
Received 21 April 2023, accepted 16 May 2023, date of publication 19 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3277953

PHH: Policy-Based Hyper-Heuristic With
Reinforcement Learning
ORACHUN UDOMKASEMSUB 1, BOONCHAROEN SIRINAOVAKUL1,
AND TIRANEE ACHALAKUL1,2
1Department of Computer Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
2Government Big Data Institute, Bangkok 10900, Thailand

Corresponding author: Orachun Udomkasemsub (orachun.udo@kmutt.ac.th)

This work was supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program under Grant PHD/0065/2554.

ABSTRACT Hyper-heuristics have a high level of generality and adaptability, allowing them to effectively
solve a wide range of complex optimization problems. With reinforcement learning, hyper-heuristics can
use experience and knowledge gained to tackle unforeseen problems, allowing hyper-heuristics to adapt
and improve over time. Our paper proposes a framework for using policy-based reinforcement learning to
improve the performance of hyper-heuristics. The framework trains hyper-heuristic agents to select the best
generalized constructive low-level heuristics to solve combinatorial optimization problems. The framework
evaluation was performed using three benchmarking problems: traveling salesman, capacitated vehicle
routing, and bin packing problems. The results showed that the proposed framework can outperform existing
meta-heuristic and hyper-heuristic-based algorithms for all large problem instances in all problem domains.
The proposed framework was also evaluated by applying it to a cost optimization problem for workflow
scheduling on a hybrid cloud with a deadline constraint. Eight agents were trained on medium-sized work-
flows with two deadlines and tested against traditional meta-heuristic and hyper-heuristic methods to solve
smaller and larger workflows with unforeseen deadlines. Four workflow applications, three workflow sizes,
and three deadlines were used in the evaluation. The results showed that our proposed framework provided
significantly better solutions of up to 98% for benchmarking problems, and up to 22% for cost optimization
in workflow scheduling. Moreover, trained with small problem instances, the framework performed well
for unforeseen larger problem instances implying its generalization. The proposed framework, thus, has
the potential to improve both the generality and performance of solving large combinatorial optimization
problems.

INDEX TERMS Combinatorial optimization, hyper-heuristics, policy optimization, reinforcement learning,
workflow scheduling.

I. INTRODUCTION
Combinatorial optimization is an active research area for the
last few decades across broad disciplines including oper-
ational research, computer science, finance, bioinformat-
ics, industrial informatics, engineering, and data science.
Some well-known combinatorial optimization problems are
scheduling, timetabling, planning, resource and space alloca-
tion, cutting and packing, and engineering design. Workflow

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Augusto Ribeiro Chaves .

scheduling is another NP-complete combinatorial optimiza-
tion problem that attracted many researchers in the past.
Many works propose algorithms to solve this problem [1].

Meta-heuristics are flexible and can be adapted to different
problem types. In recent years, many meta-heuristic meth-
ods have been proposed to solve combinatorial optimization
[2], [3], [4]. However, heuristics are designed for specific
problems and may require fine-tuning parameters. Addition-
ally, solving large complex problems with heuristic methods
may take a long time and may not output the global opti-
mum within a reasonable time frame [5]. The performance

52026 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6452-9438
https://orcid.org/0000-0001-5274-6646


O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

of heuristic methods also varies across different problem
instances.

Hyper-heuristics have recently gained attraction from the
research community to address this challenge. It is an alter-
native generality of computational search algorithms with an
expectation for acceptable solution quality across problems or
problem instances. Hyper-heuristics are high-level automated
methodologies for selecting or generating a set of low-level
heuristics (LLH) [6]. That is, hyper-heuristics automatically
generate a combination of supplied heuristics to effectively
solve the given problem. This can be efficient for problems
where the appropriate heuristic is not known in advance.

Previous research on reinforcement learning shows
promising performance for combinatorial problems as it has
led to optimal solutions or solutions that are at least as optimal
as solutions obtained by heuristic methods [7]. Reinforce-
ment learning enables hyper-heuristics to capture knowledge
and experiences used to solve problem instances and utilize
them to solve unforeseen problems. Since the motivation for
hyper-heuristics is to raise the level of generality but not
to be competitive with state-of-the-art approaches [8], inte-
gration of hyper-heuristics with reinforcement learning must
preserve the generality of hyper-heuristic search algorithms
and their capability to obtain the optimal solution.

This study developed a framework for generalizing
hyper-heuristics using policy-based reinforcement learning
to solve combinatorial optimization problems by learning
how to select constructive low-level heuristics to construct a
solution.

One of the most widely used benchmark frameworks for
hyper-heuristic is HyFlex [9], which provides a platform for
evaluating hyper-heuristic approaches across various prob-
lem domains. However, HyFlex currently supports pertur-
bative low-level heuristics. The evaluation of constructive
low-level heuristics is thus limited. We then implemented
some standard benchmarking problems existing in HyFlex to
evaluate the proposed framework. We conducted the experi-
ments on three well-known problem domains, namely trav-
eling salesman, capacitated vehicle routing, and bin packing
problems.

In addition, to test the efficiency of the proposed frame-
work in solving real-world problems, we also applied it
to the cost optimization workflow scheduling on a hybrid
cloud with a deadline constraint. Large workflowsmimicking
real-world problems were used in the experiments.

These results from the evaluation show that hyper-
heuristics can be trained to construct combinations of
generalized constructive LLHs, which solve both benchmark-
ing problems and the workflow scheduling more optimally
when compared to traditional meta-heuristics and existing
hyper-heuristics.

The rest of this paper is organized as follows. Section II
discusses the literature on hyper-heuristics and reinforce-
ment learning. Section III describes the proposed policy
optimization-based hyper-heuristic framework to solve a

combinatorial optimization problem. Section IV shows an
evaluation of the proposed framework with benchmarking
problems. In addition, an application of the proposed frame-
work to real-world cost optimization for a workflow schedul-
ing problem was also evaluated. Experiment design and
results are discussed, and the performance of the framework
is evaluated. Section V finally summarizes this research.

II. RELATED WORKS
A. HYPER-HEURISTICS
Cowling and Soubeiga coined the term ‘‘hyperheuristics’’
in 2000 to represent the idea of ‘‘heuristics to choose
heuristics’’ [10]. They also applied a choice function to
determine which heuristic to choose for each decision
in the employee scheduling problem [11]. More recent
hyper-heuristics research involves using genetic program-
ming to generate new heuristics that are suited to a specific
problem or class of problems by combining components or
building blocks of human-designed heuristics [12]. In 2019,
Burke, E. K. et al. proposed a more general definition
of the term hyper-heuristic as ‘‘an automated methodol-
ogy for selecting or generating heuristics to solve compu-
tational search problems’’ [13]. A heuristic to be chosen by
hyper-heuristics is a low-level heuristic or LLH. There are
two types of LLHs: constructive LLHs, which are used to
construct a solution, and perturbative LLHs, which are used
to modify a solution in order to improve it.

Most of the existing literature on hyper-heuristics focuses
on selecting perturbative LLHs [14]. Choong et al. [15] used
amodified choice function to select perturbative LLHs for the
neighborhood search mechanism in the Artificial Bee Colony
algorithm to solve combinatorial discrete optimization prob-
lems. They evaluated their method on the traveling salesman
problem. Alkhanak and Lee [16] proposed a hyper-heuristic
for cloud cost optimization on scientific workflow schedul-
ing. They used perturbative LLHs to repeatedly update solu-
tions. The hyper-heuristic used a scoreboard, and the LLHs
were selected based on the performance score from previ-
ous iterations. Lin et al. [17] also proposed a genetic pro-
gramming hyper-heuristic algorithm to generate perturbative
heuristics to solve multi-skill resource-constrained project
scheduling problems. Kenari and Shamsi [18] proposed a
framework to solve workflow scheduling problems on cloud
environment. The framework classified workflows based on
their features using a decision tree. The meta-heuristics used
as perturbative LLHs include Genetic Algorithm (GA), Ant
Colony Optimization (ACO), and Particle Swarm Optimiza-
tion (PSO). However, only one LLH was selected to generate
a solution, and therefore several meta-heuristic LLHs cannot
be utilized to solve a single problem instance.

According to the reviewed literature [15], [16], [17], [18],
high-level heuristics are simple rule-based or meta-heuristics.
While they can generalize to different problem instances,
sizes, or types, they do not have the ability to capture

VOLUME 11, 2023 52027



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

experiences from previously solved problem instances and
use them to solve unforeseen ones. The goal of this research is
to use the captured experiences of constructive LLH selection
to enhance the capabilities of hyper-heuristics.

B. REINFORCEMENT LEARNING
Reinforcement learning [19] has been widely applied in
various fields including robotics, communication and net-
working, natural language processing, games, self-organized
system, scheduling management, resource management, and
computer vision [20]. Mao et al. [21] designed a way to apply
reinforcement learning to a multi-resource cluster scheduling
problem. Several recent studies have demonstrated the use of
reinforcement learning in job-shop scheduling problems [22],
[23]. In addition, Melnik and Nasonov [24] proposed neural
network scheduling, a workflow scheduling algorithm using
reinforcement learning and an artificial neural network.

Reinforcement learning is a type of machine learning that
allows a system to learn how to select the best action in
a given situation by learning from trial and error. Unlike
supervised learning methods, which require manually labeled
training data, reinforcement learning generates training sam-
ples automatically during the training process. It can be used
to solve very complex problems whichmight not be able to be
solved by traditional techniques. Furthermore, it can capture
knowledge from previously solved problem instances and use
it to make decisions in new situations.

Q-learning [25] is a popular model-free reinforcement
learning algorithm used for solving complex decision-making
problems. In Q-learning, an agent learns an optimal policy
by iteratively estimating the Q-value of each state-action
pair using the Bellman equation. The Q-value represents
the expected cumulative reward an agent will receive by
taking a particular action in a given state. By continuously
updating its Q-value estimates, the agent learns the opti-
mal policy that maximizes its expected reward over time.
Q-learning is attractive because it can handle continuous
state spaces, is easy to implement, and can learn optimal
policies from scratch. However, Q-learning is limited by its
requirement for an accurate reward function, its sensitivity
to large state spaces (the curse of dimensionality), and its
inability to handle stochastic environments. Q-learning has
been successfully applied to various domains, including gam-
ing, robotics, and recommendation systems. For example,
Q-learning has been used for robotic control tasks, such as
grasping and manipulation, and for optimizing recommenda-
tions in online shopping platforms. In the context of hyper-
heuristics, Q-learning can be used to optimize the heuristic
selection and parameter tuning in combinatorial optimization
problems.

While Q-learning uses the Bellman equation, DQN [26] is
a variation of Q-learning that uses deep neural networks to
approximate the Q-values. By using neural networks, DQN
is able to handle high-dimensional state spaces and can learn
to generalize across similar states. In addition, DQN uses

experience replay, a technique that stores past experiences
in a buffer and randomly samples from them during training
to reduce the correlation between successive samples. DQN
is more complex and requires more computational resources
than Q-learning. The algorithm can also be more sensitive
to hyperparameter tuning. However, despite these limitations,
DQNhas been successfully applied to a variety of challenging
problems, including Atari games and robotic control tasks.

In addition, there is another category of algorithm that
finds the optimal Q-value using policy-basedmethods instead
of state-action pairs. This type of algorithm learns the
optimal policy directly, without explicitly computing the
Q-values. Policy-based methods such as Actor-Critic meth-
ods and Trust Region methods are more efficient in prob-
lems with high-dimensional state space [27]. Actor-Critic
method consists of two neural networks: an actor network
that learns the policy and a critic network that estimates the
value function. Trust Region method optimizes the policy by
constraining the maximum change in the policy during each
update.

Proximal Policy Optimization (PPO) [28] is also another
popular policy-based method that combines ideas from both
actor-critic and trust region methods. PPO optimizes the
policy iteratively using a clipped surrogate objective. This
objective will ensure that the policy change is not too large.
In Comparison to value-based methods, policy-based meth-
ods are better suited for continuous action spaces and can
handle stochastic environments more effectively. However,
policy-based methods are generally more compute-intensive
and can be more sensitive to the choice of hyperparameters.

Reinforcement learning algorithms, in particular policy-
based methods, offer promising approaches for hyper-
heuristics that can optimize selection in combinatorial
problems. These algorithms do not rely on handcrafted
heuristics and domain-specific knowledge. It can identify
effective heuristics through trial and error. Moreover, these
algorithms are suitable for continuous and stochastic envi-
ronments, which are common in combinatorial optimization
problems. However, generalizations must also be included
in the design of reinforcement learning components, such as
actions, state representation, and reward function.

C. REINFORCEMENT LEARNING FOR HYPER-HEURISTICs
The potential benefits of reinforcement learning have moti-
vated research on its use in hyper-heuristics for automated
low-level heuristic selection.

Falcão et al. [29] applied Q-learning-based hyper-
heuristics to solve a scheduling problem in manufacturing
systems. The proposed hyper-heuristic uses Q-learning to
learn how to select perturbative meta-heuristics to gradually
improve the schedule. It was evaluated against AutoDynA-
gents [30], a system that finds scheduling solutions using
meta-heuristics with coordination and self-parameterization.
The results showed that the Q-learning-based hyper-heuristic
significantly outperformed the AutoDynAgents system.

52028 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

Lin et al. [31] proposed a Q-learning-based hyper-heuristic
to solve the semiconductor final testing scheduling problem.
Eight easy-to-implement heuristics, wrapped by Simulated
Annealing (SA), were used as LLHs. The Q-learning method
was used to select perturbative SA-based LLHs to perturb
the solution for a defined number of iterations. The proposed
method was evaluated with 10 problem instances, and the
average makespan was the lowest among the evaluated algo-
rithms. However, the proposed method used online learn-
ing, so the Q-learning network parameters were re-initialized
every run, and the algorithm could not utilize any experience
across the runs.

Gölcük and Ozsoydan [32] proposed an algorithm rec-
ommender to select the most suitable bio-inspired algorithm
for dynamic multidimensional knapsack problems (DMKP)
using Q-learning and hyper-heuristic method. The LLHs used
in this study include Artificial Bee Colony (ABC), Mantra
Ray Foraging Optimization (MRFO), Salp Swarm Algorithm
(SSA), andWhale Optimization Algorithm (WOA). The pro-
posed algorithm solved four problem instances that have been
dynamically changed with different change frequencies. The
results from the recommender were compared with ones from
the standalone bio-inspired algorithms. The results show that
Q-learning is the best recommender algorithm. In this work,
all DMKP instances are of the same sizes. The recommender
requires a modification to generalize across different instance
sizes. In addition, the LLHs in this work are meta-heuristics,
which start from random solutions and iteratively perturb
them until the stopping criterion is met.

Dantas et al. [33] evaluated a hyper-heuristic with a deep
Q-network (DQN) selection strategy to select perturbative
LLHs to iteratively improve solutions for the vehicle routing
problem (VRP) and the traveling salesman problem (TSP).
The results were compared to those obtained using Multi-
Armed Bandit-based algorithms. The experiment results
showed that the DQN selection strategy outperforms the other
algorithms for 9 out of 10 VRP instances. While reinforce-
ment learning can utilize knowledge from previously solved
problem instances to solve new ones, this prior work did
not demonstrate the use of the trained model to solve new
problem instances.

Qin et al. [34] proposed a novel reinforcement learning-
based hyper-heuristic using evolutionary meta-heuristics as
perturbative LLH selection to solve heterogeneous vehicle
routing problems. The proposed algorithm was trained on
randomly generated problem instances and used to solve new
ones. It outperformed six state-of-the-art meta-heuristics in
36 out of 38 instances, with average results up to 40% lower
distance.

D. HyFLEX: A BENCHMARK FRAMEWORK FOR
CROSS-DOMAIN HEURISTIC SEARCH
HyFlex [9] provides a generic architecture that allows
researchers to create new hyper-heuristics by designing an
LLH selection strategy and move acceptance mechanism.

It includes a set of ready-to-use components, such as bench-
mark problems and their corresponding low-level heuristics,
and provides tools for performance comparison and visualiza-
tion. The framework has been used in various research studies
and competitions, demonstrating the effectiveness and ver-
satility of hyper-heuristics in solving different optimization
problems.

In HyFlex, the available LLHs are perturbative, meaning
that they generate new solutions by making changes to the
current solution. The perturbative heuristics consist of four
types: mutation, cross-over, local search, and ruin-recreate.
Hyper-heuristics in the HyFlex framework generally start
with initializing a population of random solutions. A user
defines a high-level search strategy that selects and com-
bines these low-level heuristics to create new solutions. The
high-level search strategy can be implemented using different
mechanisms, such as a genetic algorithm, a tabu search, or a
random search. The resulting solutions are evaluated using
a move acceptance mechanism that determines whether the
new solution is accepted or rejected. From the perturbative
nature of HyFlex, the framework is not suitable for construc-
tive low-level heuristics evaluation as detailed in the next
section.

E. PERTURBATIVE VS CONSTRUCTIVE LOW-LEVEL
HEURISTICS
Perturbative heuristics refer to a class of optimization algo-
rithms that involve making small perturbations or changes to
an existing solution in order to find a better solution. These
algorithms are often used in situations where it is difficult
or impractical to find an optimal solution using traditional
optimization techniques. The basic idea behind perturbative
heuristics is to start with a good solution and then make
small, random changes to it in order to explore the search
space for other potentially better solutions. This process is
repeated multiple times, with the expectation that eventually
the algorithm will converge on an optimal or near-optimal
solution. Many research papers [15], [16], [17], [18], [29],
[31], [33], [34] including the HyFlex framework use pertur-
bative heuristics as low-level heuristics.

However, perturbative heuristics have some limitations.
First, the initial solution or a starting point can have a sig-
nificant impact on the final solution obtained. In some cases,
even small changes to the initial solution can lead to signifi-
cantly different results. This can be problematic in situations
where there is a high degree of uncertainty in the problem.
Second, the order in which perturbations are applied can have
a significant impact on the resulting solution. Thus, in many
cases, the approach requires additional experimentation and
analysis to identify the optimal sequence of perturbations.
Third, selecting stopping criteria or an appropriate number
of iterations can be challenging. If the number of iterations is
too small, the algorithmmay not be able to explore the search
space adequately for good solutions, resulting in underfitting.
On the other hand, if the number of iterations is too large,

VOLUME 11, 2023 52029



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

FIGURE 1. Comparison between hyper-heuristic approaches with
perturbative (left) and constructive (right) low-level heuristics.

it can lead to overfitting or increased computational overhead
unnecessarily.

Constructive heuristics, in contrast, build a solution iter-
atively by adding or selecting components one at a time
until a complete solution is obtained. Hyper-heuristics with
constructive LLHs start with an empty or partially complete
solution and gradually add components to it in a way that
satisfies the constraints of the problem. The constructive
LLHs can refer to some predefined rules or strategies to
select the next component to add, based on the current state
of the solution. These rules can be based on local or global
information about the problem, such as the cost or feasibility
of different components or their impact on the objective
function. Figure 1 compares the process to obtain a solution
from perturbative LLHs (left) and constructive LLHs (right).

In many real-world problem domains, constructive LLHs
will have advantages over perturbative LLHs because the
approach does not depend so much on the quality of the
initial solution. Constructive LLHs can start with an empty
solution. Moreover, constructive LLHs are generally more
efficient in terms of computational resources as the approach
requires fewer evaluations of the objective function. Con-
structive LLHs add components to the solution iteratively,
rather than generating and evaluating many perturbations.
Thus, searching for the optimal solution will generally be
simpler and faster. The number of iterations is limited to the

number of components in the complete solution and there is
no need to fine-tune the stopping criterion.

Based on the discussion above, We proposed a policy-
based hyper-heuristic framework (PHH) with benefits from
reinforcement learning and constructive LLHs. Moreover,
once trained, PHH can create solutions quickly as it does
not require online training as in the previous works. In addi-
tion, the proposed framework has the potential to handle
cross-problem domains, such as the semiconductor final test-
ing scheduling problem in [31]. Furthermore, our proposed
framework has the potential to solve optimization problems
in dynamic environments, as described [32], by evaluating the
changed state and selecting LLHs at each decision step. In this
research, the proposed PHH framework was applied to solve
a real-world problem: workflow scheduling in a hybrid cloud.
In this problem domain, the execution speed and computation
resources matter. The proposed framework aims to address
the gaps in the existing literature with policy-based rein-
forcement learning. The learning process can utilize previous
experiences on constructive LLHs selection at each decision
step. The framework is thus expected to construct an opti-
mal complete solution for different problem instances, sizes,
or types. In addition to the proposed real-world problem, the
framework was also evaluated with three problem domains in
HyFlex for its generality.

III. MOTIVATION AND THE PROPOSED PHH
FRAMEWORK
The existing hyper-heuristics are limited in their ability
to capture experiences from previously solved problem
instances and use them to solve unseen ones. To address
this challenge, we propose a novel policy-based hyper-
heuristic framework (PHH) with constructive LLHs and
Proximal Policy Optimization (PPO). The proposed frame-
work augments traditional hyper-heuristics by leveraging the
strengths of reinforcement learning. Trained with small prob-
lem instances, the framework can offer solutions for unseen
larger problems. Additionally, with constructive LLHs, the
framework potentially provides more efficient algorithms
than perturbative LLHs in solving combinatorial optimization
problems. The use of PPO also allows our framework to
obtain the optimal solution for different problem instances,
sizes, or types.

The components and the training process of the framework
are illustrated in Figure 2. The components of the frame-
work include an environment, an agent that interacts with the
environment, a policy, and an experience buffer. The policy
represents a probability distribution over the available LLHs
for each given environment state. The experience buffer is a
storage of experience samples used for training and improv-
ing the policy. The inputs to the training process include a
set of problems to be used for training, a set of available
constructive LLHs, a solution quality function, a generalized
reward function, and stopping criteria to determine when to
end the training process. A set of available constructive LLHs
for a traveling salesman problem, for example, might include

52030 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

selecting the nearest city, the furthest city, or a random city.
It is important to note that the given LLHs must be general-
ized enough to be compatible with any instances in the given
problem sets. The stopping criteria of the training process
are based on a fixed number of iterations or a threshold
value to detect convergence. Once training is complete, the
trained policy can be used to obtain solutions for new problem
instances.

Figure 3 illustrates the components and process for obtain-
ing a solution for a given problem instance using the trained
policy. This process does not involve data sampling or policy
updates, so there is no need for the experience buffer or
rewards. It simply iteratively asks the trained policy for the
best constructive LLHs to obtain a set of solution components
until the complete solution is constructed.

The process of learning is described in Algorithm 1, while
Algorithm 2 describes the process of obtaining a solution
from the trained policy.

In the proposed PHH framework, an environment is a
system or world in which the agent operates. The environ-
ment provides all the information to the agent as well as the
appropriate reward signal. An agent is a learning entity that
takes actions in the environment to maximize its reward or
minimize its penalty. It makes observations from the envi-
ronment and uses these observations to determine the current
state of the environment as well as to decide which action to
take next. A state is a representation of the current conditions
or situation of the environment. A policy is a function that
maps states of the environment to actions taken by the agent.
It determines the behavior of the agent in a given state and
is typically learned by the agent through interaction with
the environment. The state transition is the change in the
environment that occurs as a result of the agent taking an
action. It includes the transition from one state to another and
the resulting reward or penalty.

The agent begins by observing the initial state of the prob-
lem environment and applying the selected LLH from the
initialized policy. The LLH returns a solution component to
be integrated into the current solution, which is incomplete
until it includes all necessary components to form a complete
solution. For instance, in the traveling salesman problem,
a solution component might be a city and the order it is
visited. The solution is considered complete when all cities
have been visited.

After integrating the obtained solution component into the
current solution, the solution quality function evaluates the
solution and returns a quality value that the agent uses as
a reward for the selected action. The agent then observes
changes in the environmental state and the obtained reward
value, and uses this information to train the policy.

A. POLICY-BASED REINFORCEMENT ALGORITHM
This section outlines the reinforcement learning methods
used in the proposed PHH framework. The learning algo-
rithm in the PHH framework employs a policy-based learn-
ing method rather than a value-based method. Value-based

Algorithm 1 PHH Training Algorithm
Given
- P = {pi} :A set of training instances of the problem class
- L = {li}: Available constructive LLHs for the given
problem class
- Q(X): Solution quality function
- R(s, l): Generalized reward function for the selected l on
the given state s
- STOP(): Stopping criteria
1. Initialize the policy πθ

2. Generate an environment of problem instance p from P
3. Let n = number of components for a complete solution
4. Let X = {}, an empty solution as an empty set of
solution components

5. While the stopping criteria STOP() is false, do
6. Observe the current environment state s
7. Obtain the next LLH l from the policy πθ for the given

state s
8. Apply the selected LLH l to get a solution component

1x
9. Append 1x to X
10. Evaluate the quality of the (incomplete) solutionQ(X)
11. Observe the reward r = R (s, l)and the updated

state s′

12. Store the experience (s, l, r, s′) in the experience
buffer

13. If the experience buffer is big enough, then
14. Train the policy πθ with samples from the

experience buffer
15. End if
16. If the solution is complete, count(X ) = n, then
17. Regenerate an environment of problem instance

p from P
18. Reset the solution, X = {}

19. End if
20. End while
21. Return the trained policy π∗

= πθ

methods, such as Q-Learning and DQN, improve estimates of
the quality value of state-action pairs and indirectly improve
the policy. In contrast, policy-basedmethods directly evaluate
and improve the policy itself.

In reinforcement learning, the policy defines the action that
an agent should take for a given state. The policy can be either
deterministic or stochastic. Figure 4 shows an example of a
deterministic policy for 3 × 2 grid state space. That is, if the
agent is on the state A1, B1, A2, or B2, it should go right.
If the agent is on state C1, it should go down. In contrast,
a stochastic policy specifies actions as a probability distribu-
tion over actions. For example, if the agent is in state B1, the
probabilities of going right and going down may both be 0.5,
since both actions will take two steps toward the goal. If the
agent is in state C1, the probability of going right could be
0 and the probability of going down could be 1.

VOLUME 11, 2023 52031



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

FIGURE 2. Components and training process of the PHH framework, which formulates the hyper-heuristic process as a reinforcement learning problem
for selecting constructive LLHs to solve given problem sets. Each lane represents a component in the proposed framework.

This research employs an artificial neural network to repre-
sent the policy in the proposed PHH framework. This allows
the policy to handle optimization problems with continuous
actions and stochastic policies. The network is trained to opti-
mize a performance objective function using policy gradient
ascent to find an optimal policy. This function defines the goal
or objective of the learning process, helping the agent learn
which actions are more likely to lead to higher rewards and
which actions should be avoided.

The objective of the PHH framework is to maximize
the expected value of the cumulative discounted reward
J (θ) obtained from the policy πθ . The objective function is
expressed in (1), where θ is weight parameters of the policy
neural network, t is a time step, and rt is the discounted
reward of taking an action at at state st .

J (θ) = E
∑

t≥0
[rt |π0] (1)

The gradient ascent of the performance objective func-
tion can be represented by (2) [35], where Aπθ (st , at) is an

advantage value function for taking an action at at state st ,
Qπθ (st , at) is a cumulative reward function for taking action
at at state st , and Vπθ (st) is a state value function for state st .
The value returned by the Qπθ function is also known as the
action value. The advantage value is the difference between
the action value and the state value. It is used instead of the
pure action value to distinguish between better and worse
actions. It also reduces the variance of the policy gradient
[36]. The proposed PHH framework uses another neural net-
work to estimate the state value.

∇θJ (θ) ≈

∑
t≥0

Aπθ (st , at) ∇θ logπθ (at |st )

Aπθ (st , at) = Qπθ (st , at) − Vπθ (st) (2)

The policy update in the proposed PHH framework is
restricted to prevent the policy from worsening due to too
large changes. The clipping objective as used in the PPO
algorithm [28] is employed to achieve this. The gradient func-
tion in (3) is used instead, where ratiot is a probability ratio

52032 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

FIGURE 3. Components and process for obtaining a solution with the PHH framework, which formulates the hyper-heuristic
process as a reinforcement learning problem to select constructive LLHs to solve a problem instance.

Algorithm 2 PHH Algorithm to Obtain the Solution
Given
- p: Problem instance
- π∗

: Trained policy
1. Let n = number of components for a complete solution
2. Let X = {}, an empty solution as an empty set of

solution components
3. While the solution is not complete, count (X) < n, do
4. Observe the current environment state s
5. Obtain the next LLH l from the policyπ∗ for the given

state s
6. Apply the selected LLH l to get a solution component

1x
7. Append 1x to X
8. End while
9. Return the complete solution X

between the current and the old policy, ϵ is a hyperparameter
for clipping, and the clip function clips the value of ratiot
to be within the interval [1 − ϵ, 1 + ϵ]. This ratio is used
to measure the relative improvement of the current policy
compared to the previous policy. By clipping this value, the

FIGURE 4. An example of a deterministic policy for 3 × 2 grid state space.

size of the policy update is restricted.

∇θJ (θ) = E
[
min

(
ratiot (θ)Aπθ (st , at) ,

ratioclipt (θ, ϵ)Aπθ (st , at)

)]
ratiot (θ) =

πθ (at |st)
πθold (at |st)

ratioclipt (θ, ϵ) = clip (ratiot (θ) , 1 − ϵ, 1 + ϵ) (3)

In reinforcement learning, there are two methods to obtain
samples during the training process: on-policy and off-policy
[37]. On-policy methods involve learning the optimal policy
while following it during the training process. The agent
takes actions based on the current policy and updates the

VOLUME 11, 2023 52033



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

policy based on the rewards it receives. Thesemethods tend to
converge faster because the agent is learning and improving
the policy at the same time. Off-policy methods, on the other
hand, involve learning the optimal policy using data gathered
from a different policy. These methods can learn from a
larger variety of experiences and can potentially learn a better
policy, but they may require more data and may converge
more slowly. In the proposed PHH framework, an on-policy
approach is used. That is, the policy in steps 7 and 14 of Algo-
rithm 1 is the same policy. Although the on-policy approach
allows for faster convergence, it has a higher chance of getting
stuck in suboptimal policies. However, the stochastic policy
and clipping objective of the PPO algorithm address this
challenge by allowing for exploration of the action space,
while constraining the policy update to prevent it from being
too greedy.

In the proposed PHH framework, the experience replay
technique [38] is used to store the sampled data in a memory
buffer, allowing the agent to learn from the samples multi-
ple times and increasing sample efficiency. In reinforcement
learning, rare events are important because they may have
a significant impact on the learning process, but may occur
infrequently. For example, in a game of chess, a rare event
could be a game-winning move that is only possible in a
very specific set of circumstances. If the agent does not
encounter this event often, it may not learn how to respond
to it effectively. By storing rare events in the replay buffer
and sampling from them during training, experience replay
ensures that the agent has multiple opportunities to learn from
them. Thus, rare events are crucial in the learning process,
and experience replay helps the agent to learn from them
efficiently.

B. DESIGN FOR GENERALIZATION
One of the main goals of hyper-heuristics is to perform
well on a wide range of problem domains, with little
problem-specific knowledge or parameter tuning. To achieve
this, the LLHs, a state representation, and a reward function
must be designed for generalization. In other words, LLHs
developed and tested on one problem domain can be used on
other similar problems without significant modifications or
adaptations.

The key challenges in hyper-heuristic RL are state rep-
resentation and reward functions. The state representation
determines how the hyper-heuristic will perceive the problem
instance and what features it will use to make decisions. The
reward functions enable the agent to effectively learn a policy
that can solve a variety of problem instances. Functions that
are too specific to a particular problem instance or type may
result in a sub-optimal policy that fails to generalize to unseen
problem instances.

In the proposed PHH framework, the generalized construc-
tive LLHs, state representation, and reward function were
designed so that the framework can be applied across problem
instances, sizes, or domains. Details are provided next.

1) GENERALIZED CONSTRUCTIVE LLHs
In most reviewed literature, a different set of LLHs was pro-
vided for each different problem. However, an optimization
problem in the real world does not come with a set of LLHs.
This section explained an approach to provide generalized
LLHs that can be used across optimization problems without
adjustment.

The proposed PHH framework uses the selection of gen-
eralized constructive LLHs as available actions in the rein-
forcement learning process. These LLHs must be generalized
across problem instances, sizes, or domains, andmust provide
a solution component that can be constructed into a feasible
solution. The LLHs used in this framework include:

- Selecting the best solution component based on a mini-
mum (or maximum) action quality indicator.

- Selecting the nth best solution component to avoid local
optima.

- Selecting the same solution component as in the previ-
ous time step.

2) GENERALIZED STATE REPRESENTATION
For generalization, the state representation should capture the
essential characteristics of the problem instance that are rele-
vant to the heuristics’ performance. The state representation
should also be robust to variations in the problem instance,
such as changes in the size or structure of the problem. Some
techniques that can be used to generalize the state represen-
tation include value normalization, moving window, or state
encoding [39].

In the proposed PHH framework, the state representation
in reinforcement learning is generalized to support different
problem instances, sizes, or types. This means the number
of dimensions and values of the state representation must be
generalized. The state representation in the proposed frame-
work contains the following information:

- Quality indicator value for the current solution con-
structed so far

- Values related to problem constraints
- Properties of the problem instance
- Properties and current state of the solution
- Quality indicator value after applying each constructive
LLHs

These values are normalized and filtered by the moving
window. These techniques can help make the state represen-
tation more adaptable to different problem instances, sizes,
and types.

3) GENERALIZED REWARD FUNCTION
The reward function is the mechanism by which the agent
learns to perform tasks that lead to desirable outcomes. The
challenge is to configure the agent to perform well on the
problem instances that it has not seen before.

The reward function in the proposed PHH framework can
provide feedback for the taken action in a specific state across
problem instances and types. The function may or may not

52034 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

return the exact quality indicator value, but it will eventually
reflect the change in the quality indicator value of the con-
structed solution. The reward value will thus be normalized.
A reward function providing a positive generalized reward
will be used for the maximization problem, whereas the neg-
ative one will be used as a penalty for the minimization prob-
lem. The reward function used in the proposed framework is
in the form of (4) where R is a reward function, st is the state
representation at the time t , at is the action taken at the time
t , Q (st) is the quality indicator for the state representation
st , C (st) is whether the state st satisfies problem constraints,
and P(st ) is the penalty function for the state st .

R(st−1, at , st ) =

{
Q (st) ;C (st) is satisfied
P(st ) ;Otherwise

(4)

While the constraint is satisfied, the reward value reflects
the increment and decrement of a quality indicator value.
When the constraint is not satisfied, the reward value rep-
resents a penalty. This mechanism ensures that the reward
function can be used effectively for a range of different
problem instances.

IV. EVALUATION OF THE PROPOSED PHH FRAMEWORK
A. ALGORITHM BENCHMARKING
This section evaluates the performance and generalization
of the proposed framework against other optimization algo-
rithms on multiple problem domains including the traveling
salesman (TSP), capacitated vehicle routing (CVRP), and bin
packing (BPP). These three problems have diverse charac-
teristics and can be applied to many real-world applications.
The comparison was made based on standard benchmark
instances and different problem sizes are used to test for algo-
rithms’ generalization. The reason why the proposed PHH
cannot be evaluated with HyFlex is that HyFlex supports only
perturbative LLHs, whereas our framework uses constructive
LLHs.

We implemented widely used optimization algorithms,
namely, simulated annealing, genetic algorithm, and the
DQN-based hyper-heuristic for comparison instead of using
HyFlex. The DQN-based hyper-heuristic in this experiment
used online trainingwithDQN tomimic theQ-network-based
and DQN-based hyper-heuristic from the previous works.

In this section, the results were presented and the gener-
alization evaluation for practical use in real-world problems
was discussed.

1) PROBLEM DOMAINS AND BENCHMARK INSTANCES
The Traveling Salesman Problem (TSP) seeks to determine
the most efficient route for a salesman to visit a given set of
cities and return to the starting city. The goal is to minimize
the total distance traveled by visiting each city exactly once.
TSP is generally used in logistics, transportation, and network
routing.

The Capacitated Vehicle Routing Problem (CVRP) finds
an optimal set of routes for a fleet of vehicles to deliver

TABLE 1. Traveling salesman problem instances.

goods or services to a set of customers, subject to capacity
constraints. In CVRP, each vehicle has a limited carrying
capacity, and during a route, the remaining load of the vehicle
must be sufficient to accommodate the demand of the next
customer to be visited. The problem also includes depots,
which serve as replenishment points for the vehicles to refill
their loads during the routes. The objective is to minimize
the total distance traveled by vehicles while ensuring that
each customer is visited exactly once, and the total demand of
all customers served by a vehicle does not exceed its capac-
ity. CVRP is used in logistics, delivery, and transportation
planning.

The Bin Packing Problem (BPP) packs a set of items into
a minimum number of bins, each with a limited capacity.
In BPP, the objective is to minimize the total number of bins
required while ensuring that each item is packed into exactly
one bin and that the total size of the items packed into a
bin does not exceed its capacity. BPP is used in logistics,
manufacturing, and transportation, where it is necessary to
minimize the number of containers, trucks, or storage units
required to accommodate a set of items.

For each problem, we used standard benchmark instances
widely used in the literature. For TSP, we selected
12 instances from TSPLIB [40], ranging from 150 to
5,915 cities. For CVRP, we selected 18 instances from
TSPLIB as well, with varying numbers of vehicles and cus-
tomers. For BPP, we selected 12 instances from BPPLIB
[41] with different bin capacities and item sizes. A summary
of problem instances for each problem domain is shown in
Tables 1 to 3.

2) PARAMETER SETTINGS AND CONFIGURATION
In this experiment, four optimization algorithms: Genetic
Algorithm (GA), Simulated Annealing (SA), Deep
Q-Network (DQN), and the proposed PHH framework were
implemented and evaluated. Parameters for each algorithm
were specified as shown in Table 4. These parameters were
empirically selected.

The proposed PHH-based algorithm was implemented
in Python 3.10 with the Stable-Baseline3 Reinforcement
Learning Library [42]. This library includes the PPO

VOLUME 11, 2023 52035



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

TABLE 2. Capacitated vehicle routing problem instances.

TABLE 3. Bin packing problem instances.

algorithm and provides the capability to implement a custom
environment.

Each algorithm was run three times for each problem
instance and the quality of the solutions was recorded. The
solution quality for TSP and CVRP is represented by the
traveled distance and for BPP by the number of used bins.
The lower value represents the better solution.

3) RESULT AND DISCUSSION
In this section, we presented the results. Friedman’s [43] test
and Nemenyi’s [44] post-hoc test were used to verify the
significance of the differences and identify the performance
ranks. The statistical testing was carried out using the Python
package Scipy.Stats [45] and Scikit-Posthocs [46].

Tables 5 to 7 showed the average solution quality from
each problem instance of TSP, CVRP, and BPP respectively.
The best solution quality among all algorithms was marked in
bold font. The P-values from Friedman’s test indicated that
the solution quality from each algorithm was significantly
different. All pairwise P-values from Nemenyi’s test were
also less than 0.05, indicating that any pairs of algorithms
produce significantly different results.

Tables 8 to 10 showed the average performance ranks of
each algorithm for each instance size. The lowest rank among

TABLE 4. Parameter settings for each algorithm.

TABLE 5. The average distances of solution for TSP instances obtained
from each algorithm.

all algorithms, marked in bold font represents the algorithm
providing the best solution quality.

For the TSP problem, while SA obtained the best results in
small instances, our PHH algorithm performed from 75-98%
better in most medium and all large instances. From Table 8,
the result also showed that PHH produced the best average
performance for medium and large instances.

For the CVRP problem, GA obtained the best results in
most small instances, while PHH outperformed the other
algorithms by 24-80% in all medium and large instances.

In the case of BPP, PHH obtained the best results with a
7-13% improvement in all instances of all sizes.

PHH performance was also compared to a DQN-based
hyper-heuristic, where PHH outperformed DQN in all three
problem domains.

These results demonstrated PHH’s effectiveness in solving
larger and more complex problems, making it more practical

52036 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

TABLE 6. The average distance of solutions for CVRP instances obtained
from each algorithm.

TABLE 7. The average number of bins of solutions for BPP instances
obtained from each algorithm.

TABLE 8. Average performance ranks of each algorithm for each instance
size of TSP.

TABLE 9. Average performance ranks of each algorithm for each instance
size of CVRP.

TABLE 10. Average performance ranks of each algorithm for each
instance size of BPP.

for real-world problems that need generalizations. Moreover,
PHH was able to solve large problem instances, even though
it had been trained only with smaller instances.

PHH, however, may not be suitable for small problem
instances where the overhead of offline learning is not worth
the potential efficiency gains. PHH works well in scenarios
where large problem instances need to be frequently solved.

From the results, the PHH algorithm shows the potential
to become a valuable tool in solving complex optimization
problems in the future.

B. APPLICATION TO COST OPTIMIZATION WORKFLOW
SCHEDULING WITH A DEADLINE CONSTRAINT IN HYBRID
CLOUD
Cloud computing offers virtually unlimited resources, with
the added benefits of elasticity and auto-scaling to elim-
inate the costs of over-provisioning and the risks of
under-provisioning. Organizations can use a hybrid cloud
configuration that combines public and private clouds to
achieve greater cost-effectiveness with the added benefit
of elasticity. Hybrid clouds provide flexibility in managing
workloads and data placement. Thus, scientific applications
can be designed as a workflow and executed periodically on
a hybrid cloud, which can provide both quality of service and
cost-effectiveness.

However, the scheduling optimization problem for work-
flow applications is NP-complete [47], and state-of-the-art
algorithms are meta-heuristics that require long computation
time for larger problem sizes. In this section, we explained
how PHH can be applied to address cost optimization for a
workflow scheduling problemwith a deadline constraint. The
experiment was designed to evaluate the performance, gener-
alization, and learning of the proposed method as discussed
below.

1) PROBLEM FORMULATION
This section explains how to formulate the cost optimization
problem for scientific workflow scheduling on a hybrid cloud
with a deadline constraint.

Aworkflow application is represented by a directed acyclic
graph W = (T,E), where nodes represent a set of tasks
T = {ti}, and edges represent their dependencies E =

{
eij
}
.

The dependency eij indicates that the output of the parent task
ti will be used as an input by the child task tj. A task can only
be executed after all its parent tasks, represented by succ (ti),
have been completed and all input data is available. Thework-
load of the task ti is represented by len (ti) in millions of CPU
instructions (MIs). The amount of data for task dependency
eij is represented by len

(
eij
)
in megabytes (MB).

Figure 5 illustrates an example of a workflow application
with five tasks. This workflow can be represented by the
graph W = (T ,E) with a set of tasks T = {t1, t2, t3, t4, t5}
and a set of dependencies E = {e12, e13, e24, e34, e45}. For
the task t4, its workload is len (t4) = 4 MIs, its parent
tasks are succ (t4) = {t2, t3}, and its input dependencies are
{e24, e34}. The amounts of data for these input dependencies
are len (e24) = 3 MB and len (e34) = 4 MB. The task t4 can
only be started once the task t2 and t3 finish and output files
2-4.txt and 3-4.txt are available.

The hybrid cloud in this research consists of virtual
machine (VM) instances. For the public cloud, the VM
instances can be created on demand, whereas for the private

VOLUME 11, 2023 52037



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

FIGURE 5. An example of a workflow application with five tasks.

cloud, VMs are already provisioned. The available VMs can
be represented by VM = {vmi} ; vmi =

(
cui, bwi, upi

)
,

where cui represents the computing capacity of the vmi in
millions of instructions per second (MIPs), bwi represents the
bandwidth of the vmi in megabytes per second (MBps), and
upi represents a unit price of using the vmi in USD per second.
This research assumes that the execution time of executing
a task ti on the VM vmj can be calculated using (5). The
communication time to transfer intermediate data between
tasks i and j can be calculated using (6), where bwvm(ti) is the
bandwidth of the VM that is assigned to execute the task i.

exec
(
ti, vmj

)
= len (ti)

/
cuj (5)

comm (i, j) =

{
len

(
eij
)/
b (i, j) ; vm (ti) ̸= vm (ti)

0 ; otherwise

b (i, j) = min
(
bwvm(ti), bwvm(tj)

)
(6)

A workflow schedule can be represented by sch =

(TS,M), where TS is a sequence of tasks to be executed, and
M is a set of mappings between a task and the assigned VM.

Given that any task can be executed after all of its parent
tasks are completed and all its input data are transferred to the
assigned VM, the start time of the task ti can be calculated by
(7), where vm (ti) is the VM that is assigned to execute the
task ti, f (ti) is the finish time of the task ti, and avail (vm (ti))
is the time that the assigned VM is ready to execute the task.
The finish time of the task ti can be calculated by (8).

s (ti) = max

(
max

tp∈parent(ti)

[
f
(
tp
)
+ comm (p, i)

]
,

avail (vm (ti))

)
(7)

f (ti) = s (ti) + exec (ti, vm (ti)) (8)

After scheduling all tasks, the makespan and cost of the
schedule can be calculated by (9) and (10).

makespan = max
ti∈T

f (ti) (9)

cost =

∑
ti∈T

(
[f (ti) − s (ti)] × upvm(ti)

)
(10)

The goal of this experiment is to find the optimal sched-
ule for a workflow on a hybrid cloud, which minimizes

the cost of execution while meeting the deadline constraint.
To achieve this, the proposed method uses a combination
of hyper-heuristic and reinforcement learning techniques to
find a schedule that uses the most cost-effective VMs while
completing the workflow within the specified deadline.

2) CONFIGURATION OF PHH ALGORITHM FOR WORKFLOW
SCHEDULING OPTIMIZATION
To implement a workflow scheduling algorithm from the pro-
posed PHH framework, the problem is formulated as a rein-
forcement learning problem. In this formulation, the process
of scheduling tasks to VMs is viewed as a sequence of actions
taken by an agent. At each time step, the agent chooses an
action by selecting a task to schedule to a VM. The schedule
is updated as a result of this action, along with the makespan
and cost of the schedule. The agent then observes the cost
as a penalty and stores it, along with the corresponding state
and action, in an experience buffer that will be used to train
the policy. The training process can be illustrated in Figure 6.
Once the agent has been trained, it can use the trained policy
to obtain a schedule for a given workflow, a set of available
VMs, and a deadline constraint, as illustrated in Figure 7.
To implement the algorithm from this framework, it is neces-
sary to define the available LLH actions, the generalized state
representation, and the generalized reward function.

a: LLH ACTIONS FOR WORKFLOW SCHEDULING PROBLEM
An LLHs action represents a heuristic of how to select a
task to schedule next and a VM to execute the next selected
task. LLHs actions are formulated as available actions. In our
application to the workflow scheduling problem, a sequence
of tasks to schedule is generated using the task ranking pro-
cess in the HEFT [48] algorithm. The possible LLHs actions
for VM selection are listed in Table 11. These heuristics
are designed to be generalized across different workflow
instances, deadlines, and sets of VMs, rather than being spe-
cific to a particular problem instance or size. There are three
criteria for selecting the VM, unit cost, capacity, or worthi-
ness. Worthiness measures the capacity per 1 USD unit cost.
Four ranks of each criterion are used as available actions as
they are expected to increase the chance to avoid local optima.
For example, action numbers 5 and 6 will select the VM
with the 1st and 2nd highest capacity, whereas action numbers
10 and 11 will select the VM with the 2nd and 3rd highest
worthiness value, respectively.

b: STATE REPRESENTATION FOR WORKFLOW SCHEDULING
PROBLEM
The state representation in the proposed PHH framework
captures the current state of the scheduling environment at a
given time step. This includes the information on the problem
instances (workflow, available resources (VMs) information,
and the deadline constraint) and scheduling state (ready tasks,
remaining tasks, VM states, cost, and makespan). To enable
generalization across different problem sizes, a moving

52038 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

FIGURE 6. The training process of the PHH algorithm to obtain a schedule for workflow scheduling optimization problems.

TABLE 11. Available Low-Level heuristic actions.

window method is used to maintain constant dimensions for
the state representation regardless of the size of the workflow
or the number of VMs. The state representation includes the
following dimensions, with µt representing the task moving
window size and µvm representing the VM moving window
size. All values in the state representation are normalized.

- 1: Makespan so far
- 2: Cost so far
- 3: Deadline

- Next µt dimensions: Workload of each remaining task
(moving window)

- Next µt dimensions: Critical path length from each
remaining task (moving window)

- Next µt dimensions: Number of child tasks for each
remaining task (moving window)

- Next µvm dimensions: A finish time of the selected task
on each VM (moving window)

- Next µvm dimensions: Whether each VM can complete
the selected task within its sub-deadline (moving win-
dow)

- Next µvm dimensions: Computing capacity (MIPs) of
each VM (moving window)

- Next µvm dimensions: Unit cost of each VM (moving
window)

The task moving window and VM moving window can be
obtained by using Algorithms 3 and 4 respectively.

c: REWARD FUNCTION FOR WORKFLOW SCHEDULING
PROBLEM
The reward function in the proposed PHH framework for
the workflow scheduling optimization problem is designed

VOLUME 11, 2023 52039



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

FIGURE 7. Process of PHH algorithm to obtain a schedule for workflow scheduling optimization problem from
the trained PHH.

Algorithm 3 Create a Task Moving Window
1. Let µt = a task window width
2. Let T = a set of workflow tasks
3. Remove scheduled tasks from T
4. Sort tasks in T from highest to lowest critical path length
5. Tµ = Select the first µt tasks from the sorted T
6. If the number OF tasks in Tµ less than µt then
7. Add padding task information with 0 until the number

of tasks in Tµ is µt
8. Return Tµ as the task moving window

to incentivize the agent to select VMs and tasks that will
minimize the overall cost and meet the deadline constraint.
In this case, the cost that occurs from executing a task on
a VM is treated as a penalty to the reinforcement learning
agent, and the model aims to minimize this penalty. The
deadline constraint is also taken into account by adding a
higher magnitude penalty for schedules that exceed the dead-
line. The reward function can be described in (11), where
time is the current time step, and d is the deadline. The
penalty for exceeding the deadline is calculated using (12)
by adding the exceeding execution time with the total exe-
cuting time of all remaining tasks on the slowest VM. This
amount of time is then multiplied by the most expensive unit

Algorithm 4 Create a VM Moving Window
1. Let µvm = a VM window width
2. Let V = a set of all available VMs from private and
public cloud

3. Let t = the next task to be scheduled
4. Remove any VMs from V that cannot finish the task t
within its sub-deadline

5. Sort VMs in V from lowest to highest execution time for
the selected tasks t

6. Vµ = Select the first µvm VMs from the sorted V
7. Return Vµ as the VM moving window

cost among all VMs.

reward
(
time, ti, vmj

)
=

{
costtime−1 − costtime; f (ti) ≤ d
−costtime − penalty; Otherwise

(11)

penalty

=

(
max
i∈VM

upi

)

×

f (ti) − d +

∑
ti /∈scheduled(T)

 len (ti)
min

i∈len(VM)
cui


(12)

52040 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

FIGURE 8. Scientific workflow applications for benchmarking [49].

3) EXPERIMENT DESIGN
This section describes the experimental design to evaluate the
performance of the proposed method. The objective of the
experiment is to evaluate the performance of the proposed
method across the different training environments and testing
problem instances, along with the following hypotheses.
1) The PHH-based method can learn to optimize work-

flow scheduling in terms of cost, resulting in lower-cost
schedules after learning.

2) The PHH-basedmethod can provide solutions to unfore-
seen problem instances of different workflow applica-
tions and sizes that are of equivalent or better quality
than those produced by meta-heuristic algorithms.

a: EXPERIMENTAL WORKFLOWS
The workflow applications used in this experiment are
well-known workflows [49] obtained from [50]. Their struc-
tures are based on real-world workflows: CyberShake (C),
Epigenomics (E), Inspiral (I), and Montage (M). Figure 8
illustrates the structure of workflows in this experiment.
Table 12 provides information on the characteristic of each
workflow. Different structures of workflow applications were
used to evaluate the generalization ability of the proposed
framework. The objective is to see whether PHH can provide
optimal solutions for the different workflow applications.

b: SIMULATION SETUP
To evaluate the first hypothesis that the PHH-based method
can learn to schedule workflows, environments were created
to train reinforcement learning agents. Table 13 and Table 11
provide information on available VMs including their capac-
ity, bandwidth, unit cost, and number of VMs. The public
cloud has no limit on the number of VMs to use, whereas the
private cloud has no cost of execution on its VMs. Table 15
lists the deadlines used in the experiment. The 1x deadlines
were calculated from makespan using the HEFT scheduling

TABLE 12. Workflow characteristics including the number of tasks,
number of task dependencies, average data size in megabytes (MB), and
average task size in millions of instructions (MIs).

TABLE 13. Public cloud resources with capacity in million instructions per
second (MIPs), bandwidth in MB per second, and unit cost in USD per
second.

TABLE 14. Private cloud resources.

algorithm on each workflow in the hybrid cloud. During the
training process, the task workload in the training workflow
was randomized using (13) to increase the diversity of the
training environments for the agents. In this experiment, the
parameter λ was set to 1.5.

len′ (t) = uniform (len (t) , λlen (t)) (13)

In this experiment, eight reinforcement learning agents
were trained using different workflows and deadlines. The
workflows with 100 tasks were used to create training envi-
ronments with 1x and 16x deadlines, as summarized in
Table 16. The suffix of each agent’s name is the first letter of
the training workflow followed by the deadline used in train-
ing. For example, the agent named PHH-C1X was trained
with CyberShake workflow with 100 tasks and 1x deadline
(13.74 seconds).

c: COMPARATIVE ALGORITHMS
To evaluate the second hypothesis that the trained reinforce-
ment learning models can provide a solution to unforeseen
problem instances, each trained agent was evaluated with all

VOLUME 11, 2023 52041



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

TABLE 15. Deadlines for each workflow used in the experiment
(seconds). 1x deadline was derived from a makespan of schedule
obtained by the HEFT scheduling algorithm.

TABLE 16. Environment setup for training each agent.

workflows and deadlines. To determine if the trained agents
can produce results of comparable quality to state-of-the-
art algorithms, they were compared to three meta-heuristics
algorithms: GA-Based DCOH [51], Best-so-far ABC [52],
and NeSS [53]; and one hyper-heuristic-based algorithm
CTDHH [16].

Zhou et al. [51] proposed the GA-based DCOH (deadline-
constrained cost optimization for hybrid clouds) algorithm
to schedule a workflow application in the hybrid cloud to
minimize monetary costs subject to a deadline constraint. The
performance of DCOH was reported to reduce the monetary
cost by up to 100% compared to competing algorithms.

The Best-so-far ABC (BSFABC) algorithm [52] improves
the performance of the original ABC [54] by introducing a
modified method to update the solution in the onlooker bee
phase, which creates a bias towards the best-so-far solution.
It has been applied to a job shop scheduling problem, which
is similar to workflow scheduling.

The NeSS algorithm [53] is a new version of the original
ABC based on the natural nest site selection behavior of
honeybee swarms. The algorithm demonstrated promising
performance in solving combinatorial problems.

Hyper-heuristic based CTDHH (Completion Time Driven
Hyper-Heuristic) algorithm [16], proposed by Alkhanak and
Lee, is a hyper-heuristic-based approach that uses four per-
turbative metaheuristics (GA [55], PSO [56], IWO [57], and
HIWO [58]) as low-level heuristics to solve cost optimization
for workflow scheduling problems in cloud computing. The

algorithm repeatedly selects and applies the selected LLH to
perturb the solution until the stopping criterion is met. In each
iteration, the LLHs are selected based on the performance
from previous iterations.

d: PARAMETER SETTINGS
Table 17 summarizes the parameter settings for all algo-
rithms, which were determined through empirical tuning.
Table 18 provides a summary of all factors and levels used
in the experiment. For each run, the cost and makespan
of the resulting schedules were recorded. The proposed
PHH-based algorithm was implemented in Python 3.10 with
the Stable-Baseline3 Reinforcement Learning Library. This
library includes the PPO algorithm and provides the capabil-
ity to implement a custom environment.

4) RESULTSAND DISCUSSION
After conducting the above-described experiment, the col-
lected data was analyzed. This section discusses the per-
formance of the algorithms to determine whether the PHH
can significantly outperform the meta-heuristic algorithms in
various conditions. Friedman’s test and Nemenyi’s post-hoc
test were used to verify the significance of the differences
and identify the performance ranks. The statistical testing
was carried out using the Python package Scipy.Stats and
Scikit-Posthocs.

Table 19 shows the average costs from each scenario.
Friedman’s test was performed to evaluate the statistical
significance of the differences in the non-parametric data.
The p-value from Friedman’s test is 1.1E-14, indicating that
some of the differences in the mean costs are statistically
significant. It should be noted that N/A values were replaced
with 1E+10 for significant testing.

Nemenyi’s pairwise post-hoc test was then conducted on
the costs from all scenarios to identify which pairs of algo-
rithms produced statistically significant costs. Figure 9 shows
the plot of p-values for each pair of algorithm settings. Red
cells indicate that the difference in costs for the corresponding
pair is not significant, while green cells indicate that the
difference is significant. The darker the green, the higher the
significance.

The pairwise significant plot shows that the costs from
most pairs are significantly different. There are two groups
of algorithms with insignificant differences within the group,
but these algorithms still provided significantly different
costs compared to other algorithms outside their correspond-
ing groups. The first group includes DCOH, PHH-C16X, and
PHH-M16X. The second group includes PHH-C1X, PHH-
E1X, PHH-E16X, PHH-I1X, PHH-I16X, and PHH-M1X.
The fact that the first group contains both the PHH agents
and the DCOH algorithm supports the hypothesis that, with
the appropriate configurations, the proposed PHH algorithm
(PHH-C16X, PHH-M16X) can produce solutions of equiva-
lent quality to the meta-heuristic algorithm (DCOH).

According to the average costs shown in Table 19, the
BSFABC algorithm produced the lowest costs in most

52042 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

TABLE 17. Algorithm parameter settings.

scenarios for small and medium workflows, while the agents
from the proposed PHH algorithm provided the lowest costs
in most scenarios for large workflows and the tight deadline
(2x) in small and medium workflows.

For the sake of simplicity, further analysis was limited to
significantly different algorithm settings using p-value from
theNemenyi pairwise post-hoc test, as shown in Figure 9. The
DCOH and PHH-C1Xwere selected from the first and second
groups of insignificances, respectively. This means that only
the CTDHH, PHH-C1X, BSFABC, NeSS, and DCOH were
included in the further analysis.

Table 20 shows the average cost of schedules obtained
from each algorithm setting for each workflow application,
workflow size, and deadline. Algorithm settings that were not
able to obtain a feasible schedule, with a makespan within the
deadline, were marked as N/A. From the table, the DCOH,
NeSS, and PHH were able to produce feasible schedules in
most scenarios.

The BSFABC algorithm produced the lowest costs formost
scenarios for small workflows (size S) and some scenarios
for medium workflows (size M). However, it was unable to
produce a feasible solution when the deadline is very tight

VOLUME 11, 2023 52043



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

TABLE 18. Summary of experiment factors and levels.

(2x) or when the workflow is larger (size L). The CTDHH
algorithm also had a lower chance of producing feasible
schedules for larger workflows.

The PHH-C1X was able to obtain the best cost for most
scenarios with the tight deadline (2x) and most scenarios for
the large workflow (size L).

Table 20 compares the overall algorithm performance com-
parison by average cost ranks for each experimental sce-
nario. A lower rank indicates a lower cost. The average
ranks of the PHH algorithm are the lowest compared to
other algorithms. This means the costs produced by the PHH
algorithms are the lowest in most experiments. Table 22
shows the average performance ranks of the algorithms
specifically for large workflows. The table shows that the
average rank for the PHH algorithm is still the lowest and
lower than its rank in the previous table. This indicates
that the PHH algorithm outperformed other algorithms for
large workflows. Although the pairwise comparison between
PHH-C1X and DCOH for large workflows is not significant
(p-value = 0.089), PHH-C1X still outperforms DCOH with
lower average ranks for small andmediumworkflows in most
scenarios.

The metaheuristic-based algorithms (BSFABC, DCOH,
NeSS, and CTDHH) use complex exploration and exploita-
tion behaviors to search through the search space, which can
help them avoid local optima and find global ones. These
behaviors allow them to achieve the lowest cost in Table 20
for most scenarios with small and medium workflows. These
algorithms use a soft constraint, in the form of a penalty
added to the fitness function, to avoid infeasible solutions.
This penalty guides the algorithm to search in a direction that
reduces the penalty and eventually enters the feasible area
of the search space. However, this becomes more difficult
and time-consuming when the search space is large, as seen

in Table 20 where these algorithms are unable to produce
feasible solutions or perform relatively poorly with large
workflows or tight deadlines compared to PHH.

The hyper-heuristic-based CTDHH algorithm with meta-
heuristics as LLHs inherits pros and cons from the
metaheuristic-based algorithms. It only selects LLHs based
on workflow size and number of VMs, without considering
workflow structures and VM attributes. In this experiment,
the same LLH was selected for the different workflows
with the same size. For example, the medium workflows
(100 tasks) of CyberShake, Epigenomics, Inspiral, and Mon-
tage were scheduled with the same LLH algorithm, which did
not take advantage of the hyper-heuristic method. This limits
the CTDHH algorithm to only being suitable for environ-
ments that regularly execute the same workflow applications
with the same structure but different sizes.

The proposed PHH algorithm consumes time during
offline training for the different classes of problem instances
but uses less time to generate a schedule compared to the
competing algorithms. Since the LLHs of the proposed algo-
rithm are constructive heuristics, it only takes one episode to
generate a complete schedule. This allows a relatively shorter
time to generate a schedule for a larger workflow.

Unlike metaheuristic-based algorithms, the reinforcement
learning-based PHH algorithm does not explore and exploit
the search space during the run time after training. It only
takes actions based on its experiences with the observed
state. Table 20 shows that, for small workflows, the PHH
algorithm produced costs that are equal to or worse than other
algorithms. Additionally, the PHH algorithm takes actions
based on state information in the moving window, meaning
that it only perceives a specific amount of state information
at a time. However, the moving window method for state
information does not compromise solution quality for the
proposed method when the workflow is larger, as seen in
Table 20 where the PHH algorithm produces lower costs for
most scenarios with large workflows compared to the other
algorithms.

The PHH algorithm was not able to perform optimally on
the Epigenomics workflow possibly due to its unique struc-
ture as depicted in Figure 8. The workflow consists of many
parallelized long sequential tasks, and the limited information
in the task moving window may have hindered the PHH
agents’ ability to recognize the differences in environment
stages as the window moved along. This may have resulted
in suboptimal scheduling decisions, leading to higher costs
compared to other algorithms.

One of the benefits of using reinforcement learning-based
algorithms is the ability to train multiple agents on different
problem instances. This can increase the chances of obtaining
better solutions, as the multiple agents can work together
to solve the problem. The use of constructive low-level
heuristics (LLHs) in the reinforcement learning algorithm
also allows the agent to quickly find a solution within a
single episode, without the need for complex exploration
and exploitation behaviors as in traditional metaheuristic

52044 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

TABLE 19. Average cost (USD) of schedules obtained from each workflow and deadline. The lowest costs are marked in bold. N/A means the algorithm
cannot obtain a feasible schedule where its makespan is within the deadline.

FIGURE 9. Pairwise P-values calculated from experiment results to indicate whether the difference in
solution quality (cost) from each pair of algorithms is statically significant or not among all workflows. E.g.,
costs from PHH-C1X and DCOH are significantly different (p-value = 0.001), but costs from DCOH and
PHH-C16X are not (p-value =0.832).

algorithms. This can be especially useful in scenarios where
time is a factor, such as when scheduling large workflow
applications with various deadlines, including unforeseen

ones. Additionally, the trained agents can be improved over
time through re-training with new, frequent classes of work-
flow instances. This flexibility and adaptability make the

VOLUME 11, 2023 52045



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

TABLE 20. Comparison of average costs (USD) of schedules obtained from the selected algorithms for each workflow application, workflow size, and
deadline. The lowest costs among the selected algorithms are marked in bold. N/A means the algorithm cannot obtain the feasible schedule, i.e., its
makespan exceeded the deadline.

TABLE 21. Average performance rank of algorithms for all scenarios.

proposed PHH algorithm well-suited for solving workflow
scheduling problems in dynamic environments.

This study demonstrated the ability of the proposed PHH
algorithm to optimize the cost of scheduling workflows in
a hybrid cloud environment. The results showed that the
PHH algorithm was able to learn how to schedule work-
flows to minimize costs and was able to provide solutions

TABLE 22. Average performance rank of algorithms for only large
workflows.

to unforeseen problem instances with equivalent or better
quality compared to meta-heuristic algorithms. In particu-
lar, the PHH algorithm performed well for large workflow
applications and tight deadlines, outperforming the other
algorithms in terms of cost optimization. Additionally, the
PHH algorithm had the advantage of being trained on various

52046 VOLUME 11, 2023



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

problem instances, allowing it to adapt to different workflow
sizes and deadlines, and it was able to generate schedules
quickly, making it an attractive solution for organizations that
frequently execute large workflow applications with various
deadlines. Overall, the results of this study suggest that the
PHH algorithm is a promising approach for optimizing the
cost of scheduling workflows in a hybrid cloud environment.

V. CONCLUSION
Hyper-heuristics are an alternative approach to addressing the
problem of finding the appropriate heuristic to solve a given
task. They aim to increase the generality of search algorithms
across different problems. However, this increased gener-
ality may result in lower performance compared to meta-
heuristics. Reinforcement learning offers a potential solution
to this issue by allowing algorithms to learn from previously
solved problem instances and apply that knowledge to new
ones. The use of reinforcement learning in hyper-heuristics
is a promising approach for tackling complex optimization
problems that are difficult to solve with traditional methods.

This research proposed a framework for policy-based
hyper-heuristics with reinforcement learning (PHH) that can
be used to effectively solve optimization problems and
address the issue of generality in search algorithms. The
low-level heuristics (LLH) used in the proposed framework
are constructive, meaning that the framework can quickly find
a solution compared to using perturbative LLHs. The rein-
forcement learning component of the proposed framework
uses a policy-based approach, which directly learns a policy
function that maps states to actions without the need for a
separate value function. The Proximal Policy Optimization
(PPO) algorithm was used to update the policy function in a
way that keeps the new policy close to the old one. This sta-
bilizes the learning process and improves sample efficiency.

The effectiveness of the proposed PHH framework cannot
be evaluated using HyFlex because the constructive LLHs are
not supported. We then implemented three HyFlex’s problem
domains for comparisons: traveling salesman, capacitated
vehicle routing, and bin packing problems. The experiments
highlighted the potential of our framework to generalize
across different problem domains, making it a promising
tool for solving a wide range of optimization problems. The
proposed framework outperformed Simulated Annealing,
Genetic Algorithm, and online-training DQN-based hyper-
heuristic for all large problem instances, while only training
with smaller instances. The proposed PHH provided up to
98% better solution quality, indicating its potential to address
complex optimization challenges.

The proposed PHH framework was also tested on a work-
flow scheduling optimization task on a hybrid cloud with a
deadline constraint. Four medium-sized workflows with 1x
and 16x deadlines were used to train eight agents. The trained
agents were then used to schedule unforeseen workflows
and deadlines to evaluate their performance in solving new
problem instances. Four real-world workflow applications of
three sizes and five deadlines were used in the experiment.

The performance of the trained agents was compared
to three other types of algorithms: hyper-heuristics with
meta-heuristic perturbative LLHs (CTDHH), a numerical
optimization algorithm (Best-so-far ABC), and combinatorial
optimization algorithms (DCOH and NeSS).

The trained agents from the proposed PHH framework
were run to schedule all workflows independently, and
the agent with the best result and statistical significance
was selected. The selected agent outperforms state-of-the-
art algorithms in 7 out of 12 scenarios with large workflow
applications with 1,000 tasks, 6 out of 12 scenarios with
medium workflow applications with 100 tasks, and 3 out of
12 scenarios with small workflow applications with 30 tasks.
In the experiment with the tightest deadline, the trained PHH
agent outperformed state-of-the-art algorithms in 10 out of
12 scenarios with all workflow applications and all sizes.
The average performance rank of the trained PHH agent is
1.81 out of 5 for all scenarios, and 1.42 for scenarios with
large workflow applications. Overall, the trained agents per-
formed better than the other algorithms in most scenarios for
large workflows and in most scenarios with tight deadlines.

The results of this study provide strong support for the use
of the PHH framework in solving combinatorial problems
for large problem instances when there are sufficient time
and training problem instances available before the actual
problem instance is encountered.

REFERENCES
[1] F. Wu, Q. Wu, and Y. Tan, ‘‘Workflow scheduling in cloud: A survey,’’

J. Supercomputing, vol. 71, no. 9, pp. 3373–3418, 2015.
[2] S. Muthuraman and V. P. Venkatesan, ‘‘A comprehensive study on hybrid

meta-heuristic approaches used for solving combinatorial optimization
problems,’’ in Proc. World Congr. Comput. Commun. Technol. (WCCCT),
Feb. 2017, pp. 185–190.

[3] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
‘‘Multiobjective evolutionary algorithms: A survey of the state of the art,’’
Swarm Evol. Comput., vol. 1, no. 1, pp. 32–49, Mar. 2011.

[4] S. Voß, ‘‘Meta-heuristics: The state of the art,’’ Proc. Workshop Local
Search Planning Scheduling, in Lecture Notes in Computer Science,
vol. 2148, 2001, pp. 1–23.

[5] E. G. Talbi,Metaheuristics: FromDesign to Implementation. Hoboken, NJ,
USA: Wiley, 2009.

[6] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
R. Qu, ‘‘Hyper-heuristics: A survey of the state of the art,’’ J. Oper. Res.
Soc., vol. 64, no. 12, pp. 1695–1724, Dec. 2013.

[7] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, ‘‘Reinforcement
learning for combinatorial optimization: A survey,’’ Comput. Operations
Res., vol. 134, Oct. 2021, Art. no. 105400.

[8] P. Ross, ‘‘Hyper-heuristics,’’ in SearchMethodologies. Cham, Switzerland:
Springer, 2014, pp. 611–638.

[9] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker,
M. Gendreau, G. Kendall, B. McCollum, A. J. Parkes, S. Petrovic, and
E. K. Burke, ‘‘HyFlex: A benchmark framework for cross-domain heuristic
search,’’ in Lecture Notes in Computer Science (Including Subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 7245. Berlin, Germany: Springer, 2012, pp. 136–147.

[10] P. Cowling and E. Soubeiga, ‘‘Neighborhood structures for personnel
scheduling: A summit meeting scheduling problem (abstract),’’ in Proc.
3rd Int. Conf. Pract. Theory Automated Timetabling, Constance, Germany,
E. K. Burke and W. Erben, Eds. Aug. 2000, pp. 16–18.

[11] P. Cowling, G. Kendall, and E. Soubeiga, ‘‘A hyperheuristic approach
to scheduling a sales summit,’’ in Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 2079. 2001, pp. 176–190.

VOLUME 11, 2023 52047



O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

[12] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, ‘‘Exploring hyper-heuristic methodologies with genetic
programming,’’ Intell. Syst. Ref. Libr., vol. 1, no. 1, pp. 177–201,
2009.

[13] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
J. R. Woodward, ‘‘A classification of hyper-heuristic approaches:
Revisited,’’ in International Series in Operations Research and
Management Science, vol. 272. Cham, Switzerland: Springer, 2019,
pp. 453–477.

[14] J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, ‘‘Recent advances in
selection hyper-heuristics,’’Eur. J. Oper. Res., vol. 285, no. 2, pp. 405–428,
Sep. 2020.

[15] S. S. Choong, L.-P. Wong, and C. P. Lim, ‘‘An artificial bee colony algo-
rithmwith a modified choice function for the traveling salesman problem,’’
Swarm Evol. Comput., vol. 44, pp. 622–635, Feb. 2019.

[16] E. N. Alkhanak and S. P. Lee, ‘‘A hyper-heuristic cost optimisation
approach for scientific workflow scheduling in cloud computing,’’ Future
Gener. Comput. Syst., vol. 86, pp. 480–506, Sep. 2018.

[17] J. Lin, L. Zhu, and K. Gao, ‘‘A genetic programming hyper-heuristic
approach for the multi-skill resource constrained project scheduling prob-
lem,’’ Exp. Syst. Appl., vol. 140, Feb. 2020, Art. no. 112915.

[18] A. Rasouli Kenari and M. Shamsi, ‘‘A hyper-heuristic selector algo-
rithm for cloud computing scheduling based on workflow features,’’
OPSEARCH, vol. 58, no. 4, pp. 852–868, Dec. 2021.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[20] M. Naeem, S. T. H. Rizvi, and A. Coronato, ‘‘A gentle introduction
to reinforcement learning and its application in different fields,’’ IEEE
Access, vol. 8, pp. 209320–209344, 2020.

[21] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, ‘‘Resource manage-
ment with deep reinforcement learning,’’ in Proc. 15th ACMWorkshop Hot
Topics Netw., Nov. 2016, pp. 50–56.

[22] J. Park, J. Chun, S. H. Kim, Y. Kim, and J. Park, ‘‘Learning to schedule
job-shop problems: Representation and policy learning using graph neural
network and reinforcement learning,’’ Int. J. Prod. Res., vol. 59, no. 11,
pp. 3360–3377, Jun. 2021.

[23] M. Sharafath Abdul Hameed and A. Schwung, ‘‘Graph neural networks-
based scheduler for production planning problems using reinforcement
learning,’’ 2020, arXiv:2009.03836.

[24] M. Melnik and D. Nasonov, ‘‘Workflow scheduling using neural networks
and reinforcement learning,’’ Proc. Comput. Sci., vol. 156, pp. 29–36,
Jan. 2019.

[25] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G.
Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.
Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control
through deep reinforcement learning,’’ Nature, vol. 518, pp. 529–533,
2015.

[27] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai,
and Q. Miao, ‘‘Deep reinforcement learning: A survey,’’ IEEE
Trans. Neural Netw. Learn. Syst., early access, Sep. 28, 2022, doi:
10.1109/TNNLS.2022.3207346.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proxi-
mal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[29] D. Falcão, A. Madureira, and I. Pereira, ‘‘Q-learning based hyper-heuristic
for scheduling system self-parameterization,’’ in Proc. 10th Iberian Conf.
Inf. Syst. Technol. (CISTI), Aveiro, Portugal, Jun. 2015, pp. 1–7.

[30] A. Madureira, I. Pereira, P. Pereira, and A. Abraham, ‘‘Negotiation mech-
anism for self-organized scheduling system with collective intelligence,’’
Neurocomputing, vol. 132, pp. 97–110, May 2014.

[31] J. Lin, Y.-Y. Li, and H.-B. Song, ‘‘Semiconductor final testing schedul-
ing using Q-learning based hyper-heuristic,’’ Exp. Syst. Appl., vol. 187,
Jan. 2022, Art. no. 115978.

[32] Ï. Gölük and F. B. Ozsoydan, ‘‘Q-learning and hyper-heuristic based
algorithm recommendation for changing environments,’’ Eng. Appl. Artif.
Intell., vol. 102, Jun. 2021, Art. no. 104284.

[33] A. Dantas, A. F. D. Rego, and A. Pozo, ‘‘Using deep Q-network for selec-
tion hyper-heuristics,’’ in Proc. Genetic Evol. Comput. Conf. Companion.
New York, NY, USA: Association for Computing Machinery, Jul. 2021,
pp. 1488–1492.

[34] W. Qin, Z. Zhuang, Z. Huang, and H. Huang, ‘‘A novel reinforcement
learning-based hyper-heuristic for heterogeneous vehicle routing prob-
lem,’’ Comput. Ind. Eng., vol. 156, Jun. 2021, Art. no. 107252.

[35] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[36] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in Proc.
Int. Conf. Mach. Learn. (ICML), 2016, pp. 1995–2003.

[37] M. Sewak, ‘‘Introduction to reinforcement learning,’’ in Deep Reinforce-
ment Learning. Singapore: Springer, 2019.

[38] M. Sewak, ‘‘Deep Q network (DQN), double DQN, and dueling DQN,’’ in
Deep Reinforcement Learning. Singapore: Springer, 2019.

[39] R. Magalhães, M. Martins, S. Vieira, F. Santos, and J. Sousa, ‘‘Encoder–
decoder neural network architecture for solving job shop scheduling prob-
lems using reinforcement learning,’’ in Proc. IEEE Symp. Ser. Comput.
Intell. (SSCI), Dec. 2021, pp. 1–8.

[40] G. Reinelt, ‘‘TSPLIB—A traveling salesman problem library,’’ ORSA
J. Comput., vol. 3, no. 4, pp. 376–384, Nov. 1991.

[41] M. Delorme, M. Iori, and S. Martello, ‘‘BPPLIB: A library for bin packing
and cutting stock problems,’’ Optim. Lett., vol. 12, no. 2, pp. 235–250,
Mar. 2018.

[42] A. Raffin, A. Hill, A. Gleave, A. Kanervisto,M. Ernestus, andN.Dormann,
‘‘Stable-baselines3: Reliable reinforcement learning implementations,’’
J. Mach. Learn. Res., vol. 22, no. 268, pp. 1–8, 2021.

[43] M. Friedman, ‘‘The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,’’ J. Amer. Stat. Assoc., vol. 32, no. 200,
pp. 675–701, Dec. 1937.

[44] P. B. Nemenyi, ‘‘Distribution-free multiple comparisons,’’ Ph.D. thesis,
Dept. Math., Princeton Univ., Princeton, NJ, USA, 1963.

[45] P. Virtanen, ‘‘SciPy 1.0: Fundamental algorithms for scientific computing
in Python,’’ Nature Methods, vol. 17, pp. 261–272, Feb. 2020.

[46] M. Terpilowski, ‘‘Scikit-posthocs: Pairwise multiple comparison tests in
Python,’’ J. Open Source Softw., vol. 4, no. 36, p. 1169, Apr. 2019.

[47] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, ‘‘Cost optimization
approaches for scientific workflow scheduling in cloud and grid comput-
ing: A review, classifications, and open issues,’’ J. Syst. Softw., vol. 113,
pp. 1–26, Mar. 2016.

[48] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance effective and low-
complexity task scheduling for heterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, 2002.

[49] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
‘‘Characterizing and profiling scientific workflows,’’ Future Gener. Com-
put. Syst., vol. 29, no. 3, pp. 682–692, Mar. 2013.

[50] Workflow Generator. Accessed: Nov. 30, 2022. [Online]. Available:
https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Work
flow+Generator

[51] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, and M. Chen, ‘‘Cost and
makespan-aware workflow scheduling in hybrid clouds,’’ J. Syst. Archit.,
vol. 100, Nov. 2019, Art. no. 101631.

[52] A. Banharnsakun, T. Achalakul, and B. Sirinaovakul, ‘‘The best-so-far
selection in artificial bee colony algorithm,’’ Appl. Soft Comput., vol. 11,
no. 2, pp. 2888–2901, Mar. 2011.

[53] U. Taetragool, B. Sirinaovakul, and T. Achalakul, ‘‘NeSS: A modified
artificial bee colony approach based on nest site selection behavior,’’ Appl.
Soft Comput., vol. 71, pp. 659–671, 2018.

[54] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Oct. 2007.

[55] J. Yu and R. Buyya, ‘‘Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms,’’ Sci. Program.,
vol. 14, nos. 3–4, pp. 217–230, 2006.

[56] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, ‘‘A particle swarm
optimization-based heuristic for schedulingworkflow applications in cloud
computing environments,’’ in Proc. 24th IEEE Int. Conf. Adv. Inf. Netw.
Appl., Jun. 2010, pp. 400–407.

[57] K. Li, S. Li, Y. Xu, and Z. Xie, ‘‘A DAG task scheduling scheme on
heterogeneous computing systems using invasive weed optimization algo-
rithm,’’ in Proc. 6th Int. Symp. Parallel Architectures, Algorithms Pro-
gram., Jul. 2014, pp. 262–267.

[58] R. Sharma, N. Nayak, K. R. Krishnanand, and P. K. Rout, ‘‘Modified
invasive weed optimization with dual mutation technique for dynamic
economic dispatch,’’ in Proc. Int. Conf. Energy, Autom. Signal, Dec. 2011,
pp. 660–665.

52048 VOLUME 11, 2023

http://dx.doi.org/10.1109/TNNLS.2022.3207346


O. Udomkasemsub et al.: PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning

ORACHUN UDOMKASEMSUB received the
bachelor’s degree from the King Mongkut’s
University of Technology Thonburi, Thailand,
in 2011, where he is currently pursuing the Ph.D.
degree in computer engineering. His research
interests include cloud computing, optimization,
swarm intelligence, and deep learning.

BOONCHAROEN SIRINAOVAKUL received the
B.Eng. degree from the King Mongkut’s Institute
of Technology Ladkrabang, Thailand, the M.S.
degree from Wichita State University, USA, and
the D.Eng. degree from the King Mongkut’s Insti-
tute of Technology Ladkrabang. He was with
the public and private sectors on various opti-
mization and operations research problems. He is
currently a Professor with the Department of
Computer Engineering, Faculty of Engineering,

King Mongkut’s University of Technology Thonburi, Thailand. His research
interests include optimization, swarm intelligence, and deep learning.

TIRANEE ACHALAKUL is currently the Director
of the Government Big Data Institute (GBDi), the
data intelligence service provider under the Min-
istry of Digital Economy and Society of Thailand.
She has been working in the fields of big data
analytics, high-performance computing, cloud and
virtualization, and software engineering, since
2000. She has extended experiences working in
the IT industry and academia in both the USA and
Thailand. During the past 20 years, she has been

both an educator and a consultant. She serves on advisory boards for multiple
agencies as well as teaches university students with KMUTT. She is also the
Founder of the Big Data Experience Center, the KMUTT Student Incubator
(Hatch), and a few technological startups.

VOLUME 11, 2023 52049


