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ABSTRACT Hand gesture recognition (HGR) is one of the widely-used human-computer interaction
technology. With HGR, the user can operate the interaction system without touching any devices. For a
better experience, recognition accuracy and computational speed are especially important. In this work,
a small-footprint HGR model and its hardware architecture design are proposed. The model first processes
the hand segmentation and uses the feature to recognize the hand gesture. The model mainly consists of
depthwise separable convolution to reduce the overall parameters and computations. We transfer the hand
segmentation task with some features to the hand gesture recognition task as a single-stage model. Based on
this hardware-efficient model, we propose the hardware architecture of the whole neural model including
depthwise convolution, pointwise convolution, batch normalization, and max-pooling. We also demonstrate
it on the evaluation board. The whole system is implemented on the Xilinx ZCU106 evaluation board. The
implemented system can achieve the performance of 52.6 fps and 65.6 GOPS based on the evaluation board.

INDEX TERMS Hand gesture recognition, attention model, depthwise separable convolution, hardware
accelerator, field-programmable gate array (FPGA).

I. INTRODUCTION
Human-computer interaction is widely used in recent years.
Typically, voice and hand gestures can be easily used to con-
trol the target system without touching devices. Hand gesture
recognition (HGR) can operate the system more intuitively
and precisely. For example, it can be used for smart TV and
video games. Currently, most HGR work can be divided into
two categories according to the form of input. One is using
wearable devices, such as data gloves, bracelets, etc. These
devices are inconvenient and limited by the environment [1].
The other is using image sensing [2]. By using an image as the
input, the user can operate the system unrestrictedly without
wearing any devices.

However, since less information can be determined by
the gesture, some research exploits depth cameras (such as
Kinect, RealSense) [3] or two cameras for stereo matching to
obtain the depth information. Although it improves the recog-
nition accuracy in a severe environment such as complex
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scenes, the depth cameras are relatively bulky and costly, and
also have certain bottlenecks to apply to smart home appli-
ances. Compared with the image with depth information, the
HGR using a single RGB image is easier to apply to various
scenes and also reduces the cost. However, it needs more
algorithm effort, which may require computational resources
and increase the recognition latency. Therefore, it is necessary
to optimize the HGR process and implement the system for
real-time recognition with good accuracy.

Recently deep learning network has reached great suc-
cess in several kinds of computer vision tasks, including
object classification [4], object detection [5], and semantic
segmentation [6]. These successes drive the development of
HGR systems based on deep learning methods [7], [8]. It has
been proven that processing the hand segmentation before the
hand recognition improves overall performance. The segment
feature filters out the complex image background, differences
in different skin colors, shadows, and other lighting changes.
Then the recognition network concentrates on gesture classi-
fication. By doing so, the recognition has significant improve-
ment, especially in the complex scenes.
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In neural network computation, the computational latency
and memory usage are mainly affected by the model size.
Currently, most HGR models include massive parameters
or complex data paths. For example, in [9], the HGR-Net
exploits dual channels which are the original feature and
the segmented feature to improve accuracy. Although it can
achieve good recognition results, memory usage cannot be
efficiently reduced because of the temporary data generated
from different channels.

Therefore, we designed a small-footprint model called
HGR-Lite as a hardware-efficient model. The proposed
model size is only 1.07MB, which is less than half of
HGR-Net. The data path of the proposed model is straight-
forward, i.e. there is no extra temporary data should be saved.
Additionally, this model mainly consists of depthwise sepa-
rable convolutions [10], which perform fewer computations
and are more efficient than conventional convolutions.

This paper focuses on the architecture design of the pro-
posed HGR-Lite model. Since the trend is to implement the
neural network model on the embedded system, we consider
it and design the hardware accelerator for the deep neural
network (DNN). Although CPUs and GPUs are more flex-
ible and convenient for neural network training and devel-
opment, they are not suitable for the inferencing stage in
home appliances because of their high power consumption
and cost. We use FPGAs to design since they are more
suitable than CPUs and GPUs in terms of performance and
power.

We use the dedicated hardware architecture and, imple-
ment this end-to-end HGR system on FPGA. The neural
network is composed of many processing elements (PEs)
for parallel computations. Since most computations con-
centrate on depthwise separable convolution, we focus on
optimizing the depthwise convolution and pointwise convo-
lution respectively. Also, we exploit the ping-pong buffer to
increase the memory bandwidth for real-time recognition.
After all the processes, the result is shown on the monitor
through the HDMI.

In summary, our system has better performance in terms of
less training and computing costs in both indoor and outdoor
scenes. The whole system is implemented on FPGA to verify
its performance. The proposed HGR system has the following
key contributions.

1. We design a small-footprint model, HGR-Lite, for the
HGR task. It can recognize 11 different gestures includ-
ing the unknown. This model is also greatly reduced
by the parameters and calculations while maintaining
recognition accuracy.

2. We design the pure-hardware end-to-end gesture recog-
nition system on ZCU106 FPGA without any support
from the CPU. The system includes all the necessary
sub-modules such as YUV to RGB module and HDMI
module, making the system more comprehensive.

3. A memory-efficient neural network accelerator is pro-
posed for improving the memory bandwidth issue
between the depthwise convolution and pointwise

FIGURE 1. (a) standard convolution. (b) depthwise convolution.
(c) pointwise convolution.

convolution. Also, the pipelined architecture is derived
to achieve real-time processing.

The remainder of this paper is organized as follows. Section II
discusses the related works of hand segmentation, hand ges-
ture recognition, and DNN hardware accelerators. Section III
describes the design of our proposed HGR-Lite model and
the result. Section IV gives the DNN accelerator architecture
of our proposed system. Section V presents the experiment
results, and Section VI concludes this paper.

II. RELATED WORKS
A. HAND GESTURE RECOGNITION
In the HGR algorithm, many kinds of research use the fea-
ture extraction algorithm to obtain the features of the hand
region in the image and then use the classifier to classify the
gesture. Reference [11] used the Bayesian model to detect
hand regions in an image. Hand features of low-level (color)
and high-level (shape, texture) are used in gesture recognition
and classified by SVM classifier. However, due to the high
complexity of the algorithm, the computation time is large.
Also, the dataset used in their work is limited to a specific
background and cannot be widely used in all scenarios.

Depth cameras have also been applied to hand gesture
recognition [12], [13]. In [12], the authors used the Leap
Motion and Kinect devices to combine depth information
and skeleton joint descriptors. Then SVM classifier with
a Gaussian Radial Basis Function (RBF) kernel is used to
classify the gesture. In [13], the k-curvature algorithm is used
to describe the posture by extracting the contour of the hand.
Then a dynamic time-variant algorithm is used to identify and
compare it with a series of pre-recorded gesture labels. This
technique is used for the classification of static and dynamic
gestures. Although these works may have good recognition
accuracy, the depth camera is relatively costly compared to a
single CMOS camera.
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FIGURE 2. HGR-Lite model. (a) main model. (b) layer structure in model.

With the advance in deep learning, [14] proposed a
multi-channel CNN for HGR. It uses the input image to
calculate the grayscale image, and edge feature image of
horizontal and vertical and then uses a simple network model
to calculate the classification results. Reference [15] proposes
an architecture for automatic gesture recognition that global-
izes local features to improve performance. Reference [16]
designed a new deep learning neural network model integrat-
ing several advanced action recognition techniques to solve
the complexity and performance problems of dynamic ges-
ture recognition. Although the network architecture in [17]
is simple, it uses Sobel filters to calculate edge features. The
dataset used in their work is almost in the simple background,
making it difficult to apply to real scenes.

In [9], the HGR-Net model was proposed and widely
applied in hand gesture recognition. The input image is cal-
culated by the hand segmentation sub-model, and then the
recognition sub-model is used to classify the hand gesture.
Such a model can train the hand segmentation sub-model
first. When the segmentation sub-model is trained, the recog-
nition sub-model is added to co-training to improve the recog-
nition rate of the gesture. Reference [9] was trained using
the OUHANDS dataset [17]. Compared to the other large
model-size neural networks (ResNet-50: 99MB, MobileNet:
16MB), HGR-Net has an average recognition rate of 88% at
a model size of 2.4MB. However, the data flow in HGR-Net
is relatively complex. The dual stream dataflow needs more
memory usage to store the temporary data. Besides, the used
parameters are large and could be further reduced.

B. HARDWARE ACCELERATOR
In recent years, the design of neural network accelerators
has been a research hotspot in the field of computer vision.
DNN or CNN is implemented on CPU, GPU, and even
on FPGA and ASIC [18]. There are three challenges in
the design of hardware-based neural network accelerators.
One is the mapping of multiple features in a convolutional
layer with large weights. It induces a large storage size.

Second, the high complexity of convolution calculations
largely increases the required time for the inference process.
The third is the data access delay caused by the limited
memory bandwidth. These factors hinder the real-time per-
formance and widespread deployment of DNN especially in
resource-constrained embedded systems. Therefore, it is nec-
essary to consider the speed and memory balance to achieve
optimized hardware performance.

In the research of hardware accelerators, [19] proposed
the CNN accelerator designed on Xilinx Vertex 7 FPGA.
The most important issue in implementing a neural network
on FPGA is that the calculated throughput and memory
bandwidth may not match. Due to insufficient utilization
of hardware resources or memory bandwidth, the existing
designs cannot achieve optimal performance. Therefore [19]
proposed an analysis design using the roofline model, and
used various optimization techniques such as cycle schedul-
ing and pacing. It analyzes the calculated throughput and
the required memory bandwidth and then uses the roofline
model to determine the best performance with low hardware
resources.

In 2018, [20] proposed Angel-Eye’s hardware accelerator
design. It is a programmable and flexible CNN accelerator
architecture to explore the hardware design process. This pro-
cess obtains weight parameters and network topology from
the trainedmodel, then quantizes and compiles the parameter,
and maps topology and quantized parameter to hardware.

Since CNN is a computationally intensive model, large
amounts of computing resources are required in the infer-
ence stage. Therefore, in the hardware accelerator design
of the FPGA, the trade-off between the number of calcula-
tions and the bandwidth of the memory is very important.
To reduce the computational load of standard convolution
operations, [21] proposed a depthwise separable convolu-
tion by splitting the standard convolution into depthwise
convolution and pointwise convolution, and its calcula-
tion is shown in Figure 1., which has been applied in
MobileNetV1 and later MobileNetV2. It is performed with
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FIGURE 3. Classification of hand gesture.

fewer multiply-accumulate operations and weight parameters
to achieve similar results from standard convolution. Based
on the depthwise separable convolution, [22], [23] proposed
the corresponding CNN accelerator. It is superior to the stan-
dard convolution accelerator design for both memory and
computational speed.

III. NETWORK MODEL DESIGN
In our design, we establish a segmentation model to mini-
mize memory usage. The hand segmentation task can share
some features well with the hand gesture recognition task,
making our design a single-stage model using the auxiliary
task approach.

A. DESIGN OF HGR-LITE MODEL
In this work, we dedicate ourselves to implementing our
work for real-world applications. Thus, the consideration
of background diversity is especially important. We use
PASCAL VOC2012 [24] as the background and hands data
in OUHANDS to generate more data. OUHANDS contains
10 different gestures from 23 themes, divided into training,
validation, and test datasets of 1200, 400, and 1000 images
respectively. We refer to the concept of ResNet and FCN
to design the hand-cutting sub-model with depth separable
convolution and develop it in the framework of Tensorflow.
Since the image resolution of the training dataset is different,
we resize the image resolution to 200 × 200 pixels, which
reduces the memory load of future hardware designs.

In the HGR network, we follow HGR-Net [9] to design
the segmentation sub-model and the recognition sub-model
to integrate the HGR model. In HGR-Net, there are two
processing streams. One stream is to generate a hand seg-
mentation map by the residual network. The other stream is
to compute the RGB image. Finally, these two features are
combined by the fusion function. Although the recognition
accuracy of this design is largely increased, this two-stream
model highly increases the computational complexity. Also,
the second stream needs to stall until the hand segmentation
map is computed.

TABLE 1. Segment evaluation of each training method.

The proposed HGR-Lite is shown in Figure 2(a). We ded-
icate ourselves to designing a hardware-efficient model with
only a computation stream. The orange area is the new
recognition sub-model. We use the pre-trained model of seg-
mentation to assist the recognition sub-model for training.
When performing the HGR task, we only need to use the
model of the green and orange regions instead of using the
entire model. These two modules are grouped as HGR-Lite
mode in Figure 2(a). This design is to allow part of the hand
segmentation sub-model (only green region when inferencing
HGR task) as an attention model to learn hand features first
and then help the recognition sub-model more effectively to
perform the whole HGR task.

B. LAYER STRUCTURE IN HGR-LITE MODEL
We will discuss the layer structure of HGR-Lite in
Figure 2(b), including the SC_bn module and DSC_bn mod-
ule. Each SC_bn module includes three layers of depthwise
separable layers, three layers of batch-normalization (BN)
layers, and one layer of max-pooling layers. The number
represents the size of convolution kernels. For example,
32 means the convolutional layer uses 32 convolution kernels
to extract features. The output resolution of each SC_bn is
1/4 of the input. Each DSC_bn module contains one layer of
deconvolution layer and two layers of depthwise separable
convolution layer. Thus, the resolution of the output is four
times the input.

After the DSC_bn module, two layers of depthwise sepa-
rable layers are connected to output the hand segmentation
and hand contours of different dimensions through FCN.
By using the concept of ResNet, the feature images of the
same resolution are combined and used as the input of the next
layer. For example, the output of SC_bn32 will be merged
with the output of DSC_bn32 as the input of DSC_bn16.

At the end of each training session, we verify the training
dataset and copy the results including errors to a new folder
of training data. We also fine-tune the model by taking the
previously trained model as the pre-train model. After fine-
tuning, we verify the training dataset again to increase the
probability of selecting the error detection sample and then
repeat this action until the accuracy of the training data no
longer rises. We call it iterative training.

In the hand segmentation and recognition sub-models,
we use a training strategy that includes a synthetic dataset
combined with iterative training to help train a robust net-
work model. The precision, recall, and F1 score are calcu-
lated. Since OUHANDS does not have background images
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FIGURE 4. Block diagram of overall system.

as negative samples, we select 1000 images in PASCALVOC
2012 as the negative sample and the OUHANDS test set as
the positive sample to evaluate the overall performance.

As a result, the evaluation is shown in Table 1. The model
trained without the enhanced data has a strong behavior of
detecting the color of the skin. Thus, the sample with insuffi-
cient or too strong light cannot be accurately detected.

In the selection of training datasets, because only
OUHANDS contains gesture labels, we use this dataset to
train the recognition sub-model and fine-tune the part of the
segmentation sub-model. At the same time, there are only
10 gestures in the OUHANDS dataset.Wewill mark the other
datasets and negative samples beyond these 10 gestures as
the 11th unknown label to increase the robustness of HGR,
as shown in Figure 3.

IV. DESIGN OF HARDWARE ACCELERATOR
This section explains the design of the DNN hardware accel-
erator. To implement the HGR task in FPGA, we are faced
with the problem of insufficient on-chip memory. Therefore,
we analyze the bandwidth of the off-chipmemory and the size
limit of the on-chip memory and planned the best memory
access method to reduce the access time with the off-chip
memory. As a result, it helps the system to achieve the
real-time HGR task.

A. OVERALL SYSTEM
We use the Xilinx ZCU106 evaluation board for develop-
ment. It is the SOC architecture with the FPGA UltraScale+
MPSOC XCZU7EV. Note that our design does not use
Processing System (PS) for control. All modules are imple-
mented in Programmable Logic (PL).

The block diagram of the whole system is shown in
Figure 4. The white block is logic circuits, the blue block is
on-chip memory, and the gray block is off-chip memory. The
image input is an SDI camera, and the image is transmitted
to the FPGA through the FMC-SDI daughter board. Because
the image format is YUV422, after capturing the image syn-
chronization signal, the YUV422 is converted to the YUV444
first. Thus the image can be reduced to 200 × 200 pixels to
match the input size of the HGR-Lite model.

From the ‘Resize’ module, the image will be divided into
twoways. One is to store the image in ‘Input RAM forHDMI’
on-chip memory and then convert it to YUV422 format and
output it to the screen through the HDMI interface. The
other way is to convert the image to RGB for neural network
operation where the RGB image will be stored in the ‘Input
RAM for cal.’ through the ‘Controller’. Then the image will
be transferred to the ‘DDR4’ by the ‘DDR Controller’, and
the image will be stacked to the parallel format for the usage
of the hardware accelerator. At this time, ‘Input RAM for
cal.’ will continue to store new input images, but it will stop
transferring images to ‘DDR4’.

When the input image is ready, ‘Controller’ will enable the
‘Depthwise CNN’ to start the depthwise convolution. In the
beginning, the ‘DDR Controller’ will read part of the image
from ‘DDR4’ and write it to the ‘Ping RAM’. ‘Depthwise
CNN’ will read the desired image from the ‘Ping RAM’ and
start the operation. The data format of the ‘Ping RAM’ is
to stack images of multiple channels on the same address
for multi-channel parallelization convolution operation. The
weight parameter will be used to shorten the parameter of
the 32-bit floating-point parameter to the 16-bit fixed point,
and then store the weight parameter of each layer in each
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FIGURE 5. Architecture of depthwise CNN.

FIGURE 6. Architecture of pointwise CNN.

read-only memory (ROM) for ‘Depthwise CNN’ or ‘Point-
wise CNN’ use. By storing the weight in specific ROMs,
the computation units only need to wait for the temporary
data from each layer. Namely, the weight parameters will not
occupy the DRAM memory bandwidth.

After the calculation, the featured image will be stored in
‘Pong RAM’ and then written into ‘DDR4’ through ‘DDR
Controller’. Since there is no way to store all the feature
images of the single-layer model due to the size of ‘Ping
RAM’ and ‘Pong RAM’, it is necessary to repeatedly access
‘DDR4’. When ‘Depthwise CNN’ completes the calculation,
it will notify the ‘Controller’ to enable the ‘Pointwise CNN’
to operate. The action of ‘Pointwise CNN’ is similar to that of
‘Depthwise CNN’. To further improve the throughput, we use
different PEs for ‘Depthwise CNN’ and ‘Pointwise CNN’ to
maximize the bandwidth.

After the HGR-Lite model completes, ‘Controller’ will
enable the ‘SoftMax’ to read the 11 feature results to find the
maximum value and then transmit the result to ‘Plot Ans’ to
display the recognition result on the screen.

B. DEPTHWISE CNN
Since the data bandwidth of DDR4 in the ZCU106 board is
512-bit length, in the case of 16-bit feature data, the same
address can store up to 32 channels of data. Therefore, in the
design of the convolution operation, we use 32 calculation
units (PEs) to process 32 channels of data in parallel. Since
the convolution kernel size is fixed to 3 × 3 in the HGR-Lite
model, the design of the PE is composed of 9 multipliers and
an adder tree to calculate the convolution result.

The ‘Depthwise CNN’ architecture is shown in Figure 5.
‘Flow Controller’ receives the control signal (CS) from the
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FIGURE 7. Architecture of max-pooling.

TABLE 2. Comparisons of related models.

TABLE 3. Quantitative performance of HGR-lite.

‘Controller’, and CS included such as the start signal, the
size of the input feature image, the number of channels, and
the number of convolution kernels to control the reading
and calculation of ‘Depthwise CNN’. In ‘Depthwise CNN’,
the initial address of the ‘DDR4’ is 640000. It is to avoid
overwriting the feature image with ‘Pointwise CNN’.

‘Depthwise CNN’ reads the input data and weights first.
The input data is composed of 32 channels to form a 512-bits
data format. It needs 9 clock cycles to read and store into the
32-channel ‘Input Buffer’. At the same time, the weights are
composed of a 3×3 convolution kernel to form a 144-bit data
format. It requires 32 clock cycles to read and store to the
32-channel ‘Weight Buffer’. When the data is ready, 32 PE
operations are executed, and the results of 32 channels are
stacked into 512 bits and output.

In PE calculation, ‘Input Buffer’ will shift the register data
of D0, D1, D3, D4, D6, and D7 into D1, D2, D4, D5, D7,
D8, and will read the next 3 data into the D0, D3, and D6
registers for pipeline operation. At this time, only three clock
cycles are needed to read. However, due to the limited size
of ‘Ping RAM’ and ‘Pong RAM’, it is impossible to store all
the temporary feature data. Therefore, ‘Ping RAM’ will only
read the input data of the maximum storage limit of ‘Pong
RAM’. When ‘Pong RAM’ is full, the data will be stored in
‘DDR4’, and the next input data in ‘DDR4’ will be written to
‘PingRAM’ to continue the depthwise convolution operation.
Finally, ‘Depthwise CNN’ will send a completion signal to
notify ‘Controller’ to perform ‘Pointwise CNN’.

C. POINTWISE CNN
Similar to ‘Depthwise CNN’, ‘Pointwise CNN’ is also
designed with 32 PEs to maximize the data bandwidth of
DDR4. ‘Pointwise CNN’ uses a 1 × 1 convolution kernel to
convolve and sum all the channels of each pixel of the input
data. In the case an input data containing 32 channels, the

FIGURE 8. Diagram of memory access.

PE is designed to use 32 multiplications and the adder tree to
perform the convolution operation.

The ‘Pointwise CNN’ architecture is shown in Figure 6.
‘Flow Controller’ receives the CS signal from the ‘Con-
troller’. It includes the start signal, the input feature map
size, the channel, the number of convolution kernels, and the
maximum pooling enable signal. ‘Pointwise CNN’ reads the
initial address of the ‘DDR4’ as 0. ‘Pointwise CNN’ reads
the input data and the weight parameter first. The input data
is composed of 32 channels to form a 512-bit data format.
‘Pointwise CNN’ does not need ‘Input Buffer’ because it only
needs to read one pixel to start the pointwise convolution
operation. The weight parameter is composed of a 1× 1 con-
volution kernel of 32 input channels to form a 512-bit data
format and 32-bit BN parameters including 16-bit beta and
16-bit gamma. It means that ‘Pointwise CNN’ needs 32 clock
cycles to read and store the parameter to ‘Weight Buffer’ and
‘BN Weight Buffer’ for 32 output channels.

When the data is ready, 32 PE operations will be started.
Since the input image channel exceeds 32, multiple PE cal-
culations are needed to add up the feature result of an output
image channel. For example, when the input image channel
is 64 after the first 32 PEs are calculated, the temporary data
will be stored in the Ping RAM first. After the second 32 PEs
are completed, the Ping RAM data will be read for add-up.

The architecture of the ‘Max-Pooling’ is shown in Figure 7.
We use two comparators and a line buffer to achieve max-
pooling operations. It can be directly combined with the
convolution hardware accelerator. We designed it with time
efficiency without reading data from memory again. This
design has better hardware utilization and lower access time.

As the BN operation is performed, we use the beta and
gamma parameters to perform the multiply-accumulate oper-
ation, and finally, store the 32-channel results of the output
image into ‘Ping RAM’. And then we transfer it to ‘DDR4’
through the ‘DDR Controller’. All these modules include the
PE, the max-pooling, and BN operations performed in the
pipeline.

Finally, for softmax operation, we simply choose the
largest value of the 11 gestures with comparators for our
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TABLE 4. Memory access analysis.

prediction instead of realizing the actual softmax architecture.
This method saves a lot of hardware resources but does not
affect the final prediction.

V. HARDWARE IMPLEMENTATION RESULTS
A. IMPLEMENTATION RESULT AND QUANTITATIVE
ANALYSIS
We tested the performance of HGR-Lite using the
OUHANDS test dataset [17] and compared it to other works
using the same dataset based on the same bit precision (FP32),
such as the ResNet-50, MobileNet, and HGR-Net models.
The experimental results of ResNet-50 and MobileNet are
obtained in [17], and HGR-Net is focused on the HGR task.
The comparison results are shown in Table 2. It shows
HGR-Lite has a gesture recognition rate of 89%. It runs at
the smallest model size with the smallest input size.

To effectively reduce the amount of memory usage,
we refer to the experimental results of [20]. In four different
network models, they use 16-bit weight parameters, and the
error for accuracy is negligible. The performance of our
HGR-Lite quantification is shown in Table 3. It is the result
of fine-tuning training. It shows that the loss of accuracy is
very small when using 16-bit fixed-point numbers so 16-bit
fixed-point is used to quantify weights and feature data.

In summary, we use the hand segmentation model as an
attention model to train the part of the HGR models first.
This strategy allows these convolutional layers to achieve
the function of extracting hand features. As a result, it can
achieve better recognition for training the entire HGR model.

We did not use the entire model since our goal is to reduce the
number of parameters and calculations. This result is helpful
to implement on embedded systems.

B. MEMORY ACCESS AND RECOGNITION LATENCY
In our proposed HGR-Lite model, the maximum feature data
of 200×200×32×16bits=19.5Mb is generated. The on-chip
memory is not enough to store all the feature data. Therefore,
‘Ping RAM’ and ‘Pong RAM’ are designed to have a maxi-
mum allowable size of 200 × 25×512bits =2.44Mb, which
is 1/8 of the input image resolution. Therefore, when ‘Ping
RAM’ or ‘Pong RAM’ is full, the data needs to be stored in
‘DDR4’ first, and then the required input data is read from
‘DDR4’ to ‘Ping RAM’ or ‘Pong RAM’.

The data bandwidth of ‘DDR4’ is 512 bits, and each
address can store up to 32 channels of data. Therefore, when
the channel of the input feature map is larger than 32, the
operation of accessing ‘DDR4’ needs to perform multiple
times as shown in Figure 8. In depthwise convolution, the
number of times that DDR4 needs to be accessed is calculated
according to the input image size and channel. In pointwise
convolution, the number of accesses is calculated according
to the input image size, channel, and output image channel,
and the detailed access analysis is shown in Table 4. We used
DDR4’s operating frequency of 300MHz, and a total of
2.854ms is required to access all the feature data, which is
acceptable in real-time processing.

C. FPGA DESIGN RESULT AND COMPARISON
Since there is no related work on the neural network hard-
ware accelerator of HGR, we compare our design with the
related work of depthwise separable convolution hardware
accelerators. The comparison is shown in Table 5. In our
design, 32 PEs are used for synthesis. Also, the DSP units and
other hardware resources are largely utilized. The synthesis
results show that 70∼80% of hardware usage has been used.
To achieve an efficient hardware architecture design, it is nec-
essary to maximize the utilization of hardware resources and
plan the access schedule of the on-chip memory and off-chip
memory to achieve the desired performance. In our design,
we can achieve 65.6 GOPS and 52.6 FPS performance.

In other related works, [22], [23], [25], [26], [27] also
proposed a hardware accelerator with depthwise separable
convolution. Reference [22] proposed the RR-MobileNet
model to reduce redundant models, which is 25 times smaller
than AlexNet’s model. The hardware accelerator is imple-
mented on the Xilinx XCZU9EG FPGA with a perfor-
mance of 127.4 FPS and 91.2 GOPS. However, [22] uses
a lot of on-chip memory. Different evaluation boards have
great differences in on-chip memory which affects perfor-
mance significantly. To incorporate the on-chip memory into
the evaluation, we use the amount of calculation per Mb
(Throughput per Mb, TPM) to quantify the performance of
the hardware accelerator. Since Altera’s BRAM unit is 20Kb,
which is different fromXilinx’s BRAMunit of 36Kb, we con-
vert BRAM to Mb as the evaluation standard. Therefore,
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TABLE 5. Comparisons of related work.

the TPM of [22] is 3, and our TPM is 7.01. It shows the
design [22] in the evaluation of on-chip memory is not as
efficient as ours.

Reference [23] implemented a design on the Arria 10
SOC FPGA, using a large amount of on-chip memory to
implement large matrix multipliers. Although the FPS and
the calculation are better than the other designs, the TPM
of [23] is 4.74 and our design is still more efficient in
on-chip memory usage. Reference [25] proposed an accel-
erator for general matrix-matrix multiplication and tested it
with Shufflenet. Due to the low computation complexity of
Shufflenet, the accelerator achieves high FPS. Because of
high memory use, the TPM is just 3.36 which is still 2.086×
lower than our work. Reference [26] proposed a high-speed
low-cost CNN inference accelerator for depthwise separable
CNNs. Although this design can achieve higher FPS, we still
have better performance in the throughput comparison. Ref-
erence [27] proposed a highly flexible and reconfigurable
FPGA hardware accelerator architecture that allows them to
obtain higher FPS and throughput, but relatively they also
have higher resource usage in BRAM. Based on this compar-
ison, it shows that once our design is using the same size of
on-chip memory, the throughput will be better than the other
three works. Moreover, in our design, the on-chip memory
and PE usage can be re-planned according to different FPGA
specifications to achieve optimized hardware performance.
Our hardware design can also implement the other kinds

of model that uses the depthwise separable convolutional
network.

VI. CONCLUSION
This paper proposes the HGR-Lite model with complete soft-
ware and hardware design. The proposed HGR-Lite uses the
hand segmentation model as an attention model to improve
its performance of the HGR-Lite model. We use the part of
the segmentation model and recognition model to achieve
HGR, resulting in a great reduction in the parameters and
calculations. Also, the synthesis dataset and iterative training
strategy are added to make the model better. In the software
part simulation, in the OUHANDS test dataset, an accuracy
rate of 89.25% can be achieved.

In the hardware architecture design, we design the pure-
hardware end-to-end gesture recognition system on ZCU106
FPGA without any support from the CPU. We use 32 PEs
to process 32 channels of data in parallel to maximize the
use of DSP units. With storing weight parameters in ROM
and the use of the Ping-Pong buffer, the memory has signifi-
cant improvement. The whole system is implemented on the
Xilinx ZCU106 evaluation board. It can achieve 52.6FPS and
65.6 GOPS performance. The performance after quantifying
on-chipmemory in our design can achieve 7.01 GOPS perfor-
mance per Mb of on-chip memory and shows a better result
than the existing depthwise separable convolutional hardware
accelerators.
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