [3]. the essence of
GAT is that each vertex j computes attention to all vertices
on the graph, which allows the model to be well suited to
inductive learning without being limited by the structure of
the graph. Secondly, the GAT model requires weights to be
calculated with neighboring nodes, so it can be applied even
in directed graphs.

B. SUPERGAT
GAT can better extract node features using the attention
mechanism, but the presence of a large amount of noisy data
in the graph data [23], [24] can cause the GAT model to be
ineffective. To solve this problem, Kim et al. [22] proposed
the SuperGAT model. SuperGAT is essentially an optimiza-
tion of the GAT model, which is not always effective in the
face of noisy data. The SuperGAT model improves this prob-
lem by directing attention through the presence or absence
of edges between pairs of nodes. The model can reduce the
interference of noisy data and is essentially a variant form
of GAT. SuperGAT proposes four kinds of attention: GO,
DP, SD, and MX [22]. The Go approach is the original GAT
model, and DP refers to the dot product approach where two
vectors do the inner product. the SD is scaling on top of DP
and MX is a combination of Go and DP using Sigmoid scales
DP between 0 and 1 and then multiplies it with the Go result.

C. RANDOM WALK GRAPH AUTO-ENCODERS
The Graph Auto Encoder (GAE) enables the task of link
prediction. Similar to the Auto Encoder, the GAE can
reconstruct the adjacency relationships between nodes. The
graph auto-encoder model was first proposed by Kipf and
Welling [15] and the model is divided into two main parts
encoder and decoder. The graph G = (A, X) where A denotes
the adjacency matrix and X denotes the feature matrix of the
node [26], [27]. The GCN is used as the encoder [1], [7], [8],
[10], [11] and the embedding representation Z of the nodes is
obtained through a non-linear activation function, Z is defined
as shown in equation (1):

Z = GCN (X ,A)[15] (1)

For the decoder, the original graph can be reconstructed
by making an inner product of the obtained node embedding
matrices Z and ZT. The decoder is defined as shown in
equation (2):

A′
= σ

(
ZZT

)
[15] (2)

where A′ denotes the reconstructed adjacency matrix and
σ denotes the activation function.
A walk strategy was proposed by the random walk graph

auto-encoder to solve the low embedding problem. A ran-
dom walk is used on the graph to obtain a sequence of

nodes [4]. The sequence of nodes that are walked to is fed
into a SkipGram model [26]. The SkipGram model takes
the feature vectors of these nodes as input and then outputs
the representation vectors of the nodes after a hidden layer,
using down-sampling for optimization. In this way, contex-
tual nodes can be predicted, generating a low-dimensional
representation for each node. The exact structure can be seen
in the lower half of the model in Figure 1.

D. OUR MODEL
Unlike traditional graph auto-encoder models that only
use GCN as an encoder, we propose random walk graph
auto-encoders using an integration approach: EGRWR-GAE
and EGSRWR-GAE. The specific structure of the models
can be seen in Figure 1. The EGRWR-GAE model integrates
GAT and GCN as encoders using adaptive weights. The
EGSRWR-GAEmodel integrates GAT and GCN as encoders
using the EGSWR-GAE model integrates GAT, GCN, and
SuperGAT as encoders using adaptive weights. Both models
take the adjacency matrix A and the node feature matrix X
as input, obtain the node features in the hidden layer using
the GAT, GCN, and SuperGAT network layers respectively,
then integrate the node features learned by each of the three
networks through adaptive weights to form the new node
features, and finally pass through the fully connected layer
to obtain the node embedding matrix Z. Where the adap-
tive weights W are hyperparameters. The optimal value is
obtained through continuous training, and finally, the origi-
nal graph is reconstructed using the decoder. Our proposed
EGRWR-GAE and EGSRWR-GAE models are essentially
reconstructing new node features to obtain a better repre-
sentation of node features. Our model, therefore, uses three
different networks to learn node features to obtain better node
features. Firstly, we take the neighborhood matrix A and the
node feature matrix X, which are composed of the graph,
as input to each of the three different networks, and then
pass them through the non-linear activation layer to obtain
the hidden layer representation of the nodes. We integrate
the node features learned by the three networks with adaptive
weights to generate new node features, and by reconstructing
them we can obtain an embedding representation of the node
for downstream tasks.

It is found that our proposed models EGRWR-GAE and
EGSRWR-GAE can solve the limitations of traditional graph
auto-encoder feature extraction and effectively address the
shortcomings of using a single network as an encoder. The
specific model structure is shown in Figure 1.

IV. EXPERIMENT
Our work revolves around two unsupervised tasks: link pre-
diction and node clustering. Table 1 shows the details of the
three datasets we used.

A. LINK PREDICTION
1) BASELINE
In this paper, we compare several algorithmic models com-
monly used for link prediction.
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FIGURE 1. The overall architecture of the EGSRWR-GAE model. The EGRWR-GAE model integrates GCN and GAT networks as new encoders via adaptive
weights.

TABLE 1. Datasets used in this paper.

Deepwalk: Deepwalk is a ranking that computes similar-
ity to get nearest neighbor recommendations, a sequence of
nodes generated by a random walk on the graph, and then
an embedding of these nodes generated by the Word2Vec
method.

Spectral Clustering: Spectral Clustering is an efficient
embedding algorithm commonly used for social networks.

GAE: The topology of the graph and the node features are
used as input to obtain an embedding representation of the
nodes. Finally, the original graph is reconstructed using the
inner product.

ARGA [25]: ARGA is based on a graph auto-encoder using
an adversarial regularization technique to better learn the
embedding representation of nodes.

RWR-GAE [26]: RWR-GAE is to input the sequence of
nodes obtained by restarting random walk from the graph to
the SkipGram model, thus predicting contextual nodes and
obtaining a better embedding representation.

NPGNN [35]: The model is not only applicable to induc-
tive learning tasks but also generalizes well in the training of
subgraphs and can transfer subgraph information to the full
graph.

EGRWR-GAE: Our proposedmodel uses adaptive weights
to integrate GAT andGCN as new encoders for better learning
of node embeddings.

EGSRWR-GAE: Our proposed model uses adaptive
weights to integrate GAT, GCN, and SuperGAT as new
encoders to learn the embedding representation of nodes.

2) METRICS
Tomake our work more comparable, we use the AUC and AP
metrics [1], [25], [26]. AUC is the area under the ROC curve,
and its higher value indicates the probability of predicting
positive cases ahead of negative cases, AP is the average
accuracy of the PR curve, and its higher value indicates
the accuracy of the model in predicting positive cases [25],
[27]. In this paper, the data set is divided into a training
set, a validation set, and a test set, where the validation set
contains 5% of the data and the remaining 10% of the test set
is used as the training set [25], [26], [27].

3) EXPERIMENT SETTINGS
On the Cora and Citeseer datasets the total number of training
epochs = 200, the initial learning rate is lr = 0.01, the hidden
layer units are 32 and 16, the step size is l = 30, the window
size is w = 30, and the number of random walks t = 50,
We are in agreement with these parameters from Kipf and
Welling [1]. where the dropout rate dropout = 0.5 and the
number of heads head = 3 for GAT on the Cora dataset,
dropout = 0.6 for SuperGAT using attention as MX, the
sampling rate of 0.8 for edges and the number of heads
head = 12. On the Citeseer dataset, the dropout rate is
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dropout = 0.6 and the number of heads head for GAT = 3,
SuperGAT has a dropout rate of 0.4, uses SD as attention,
has a sampling rate of 0.8 edges, and has a head count of 12.
On the Pubmed dataset, the total training epoch = 2000, the
initial learning rate lr = 0.01, the hidden layer cells are 128,
the step size l = 70, the window size w = 80, and the
number of random walks t = 30. t = 30. GAT dropout rate
dropout= 0.6, number of heads head= 3, SuperGAT dropout
rate dropout = 0.6, using attention as MX, the sampling rate
of edges 0.8, number of heads head = 12.

TABLE 2. Parameter settings for different datasets.

4) EXPERIMENT RESULTS
Our results in the linked predictions are detailed in Table 3.
We compared the AUC and AP values of the different
algorithmic models on the Cora, Citeseer, and Pubmed
datasets and experimentally demonstrated that our models
EGRWR-GAE and EGSRWR-GAE performed better: all of
them had AUC and AP values above 93.5%. Compared
to the NPGNN model, our proposed model EGRWR-GAE
improves the AUC and AP in the Cora dataset by 1.1% and
1% respectively. the EGSRWR-GAE model improves the
AUC and AP in the Cora dataset by 0.6% and 0.9% respec-
tively. Compare to the RWR-GAE model, the EGRWR-GAE
model improves the AUC and AP in the Citeseer dataset
by 1.5% and 3% respectively. The AUC and AP of the
EGRWR-GAE model in the Citeseer dataset improved by
1.4% and 2.9%, respectively. Compared to the NPGNN
model, the AUC and AP of the EGRWR-GAE model in
the Pubmed dataset improved by 1.8% and 2.2%, respec-
tively. The AUC and AP of the EGSRWR-GAE model in
the Pubmed dataset were improved by 1.7% and 2.1%,
respectively.

The comparison with different models shows that our
model achieves good results in connection prediction. The
main reason for this is that we use an integrated approach
to learn node features using different networks, which is
widely used in machine learning. The advantages of inte-
gration are also very obvious. We use separate networks to
learn the features of the nodes. The integration method is
then used to combine the different networks using adaptive
weights to form new node features. Through several experi-
ments, our model achieves good results on the link prediction
task.

B. NODE CLUSTERING
1) BASELINES
For the node clustering task, we use the traditional k-means
algorithm for the clustering task, in addition to the models for
link prediction comparison and other comparison models:

TABLE 3. Algorithm comparison results.

k-means [25]: k-means is the most classical representative
of unsupervised learning clustering algorithms

GraphEncoder [28]: GraphEncoder is an unsupervised
algorithm that uses the obtained node embedding represen-
tations for clustering tasks.

DNGR [29]: DNGR is a graph embedding model that uses
the graph structure to generate a vector representation of the
nodes.

RTM [30]: RTM is a relational model of network structure
and node hierarchy

RMSC [31]: RMSC is a multi-view clustering algorithm
TADW [32]: TADWproves that DeepWalk is an equivalent

of the matrix decomposition algorithm
ARWR-GE [27]: The essence of this algorithm is a fusion

of the ARGA [25] model and the RWR-GAE [26] model to
better solve the embedding problem.

EGAE [39]: The model uses a relaxed k-means inner prod-
uct distance space to obtain the optimal partitioning, allowing
for a good interpretative representation of the nodes, which
can also be applied to other tasks.

DGAE [18]: The model uses deep structure, using skip
connections to incorporate node feature representations and
graph structure to better extract potential information from
the graph.

2) METRICS
For the clustering task, our model uses the same evaluation
metrics as the other models, which can make the comparison
of the models more illustrative. The metrics used are the
accuracy Acc response rate of the model to accurately iden-
tify true positives and false negatives [25], [33]. Normalized
Mutual Information NMI, is used to measure how similar the
results of two clusters are [33]. Adjusted Rand index ARI,
which responds to the degree of overlap between the two
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divisions [33]. F1, also known as the balanced F-score,
is defined as the summed average of the precision and
recall rates [33]. precision indicates the proportion of cor-
rectly predicted positive classes out of all predicted positive
classes [33].

3) EXPERIMENT RESULTS
The results of our experiments on the node clustering task
are detailed in Table 4, Table 5, and Table 6. We compared
Acc, NMI, ARI, F1, and Precision of different algorithmic
models on the Cora, Citeseer, and Pubmed datasets. on the
Cora dataset, our model EGRWR-GAE compared to ARWR-
GE showed an 8% improvement in ACC, a 6% improvement
in NMI, a 10.6% improvement in F1, a 12.7% improve-
ment in ARI and a 10.9% improvement in Precision. NMI
improved by 6%, F1 by 10.6%, Precision by 12.7%, and
ARI by 10.9%. The model EGSRWR-GAE improved ACC
by 8.7%, NMI by 6.7%, F1 by 11.3%, Precision by 12.1%,
and ARI by 12.9% compared to ARWR-GE. On the Citeseer
dataset our model EGRWR-GAE has a 5% improvement
in ACC, 3.3% improvement in NMI, 3% improvement in
F1, 6.4% improvement in Precision, and 5.4% improvement
in ARI compared to RWR-GAE. The model EGSWR-GAE
showed a 4.1% improvement in ACC, 4.8% improvement in
F1, 5.4% improvement in Precision, and 1.7% improvement
in ARI compared to ARWR-GE. On the Pubmed dataset
our model EGRWR-GAE has a 7% improvement in ACC,
7.3% improvement in NMI, 3% improvement in F1, 18%
improvement in Precision, and 8.3% improvement in ARI
compared to GAE. The model EGSRWR-GAE showed a
6.8% improvement in ACC, a 9.1% improvement in F1,
an 18.2% improvement in Precision, and an 8% improvement
in ARI compared to GAE.

TABLE 4. Comparison of clustering results of different algorithmic
models on the Cora dataset.

TABLE 5. Comparison of clustering results of different algorithmic
models on the Citeseer dataset.

TABLE 6. Comparison of the clustering results of different algorithmic
models on the Pubmed dataset.

We compare the models mentioned in the baseline on each
of the three datasets and our model achieves better results
on the clustering task compared to more models. The exper-
iments show that our model outperforms the other models
in all five metrics. The clustering results are found to be
significantly better than other models, further demonstrating
the usefulness of our model for graph embedding. Through
the experimental data above we can demonstrate that our
proposed model has a better clustering effect.

V. GRAPH VISUALIZATION
We demonstrate the effectiveness of our proposed model
on the Cora dataset using TSNE in two dimensions for the
clustering task, which can be seen in Figure 2. We compare
the clustering effect of the original RWR-GAE model with
that of our proposed model for the clustering task, and we
can see that our proposed model is superior.
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FIGURE 2. Visualization of the results of the three models for the
clustering task on the Cora dataset.

VI. DISCUSSION
Graph auto-encoders have been widely used as an important
model for deep learning in several fields [7], [17]. Our work
differs from models such as ARGA [25], RWR-GAE [26],
ARWR-GE [27], NPGNN [35], EGAE [39], and DGAE [38]
in that we take an integrated approach. We change the model
structure of existing graph auto-encoders and we propose
the EGRWR-GAE and EGSRWR-GAE models. The exist-
ing optimization models for graph auto-encoders have all
achieved very good results, but we find that integrating differ-
ent networkmodels using the idea of integration can be a good
solution to the limitations of the single model node features
proposed. However, after we compared more than a dozen
network models we found that the network model here works
best using GAT and SuperGAT and slightly less well using
other network models. On the link prediction task, our model
achieves a 2.2% improvement in AUC on the Pubmed dataset
compared to the state-of-the-art model NPGNN. On the node
clustering task, our model optimizes the ARI metric by 9.8%
on the Cora dataset and 3.6% on the Citeseer dataset com-
pared to the state-of-the-art EGAE model. In the PubMed
dataset, the ARI metrics were improved by 3.8% compared to
the state-of-the-art DGAE model. On the one hand, although
our model achieves relatively good results, we find that the
model runs more slowly with large datasets than with small
ones, since many random walks on large graphs result in a lot
of data. To address this problem, we propose to split the large
graph into several sub-graphs and perform random walks on
each sub-graph to speed up convergence. On the other hand,
our model may not work as well as the number of layers
increases, due to the shortcomings of the GAT model itself.
To address this problemwe suggest using regularization tech-
niques such as adding noise to alleviate this problem.

VII. CONCLUSION
All existing graph auto-encoder models only use GCNs as
encoders to learn the embedding representation of nodes.
However, GCN is only applicable to transductive learning
with poor scalability and there are limitations in node fea-
ture extraction. Our proposed models EGRWR-GAE and
EGSRWR-GAE can address the low embedding problem of
existing graph auto-encoder models, and we demonstrate the
superiority of the EGRWR-GAE and EGSRWR-GAEmodels
through link prediction and node clustering tasks on the
Cora, Citeseer, and Pubmed datasets. In the future, we intend
to combine our models with recommendation algorithms to
better implement recommendation tasks. In addition to the
integration approach incorporated, more techniques deserve
to be investigated in depth in the future.
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