
Received 3 May 2023, accepted 16 May 2023, date of publication 19 May 2023, date of current version 30 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3278208

Seg-CURL: Segmented Contrastive Unsupervised
Reinforcement Learning for Sim-to-Real in
Visual Robotic Manipulation
BINZHAO XU 1, TAIMUR HASSAN2, AND IRFAN HUSSAIN 1,3
1Khalifa University Center for Autonomous Robotic Systems (KUCARS), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
2Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
3Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Corresponding author: Irfan Hussain (irfan.hussain@ku.ac.ae)

This work was supported by the Khalifa University of Science and Technology under Award FSU-2021-019 and Award
RC1-2018-KUCARS.

ABSTRACT Training image-based reinforcement learning (RL) agents are sample-inefficient, limiting
their effectiveness in real-world manipulation tasks. Sim2Real, which involves training in simulations and
transferring to the real world, effectively reduces the dependence on real data. However, the performance
of the transferred agent degrades due to the visual difference between the two environments. This research
presents a low-cost segmentation-driven unsupervised RL framework (Seg-CURL) to solve the Sim2Real
problem. We transform the input RGB views to the proposed semantic segmentation-based canonical
domain. Our method incorporates two levels of Sim2Real: task-level Sim2Real, which transfers the RL
agent to the real world, and observation-level Sim2Real, which transfers the simulated U-nets to segment
real-world scenes. Specifically, we first train contrastive unsupervised RL(CURL) with segmented images
in the simulation environment. Next, we employ two U-Nets to segment robotic hand-view and side-view
images during real robot control. These U-Net are pre-trained with synthetic RGB and segmentation masks
in the simulation environment and fine-tuned with only 20 real images. We evaluate the robustness of the
proposed framework in both simulation and real environments. Seg-CURL is robust to the texture, lighting,
shadow, and camera position gap. Finally, our algorithm is tested on a real Baxter robot with a dark hand-view
in the cube lifting task with a success rate of 16/20 in zero-shot transfer.

INDEX TERMS Reinforcement learning, robotic manipulation, Sim2Real, zero-short learning.

I. INTRODUCTION
In recent years, deep reinforcement learning (DRL) has
achieved remarkable results in robot control, ranging from
robotic manipulation to robotic locomotion [1], [2], [3].
Among kinds of DRL methods, visual-based DRL can give
more potential for solving complex robotics tasks [1], [4]
since the image contains a large amount of hidden informa-
tion, such as contacting, reaching, and slipping.

However, DRL with high dimensional observations, like
images, requires significantly more samples than the physical
state-based features [5]. It usually needs millions of steps
to train an agent in high-dimensional tasks [6]. Also, at the

The associate editor coordinating the review of this manuscript and

approving it for publication was Yangmin Li .

initial training stage, the robot acts randomly to explore the
workspace fully, which causes damage to the real robot. [7].

Transferring a well-trained agent from the simulation to the
real world (Sim2Real) is an effective solution to avoid these
problems [7], [8]. But transferring a vision-based control
policy to the real world usually meets a low success rate
due to the gap between reality and simulation environments.
It is hard to set the parameters in the simulation environment
the same as in the real world, causing visual gap such as
rendering, texture, lighting, and camera position.

There are two methods to close the gap of Sim2Real:
1) Make the simulation more like reality; 2) Learn invariant
representations between simulation and reality, and then train
the RL agent by this representation. Benefiting from the
recent development of the computer’s hardware like GPU,
a computer could render a 3D scene which is hard for a

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 50195

https://orcid.org/0000-0002-0126-2470
https://orcid.org/0000-0003-2759-0306
https://orcid.org/0000-0002-4448-3310


B. Xu et al.: Seg-CURL: Segmented CURL for Sim-to-Real in Visual Robotic Manipulation

human to distinguish from if it is from the real world or
simulation [9]. But thesemethods are designed for the general
simulation environment and need huge numbers of real data
to train. It is challenging to transfer the simulation rendering
to a specific real lab scenario using a limited real-world vision
sample.

As for methods related to learning invariant representation,
domain randomization is a common way [10]. By adding
random noise in the simulation parameters, such as camera
position, and light color, the RL agent can learn a repre-
sentation invariant to these parameters. When transferred to
the real environment, the trained agent is robust with these
parameters. But this method will increase the complexity of
the problem since the agent has to be trained in a wider
observation space. Another way is to define a canonical
observation space, then transform simulation observation and
real observation into the same canonical space to reduce the
gap between reality and simulation environment [11].

Our method belongs to the second class, which transfers
the observation space to a canonical space – segmented
image. Firstly, we train visual grasping strategies with CURL
[12] algorithm (contrastive unsupervised for reinforcement
learning) using the segmented images in the simulation envi-
ronment with sparse reward. To tackle the problem of sparse
reward during RL training, we design a specialized envi-
ronment that captures visual observations from an expert
agent trained with low-dimension features and dense reward.
Secondly, we pre-train the U-nets with simulation images and
corresponding segmented images, then fine-tune these U-Net
with a small real segmentation data set (20 real images).
In this way, we greatly reduce the need for real segment
labels, which are time-consuming to obtain. Finally, we con-
trol the robotic manipulator with well train agent from the
simulation with segmented real data. To summarize, the main
contributions of this work are:

• This paper proposes a low-cost Sim2Real framework
via self-contrastive learning and semantic segmentation.
In our framework, only 20 real images are needed to
achieve image segmentation and control of a real robot.
It takes around 2 hours to train a stable RL grasping and
lifting agent.

• Create an ‘‘imitation environment’’ to give expert
demonstrations for the visual-based sparse reward agent.
In this way, the cumbersome human demonstration
collection process is avoided when solving the sparse
reward problem in the RL training.

• We demonstrate the robustness of the segmented CURL
algorithm with the texture, shadows, and camera posi-
tion offset in both simulation and real Baxter on the
lifting task.

II. RELATED WORK
A. LEARNING INVARIANT REPRESENTATION FOR
Sim2Real
Although some physic-state based RL methods [13] can
transfer to the real world directly, image-base RL algorithms

need to find an invariant representation to achieve successful
Sim2Real transfer. There exist two primary categories of
invariant representation: 1) Feature-level invariant represen-
tation, which aims to identify a low-dimensional representa-
tion that contains only task-related information. 2) Pixel-level
invariant presentation, which involves transferring simulation
and real vision into the same canonical visual space.

Regarding feature-level representation learning, Puang
et al. [14] adopt an auto-encoder to extract key points from
stereo cameras. They subsequently employ behavior cloning
(BC) to control the robot using these key points. Since this
method is based on the auto-encoder structure, it requires
a substantial amount of data to train the encoder (approxi-
mately 35,000 images). Given that self-contrastive learning
can be more data-efficient than auto-encoders, Jeong et al.
[15] employs time contrastive learning to obtain the encoder
for the observed image. The corresponding action is derived
from DRL rather than BC, making this method more stable
in unseen situations.

To use well-developed visual-based control methods
directly, pixel-level invariant presentation is a good option.
James et al. [11] define a canonical pixel observation
where different colors represent different joints and objects.
They employ a GAN-based generator called Randomized
to Canonical Adaptation Network to translate the random-
ized simulation image into the canonical space. Similarly,
Rao et al. [16] utilize CycleGAN, which consists of two gen-
erators - Sim2Real and Real2Sim. Furthermore, they intro-
duce a Q-function loss, which ensures that paired simulation
and real observations have similar Q values. However, GAN-
based generators may face the issue of instability, slow con-
vergence, and high computational costs.

On the other hand, Pashevich et al. [17] consider the depth
image as the canonical space and train agents on the depth
image augmented with random noise. This method depends
on the depth camera. Similarly to our work, Hong et al. [18]
also use segmented images in robot control. But their only
show the basic reaching task on the mobile robot.

B. RL BASED VISUAL CONTROL
Image-based observations can implicitly provide crucial
information, such as object position and the contact state
of the end-effectors, which are often difficult or expensive
to obtain in the real world [19]. As a result, this approach
has immense potential for solving complex robotic tasks.
Nonetheless, training visual control through Deep Reinforce-
ment Learning (DRL) needs millions of data points. Further-
more, these frameworks are plagued by the problem of sparse
rewards [20], only receiving rewards upon successful task
completion. A common approach for addressing the sparse
reward issue involves providing expert demonstrations.

To address the data inefficiency of image-based RL,
a preprocessing step is required to reduce the observation’s
dimensionality. In this respect, self-supervised learning has
attracted considerable attention due to its data efficiency and

50196 VOLUME 11, 2023



B. Xu et al.: Seg-CURL: Segmented CURL for Sim-to-Real in Visual Robotic Manipulation

generalization capabilities. There are three primary meth-
ods in self-supervised learning [21]: 1) Generative self-
supervised learning methods, such as PixelRNN [22] and
GraphRNN [23]; 2) Adversarial self-supervised learning
methods, like RoCL [24]; and 3) Contrastive self-supervised
learning methods, including SimCLR [25], CURL [12], and
the most recent version of self-contrastive learning even
extracts features along the time dimension [26]. Among
these algorithms, contrastive self-supervised learning meth-
ods require fewer data and exhibit greater stability during
training.

Based on the discussion above, we choose the con-
trastive unsupervised algorithm as the backbone for reduc-
ing the dimensionality of visual observations. CURL
derives representations from images using self-contrastive
representation learning, which requires less data for training
compared to auto-encoding. To address the sparse reward
problem, several expert trajectories are incorporated into the
replay buffer. However, CURL, and more generally, self-
contrastive representation learning methods, exhibit limited
performance in domain adaptation, particularly in bridg-
ing the Sim2Real gap [27]. To overcome these challenges,
we combine CURL with segmentation-driven domain shifts
to enhance its Sim2Real transferability.

III. METHODS
In this section, we introduce the primary workflow of our
study on visual robotic manipulation. The proposed Seg-
CURL framework is depicted in Figure 1 and consists of
three essential components: 1) Expert Demonstration 2) Con-
trastive Unsupervised Representation for RL. 3) Sim2Real
Transfer Module, where real image observations are seg-
mented using a Double U-Net.

A. COLLECT EXPERT DEMONSTRATION
To address the sparse reward issue while training an image-
based RL agent, we gather 20 expert trajectories with image
observations. As illustrated in Figure 2, we initially train
an expert agent using physics-informed observations (robot
end-effector states and object states), which are readily avail-
able in the simulation environment. Subsequently, a special-
ized environment–referred to as the imitation environment–is
employed to collect image-based observations.

1) TRAIN EXPERT AGENT
In general, RL algorithms can be classified into on-policy and
off-policy. On-policy algorithms typically exhibit more stable
convergence properties as the agent learns from data collected
by the current policy. On the other hand, off-policy learn-
ing allows the policy to be updated using experiences from
older policies, making it more data-efficient. In this paper,
we address a relatively stable task(manipulating a static
object). Off-policy algorithms have the potential to learn
faster without compromising stability. The RL algorithm we
choose is Soft Actor-Critic (SAC) [28]. Compared to other

off-policy RL algorithms, this method is relatively less sen-
sitive to hyperparameters such as learning rate and reward
discount factor. The main difference between SAC and other
actor-critic algorithms (such as TD3 [29]) is that SAC is based
on maximum entropy RL. This adaptation transforms the
Deep RL problem into finding a network–policy π–that max-
imizes accumulated reward as defined in Equation (1). The
entropy measures the randomness of the policy. High entropy
means high exploring rates. By incorporating entropy, the
robot keeps exploring the action spacewhilemaintaining high
rewards during training.

π∗(a) = argmax
π

E
τ∼π

[
∞∑
t=0

γ t (R(st , at , st+1)

+ αH (π (·|st )))] (1)

where: π is the policy, τ is the trajectory, γ is the reward
discount factor, st is the observed state at time t , at is action
at time t , H (π (·|st )) is the entropy of the policy at st . α is the
trade-off coefficient.

In this application, we employ an auto-tuning version of
SAC [28] to determine the trade-off coefficient α. Task-
related variables–observation space s, action space a, and
reward r–are defined as follows: The observation at a time
t is:

st = {pobjt , pgript , g, do_p} (2)

where: pobjt , pgrippert is the x, y, z position of the object and
gripper in the world coordinate. g is the gripper’s open state,
normalized into the range[−1, 1], where −1 present close
and 1 present open. do_p is the distance from the cube to the
gripper.

The agent’s action space consists of the changes in the
end-effector’s x, y, z direction and the state of the gripper,
as shown in Equation (3). These values are normalized to
[−1, 1] and multiplied by a scale factor when controlling the
real robot.

a = {1x, 1y, 1z, g} (3)

As for the reward: We design dense rewards for the grasp-
ing task, similar to those in Robosuite [30], to accelerate the
learning process. The lifting task consists of three stages:
1) reaching stage; 2) grasping stage; 3) lifting stage. The
corresponding rewards are designed as follows:

1) Reaching reward.

rreaching = 1 − tanh (10 ∗ do_p) (4)

where: do_p is the distance from the end-effector to the
object.

2) Grasping reward. If two grippers touch the object, the
agent will get the grasping reward.

rgrasping =

{
0.25 contact
0 non− contact

(5)

VOLUME 11, 2023 50197



B. Xu et al.: Seg-CURL: Segmented CURL for Sim-to-Real in Visual Robotic Manipulation

FIGURE 1. The Framework for Seg-CURL. 1. Expert demonstration collection. 2. Contrastive Unsupervised Representation for Reinforcement
Learning. 3. Sim2Real Module based on a Double U-Net.

3) Lifting reward.When the object is above the table more
than 5cm, the agent gets the lifting reward.

rlifting =

{
2.5 zobj > 0.05m
0 zobj ≤ 0.05m

(6)

where: zobj is the lift height of the object.
4) Acting reward. To restrain the random movement, the

agent gets a small negative reward in each step.

ract = −0.1 (7)

The total reward r is:

r = (rreaching + rgrasping + rlifting + ract ) (8)

2) IMITATION ENVIRONMENT
Once the physics-based agent is trained, we need to store
visual observations of this agent. For this purpose, we design
an imitation environment, as shown in Figure 2. This envi-
ronment has both physical feature observations and image
observations (segmented images). In each step of the RL
process, the physical observation obspt is sent to the expert
agent to generate expert action at , while the image obser-
vation obst is stored in the replay buffer. Then, the robot
executes action at , and the environment transitions to a new
state with obspt+1, obst+1, repeating the above process until
the end of the trajectory. During this process, action, reward,
done information, and image-based observations are stored
in the replay buffer. These image-based expert trajectories
are used to pre-train the contrastive network and address the
sparse reward problem of RL.

FIGURE 2. Collect expert demonstration. Step 1: train an expert agent
with physical state-based observation. Step 2: Record image observations
using the imitation environment. This environment executes the action
from the expert agent while recording the image-based observation,
action, and sparse reward.

B. CONTRASTIVE UNSUPERVISED REINFORCEMENT
LEARNING
After obtaining the demonstrations from the expert agent in
a replay buffer, we use them to train two backbone models,
the query and key encoders, as shown in the CURL module
section of Figure 1. The trained query encoder is then used as
the observation for the SAC-based RL. A detailed discussion
of each step within CURL is presented below:

1) TRAINING BACKBONE ENCODERS
The expert demonstrations are used to train the key and query
backbone encoders. Initially, both encoders are initialized
with the same parameters. During training, the parameters

50198 VOLUME 11, 2023



B. Xu et al.: Seg-CURL: Segmented CURL for Sim-to-Real in Visual Robotic Manipulation

of the key encoder are updated by constraining it with the
InfoNCE loss function [31]. A batch of image observations
X = {x1, . . . , xk} is sampled from the replay buffer. The
data augmentation is performed on every image in the batch
with the random crops to generate queries Q = {q1, . . . , qK }

and keys K = {k1, . . . , kK }. The InfoNCE loss is defined in
equation 9.

Lqi = −log
exp(qTi Wki)∑K
j=1 exp(q

T
i Wkj)

(9)

where: qTWk is the bi-linear inner-product similarity, andW
is a learned parameter matrix.

To minimize this InfoNCE loss, the bi-linear inner-product
similarity of the query qi and key ki is maximized if the query
and key come from the same image. Through this, they will
be encoded close in the low-dimension representation space.
Once the parameters in the key encoder are updated, the query
encoder is updated with momentum:

θk = mθk + (1 − m)θq (10)

where: θk , θq are the network parameters of key and query,
respectively.

2) TRAIN SAC WITH ENCODER
After tuning the key and query encoders, the SAC-based RL
agent is trained using the query encoder, as shown in the
CURL section of Figure 1. Since the agent is trained with
image-based observations, defining a dense reward during
grasping is challenging. The only reward is the lifting reward
(with a reward of 1) when the object is elevated more than
5cm above the table.

C. TRANSFER TO REAL ENVIRONMENT
To achieve robust task transfer, in other words, to utilize the
well-trained agent from simulation, the real-world images
need to be mapped into the proposed canonical space via
segmentation.

We chose U-Net [32] for semantic segmentation of real
images. U-Net is designed for fast and accurate image seg-
mentation. As depicted in Figure 3, it comprises three types
of layers: max-pooling (blue arrow), up-sampling (yellow
arrow), and copy-crop concatenation (red arrow). U-Net has
been extensively used in biomedical image segmentation due
to its ability to provide robust, precise segmentation with a
reasonable number of training samples. However, training a
U-Net still necessitates hundreds to thousands of images with
segmentation masks, which can be time-consuming to label.

We utilize another transfer learning approach for segmen-
tation to reduce the demand for real data. This transfer is the
observation-level Sim2Real.We first pre-train the U-Net with
synthetic images and segmentation masks provided directly
by the simulation environment. Then, we fine-tune the U-Net
with a small amount of real data, as depicted in Figure 3.
To efficiently use this limited real data set, wemust determine
which layers need to be fine-tuned in the U-Net. In [33],

FIGURE 3. Train segmentation for the real world scans. First, U-nets are
trained using synthetic RGB scans and ground truth masks from the
simulation environment. Then, the networks’ shadow layers(shown in the
red box) are fine-tuned with real data from the side and hand views.

FIGURE 4. Control the real robot with segmented image First, segment
the real camera view with U-Net. Then the robot is controlled with the
transferred agent based on the segmented imag.

Amiri investigates the performance of U-Net on a new dataset
when different layers are fine-tuned. We find that in our case,
tuning the shallow layers (the layers in the red box in Figure 3)
yields the best performance on the real image data set, which
is consistent with their findings.

Since the primary differences between synthetic and real
images lie in texture, rendering, and lighting, these features
are extracted by the shallow layers of the U-Net. Thus,
by fine-tuning these layers, U-Net can better adapt to the real
data set. To achieve robust segmentation, a mere 15 side-view
and 25 hand-view images are sufficient for fine-tuning each
U-Net pair. The segmentation masks for this small data set
are generated using the Matlab ImageLabeler tool.

Once the U-Net segments the real image observation in
real-time, the proposed framework transfers the RL agent
(trained in the simulation environment) to control the actual
Baxter robot for the desired manipulation tasks, as illustrated
in Figure 4. The original image dimension of hand view and

VOLUME 11, 2023 50199



B. Xu et al.: Seg-CURL: Segmented CURL for Sim-to-Real in Visual Robotic Manipulation

FIGURE 5. Experiment setup. A Baxter robot with parallel two fingers
gripper and two RGB cameras from side view and hand view.

side view are 3× 540×960 and 3× 640×400. These images
are reduced to the dimension of 3×96×96 before putting into
the image-based RL agent.

IV. EXPERIMENT
In this section, we evaluate the performance of our proposed
method on both simulated and real Baxter robots. First,
we describe the task and experimental setup. Next, we pro-
vide details of the training process in the simulation envi-
ronment and compare our method’s performance with vanilla
CURL and CURL with domain randomization (DR-CURL)
under various camera position calibration errors, illumina-
tion, and light color conditions. Finally, we test our method
on the Baxter robot with a dark hand view in the cube lifting
task.

A. HARDWARE SETUP
The hardware setup is shown in Figure 5. The task is to lift
the cube above the table more than 5cm. This setup con-
sists of a 7-DoF Baxter manipulator (Rethink Robotics, US)
equipped with a parallel two-finger gripper, a side camera
(Microsoft Kinect2) featuring a resolution of 540 × 960,
and an original Baxter camera on hand with a resolution.
Both cameras have a sampling rate of 30 Hz. A cube-shaped
object with the dimension (50 × 50× 50)mm is placed on
the table. The manipulator’s workspace is the table’s surface
with dimensions (600× 800)mm. The exchange of messages
between all the different devices is managed by the ROS
framework, an open-source Robot Operating System running
on a personal computer with an i5-1060 CPU, 32GB RAM,
and NVIDIA RTX 3070 GPU.

B. SIMULATION EXPERIMENT
To accomplish successful Sim2Real transfer, we must create
a simulation environment in Pybullet that closely resembles
the real world. We utilize the robot, table, and camera URDF
files to construct the simulation environment. Additionally,
we use the intrinsic and extrinsic camera parameters to enable
accurate camera simulation. Camera calibration tools, such
as MoveIt and OpenCV, can be employed to obtain these

TABLE 1. Parameters for SAC and encoder.

parameters. One episode contains 100 steps. When the agent
reaches the maximum step, the episode will stop. The goal of
RL is to maximize the accumulated reward in 100 steps.

The simulation and demonstration collection are con-
ducted in the Pybullet. We present implementation details
regarding expert SAC and the self-contrastive encoder.
We compare the performance of our proposed Seg-CURL
with vanilla CURL and CURL with domain randomiza-
tion(DR_CURL) under various camera position calibration
errors, illumination, and light color conditions. We demon-
strate that segmented images contain sufficient information
to complete the required task robustly.

As described in the methods section, we first need to train
an expert agent that has a physics state-based observation,
as in Eq. (2), and a predefined dense reward, as expressed in
Eq. (1). The hyperparameters of the SAC (the expert agent)
are shown in Table 1, where γ is the reward discount factor,
lr is the learning rate of the Q and V networks. α is the initial
temperature parameter, αlr is the corresponding learning rate.
B is the batch size, and τ is the smoothing coefficient for
the target Q network. These hyperparameters are chosen
in a manner consistent with Zhan’s work [5]. They can be
optimized using random search, grid search, or Bayesian opti-
mization, aided by open-source tools such as Ray Turn [34]
and Optuna [35]. The training takes approximately 2 hours
(500 episodes) to produce a stable agent, as illustrated in
Figure 7.
Once we get the physic state-based expert agent, we collect

20 trajectories from this agent with segmented observation.
Subsequently, the self-contrastive learning encoders are pre-
trained using the segmented images stored in the replay
buffer. The parameters of the SAC agent are updated based on
the encoder’s representation when the robot interacts with the
environment. The hyperparameters of the image-based SAC
remain consistent with the parameters listed in Table 1. The
encoder consists of four layers, each comprising a filter with
32 channels. The training process takes approximately three
hours (800 episodes) to achieve a stable agent, as depicted by
the blue line in Figure 7.
In order to systematically evaluate ourmethod, we test Seg-

CURL under three types of Sim2Real gaps, as depicted in
Figure 6.
1) Camera Position Offset: This represents the position

calibration error. We evaluate RL agents on the X, Y, and Z
axes with position offset ranges from -0.15 cm to 0.15 cm.

2) Illumination of Light: This effect can be adjusted by
the light ambient coefficient (LAC) in the Pybullet simulator.
As shown in Figure 6 case 2, the LAC is set from 0.1 to 0.7.

50200 VOLUME 11, 2023



B. Xu et al.: Seg-CURL: Segmented CURL for Sim-to-Real in Visual Robotic Manipulation

FIGURE 6. Experiments in the simulation. Case 1: Test the grasping in camera position offset. The camera position calibration
error ranges from −0.15cm to 0.15cm in the X, Y, and Z axis. Case 2: Test grasping on different illumination. The range for the light
ambient coefficient is 0.1 to 0.7, corresponding from dark to bright. Case 3: Test on different light colors. RL agents are tested on
8 colors, where color 0 presents gray (RGB: 000), color 1 presents purple (RGB: 001), and so on.

FIGURE 7. Training process. The red line is the training reward for the
physic feature based agent. The blue line is the reward for the segmented
image-based agent.

3) Object Texture: We simply alter the light color to
demonstrate this effect.We select eight kinds of colors, where
0 represents gray (RGB 000), 1 represents purple (RGB 001),
and so forth.

The baselines we have chosen are vanilla CURL and
CURL with domain randomization (DR-CURL). The vanilla
CURL is trained using RGB views with a 0 position offset,
a LAC value of 1, and pure white light (RGB 111).In contrast,
for DR-CURL, the camera position offset is randomly set
within the range of [-0.05, 0.05] at each step. The LAC is
randomly set within the range of [0.3, 0.7], and the light
color is randomly set from [0, 0, 0] to [1], [1], [1] at each
step.

1) EVALUATION IN POSITION OFFSET
As illustrated in Figure 8, all RL agents achieve a success rate
of approximately 0.95 when the camera position offset is less
than 0.05 cm in the X, Y, and Z axes. This robustness results
from the data augmentation in the encoding process, wherein
84×84-pixel images are randomly cropped from the original
96 × 96-pixel images. Consequently, the learned representa-
tion vector remains invariant to changes at the image edges.
DR-CURL outperforms both CURL and Seg-CURL, as it is
trained with a wider field of view by randomizing the camera
position. In most cases (except in the X-axis), our Seg-CURL
attains a performance similar to that of DR-CURL, even
though it is trained with a narrower field of view. However,
Seg-CURL is more sensitive to camera position changes in
the X-axis when the offset exceeds 0.05. It delivers the worst
performance when the offset is +0.1 cm and +0.15 cm in the
X-axis.

2) EVALUATION IN LIGHT AMBIENT
Figure 9 presents the performance of RL agents under various
illumination conditions. Our Seg-CURL outperforms other
RL agents, achieving a success rate higher than 0.95 in all
conditions. DR-CURL also attains a success rate of approxi-
mately 1 when the light ambient is greater than 0.1. However,
it can only achieve a success rate of around 0.5 when the
light ambient is 0.1, a case exclusively included in domain

VOLUME 11, 2023 50201



B. Xu et al.: Seg-CURL: Segmented CURL for Sim-to-Real in Visual Robotic Manipulation

FIGURE 8. Grasping success rate in different camera position offset.

FIGURE 9. Grasping success rate in different light ambient coefficient.

randomization. The vanilla CURL is highly sensitive to the
LAC and can only achieve a performance similar to Seg-
CURL when the LAC value is greater than 0.6.

3) EVALUATION IN LIGHT COLOR
Lastly, we evaluate the performance of RL agents under var-
ious light colors, as demonstrated in Figure 10. Our method
delivers the best performance, as the segmented image is
invariant to color changes in lighting. DR-CURL and CURL
do not exhibit stable performance across various light colors.
CURL achieves a success rate of only 0.25 in light color 1
(RGB: 001), while DR-CURL attains a success rate of merely
0.1 in light color 6 (RGB: 110).

C. TRANSFER TO THE REAL ROBOT
In this section, we report the performance of the trans-
ferred agent on a real robot. The experiment setup details
are described in Section IV-A. There are two RGB images
from side-view and hand-view perspectives, respectively.
Figure 11 displays the real images and their corresponding

FIGURE 10. Grasping success rate in various light colors. The Sim2Real
performance is tested on 8 kinds of light.

FIGURE 11. Real image, segmented image.

segmented images. It takes around 18 minutes to train the
U-net on our customized data set that contains 5000 pairs
of synthetic RGB and segmentation masks. From the real
image view, we can observe that some shadows change during
the robot’s movement. Furthermore, the hand camera of the
Baxter robot can only provide dark images, which increases
the task’s difficulty.

Table 2 presents the success rate of tasks when transferring
the RL agents to the real robot using zero-shot learning.
We randomly place the cube in a 15cm × 15cm area below
the gripper. The vanilla CURL can only touch the cube
with a success rate of 3/20. The DR_CURL can achieve
a success rate of 12/20 and 7/20 on the task touch and
lifting task respectively. Our Seg-CURL demonstrates good
Sim2Real performance, achieving 20/20 on touching and
16/20 on lifting in zero-shot transfer to the real world. It is
not surprising that vanilla CURL and DR-CURL exhibit poor
performance in Sim2Real, as the real view domain differs
from the simulation. Real images encompass varying texture
details, shadows, and lighting conditions. Particularly when
the manipulator is near the table, there will be irregular
shadows that are not present in the simulation environment.
Consequently, the transferred encoder provides a different
representation than the simulated view, even when the real
robot and real object are in the same position as the sim-
ulated ones. Without bridging the gap between the image

50202 VOLUME 11, 2023



B. Xu et al.: Seg-CURL: Segmented CURL for Sim-to-Real in Visual Robotic Manipulation

TABLE 2. Success rate for different algorithms in Sim2Real.

representations of simulation and reality, the transferred actor
cannot take optimal action in the real world.

V. CONCLUSION
This work introduces the Seg-CURL framework for
reinforcement learning-based visual grasping. We employ
segmented images as the canonical observation space.
Compared to GAN-based Sim2Real methods [11], [16], Seg-
CURL necessitates only about 20 real images with segmen-
tation masks to control a real robot. In the majority of cases,
Seg-CURL attains higher success rates than vanilla CURL
and DR-CURL in the object-lifting task under various light
colors, illumination levels, and camera position offsets. It can
be applied to multi-object grasping by segmenting different
objects with different masks. In the future, we will also
test this method on the long horizon task, such as pick and
place, and peg-in-hole. The main drawback of our method is
the loss of information about texture when transferring RGB
observation to segmented observation. Our method is suitable
for manipulating objects where texture does not play a crucial
role in the task.

REFERENCES
[1] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen,

E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine, ‘‘QT-Opt: Scal-
able deep reinforcement learning for vision-based robotic manipulation,’’
2018, arXiv:1806.10293.

[2] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, ‘‘Learning agile and dynamic motor skills for legged
robots,’’ Sci. Robot., vol. 4, no. 26, pp. 1–20, Jan. 2019.

[3] F. Munguia-Galeano, S. Veeramani, J. D. Hernández, Q. Wen, and Z. Ji,
‘‘Affordance-based human–robot interaction with reinforcement learn-
ing,’’ IEEE Access, vol. 11, pp. 31282–31292, 2023.

[4] S. Song, A. Zeng, J. Lee, and T. Funkhouser, ‘‘Grasping in the wild: Learn-
ing 6DoF closed-loop grasping from low-cost demonstrations,’’ IEEE
Robot. Autom. Lett., vol. 5, no. 3, pp. 4978–4985, Jul. 2020.

[5] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin, ‘‘Learning visual
robotic control efficiently with contrastive pre-training and data augmen-
tation,’’ 2020, arXiv:2012.07975.

[6] O. Kroemer, S. Niekum, and G. Konidaris, ‘‘A review of robot learning
for manipulation: Challenges, representations, and algorithms,’’ J. Mach.
Learn. Res., vol. 22, no. 1, pp. 1395–1476, 2021.

[7] W. Zhao, J. P. Queralta, and T. Westerlund, ‘‘Sim-to-real transfer in deep
reinforcement learning for robotics: A survey,’’ in Proc. IEEE Symp. Ser.
Comput. Intell. (SSCI), Dec. 2020, pp. 737–744.

[8] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, and J. Peters, ‘‘Robot
learning from randomized simulations: A review,’’ Frontiers Robot. AI,
vol. 9, pp. 1–19, Apr. 2022.

[9] R. Burgert, J. Shang, X. Li, and M. Ryoo, ‘‘Neural neural textures make
Sim2Real consistent,’’ 2022, arXiv:2206.13500.

[10] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
‘‘Domain randomization for transferring deep neural networks from simu-
lation to the real world,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Sep. 2017, pp. 23–30.

[11] S. James, P.Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz,
S. Levine, R. Hadsell, and K. Bousmalis, ‘‘Sim-to-real via sim-to-sim:
Data-efficient robotic grasping via randomized-to-canonical adaptation
networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 12619–12629.

[12] A. Srinivas, M. Laskin, and P. Abbeel, ‘‘CURL: Contrastive unsupervised
representations for reinforcement learning,’’ 2020, arXiv:2004.04136.

[13] S. Pareek, H. Nisar, and T. Kesavadas, ‘‘AR3n: A reinforcement
learning-based assist-as-needed controller for robotic rehabilitation,’’
2023, arXiv:2303.00085.

[14] E. Y. Puang, K. P. Tee, and W. Jing, ‘‘KOVIS: Keypoint-based visual
servoing with zero-shot sim-to-real transfer for robotics manipulation,’’
2020, arXiv:2007.13960.

[15] R. Jeong, Y. Aytar, D. Khosid, Y. Zhou, J. Kay, T. Lampe, K. Bousmalis,
and F. Nori, ‘‘Self-supervised sim-to-real adaptation for visual robotic
manipulation,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2020,
pp. 2718–2724.

[16] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari, ‘‘RL-
CycleGAN: Reinforcement learning aware simulation-to-real,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11154–11163.

[17] A. Pashevich, R. Strudel, I. Kalevatykh, I. Laptev, and C. Schmid, ‘‘Learn-
ing to augment synthetic images for Sim2Real policy transfer,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 2651–2657.

[18] Z.-W. Hong, Y.-M. Chen, H.-K. Yang, S.-Y. Su, T.-Y. Shann, Y.-H. Chang,
B. H.-L. Ho, C.-C. Tu, T.-C. Hsiao, H.-W. Hsiao, S.-P. Lai, Y.-C. Chang,
and C.-Y. Lee, ‘‘Virtual-to-real: Learning to control in visual semantic
segmentation,’’ in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,
pp. 4912–4920.

[19] G. Du, K. Wang, S. Lian, and K. Zhao, ‘‘Vision-based robotic grasping
from object localization, object pose estimation to grasp estimation for par-
allel grippers: A review,’’ Artif. Intell. Rev., vol. 54, no. 3, pp. 1677–1734,
Mar. 2021.

[20] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, ‘‘Hindsight experience
replay,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 5049–5059.

[21] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, ‘‘Self-
supervised learning: Generative or contrastive,’’ IEEE Trans. Knowl. Data
Eng., vol. 35, no. 1, pp. 857–876, Jan. 2023.

[22] A. V. Oord, N. Kalchbrenner, and K. Kavukcuoglu, ‘‘Pixel recurrent
neural networks,’’ in Proc. Int. Conf. Mach. Learn. (ICML), 2016,
pp. 1747–1756.

[23] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, ‘‘GraphRNN:
Generating realistic graphs with deep auto-regressive models,’’ in Proc.
Int. Conf. Mach. Learn. (ICML), 2018, pp. 5708–5717.

[24] M. Kim, J. Tack, and S. J. Hwang, ‘‘Adversarial self-supervised contrastive
learning,’’ inProc. Neural Inf. Process. Syst. (NIPS), 2020, pp. 2983–2994.

[25] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, ‘‘A simple framework
for contrastive learning of visual representations,’’ inProc. Int. Conf.Mach.
Learn. (ICML), 2020, pp. 1597–1607.

[26] Y. Liu, K. Wang, L. Liu, H. Lan, and L. Lin, ‘‘TCGL: Temporal contrastive
graph for self-supervised video representation learning,’’ IEEE Trans.
Image Process., vol. 31, pp. 1978–1993, 2022.

[27] M. Thota and G. Leontidis, ‘‘Contrastive domain adaptation,’’ 2021,
arXiv:2103.15566.

[28] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine, ‘‘Soft actor-critic algorithms
and applications,’’ 2018, arXiv:1812.05905.

[29] S. Fujimoto, H. VanHoof, andD.Meger, ‘‘Addressing function approxima-
tion error in actor-critic methods,’’ in Proc. 35th Int. Conf. Mach. Learn.,
vol. 4, 2018, pp. 2587–2601.

[30] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiriany,
and Y. Zhu, ‘‘Robosuite: A modular simulation framework and benchmark
for robot learning,’’ 2020, arXiv:2009.12293.

[31] A. Van Den Oord, Y. Li, and O. Vinyals, ‘‘Representation learning with
contrastive predictive coding,’’ 2018, arXiv:1807.03748.

[32] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ 2015, arXiv:1505.04597.

[33] M. Amiri, R. Brooks, and H. Rivaz, ‘‘Fine-tuning U-Net for ultrasound
image segmentation: Different layers, different outcomes,’’ IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 67, no. 12, pp. 2510–2518,
Dec. 2020.

[34] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
‘‘Tune: A research platform for distributed model selection and training,’’
2018, arXiv:1807.05118.

[35] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, ‘‘Optuna:
A next-generation hyperparameter optimization framework,’’ in Proc. 25th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2019,
pp. 2623–2631.

VOLUME 11, 2023 50203



B. Xu et al.: Seg-CURL: Segmented CURL for Sim-to-Real in Visual Robotic Manipulation

BINZHAO XU received the B.S. degree from
China Three Gorges University, and the M.S.
degree (Hons.) in electrical engineering from
Queen’s University Belfast, in 2018. He is cur-
rently pursuing the Ph.D. degree in robotics with
the Khalifa University of Science and Technology.
His research interests include reinforcement learn-
ing and learning from demonstration.

TAIMUR HASSAN received the B.S. degree in
computer engineering from Bahria University,
Islamabad, Pakistan, in 2013, the M.S. degree in
computer engineering from the University of Engi-
neering and Technology (UET), Taxila, Pakistan,
in 2015, and the Ph.D. degree in computer engi-
neering from the National University of Sciences
and Technology (NUST), Islamabad, in 2019.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineer-

ing, AbuDhabi University, UnitedArab Emirates. Prior to that, hewas a Post-
doctoral Fellow with the Khalifa University Center for Autonomous Robotic
Systems (KUCARS) and the Center for Cyber-Physical Systems (C2PS),
Department of Electrical Engineering and Computer Science, Khalifa Uni-
versity, Abu Dhabi, United Arab Emirates. He has worked on many local and
foreign funded research projects as a principal investigator, a co-principal
investigator, and a lead scientist/engineer. His research interests include
robotic vision, medical imaging, deep learning, signal processing, and com-
puter vision. He was a recipient of various national and international awards.

IRFAN HUSSAIN received the B.E. degree in
mechatronics engineering from Air University,
Pakistan, the first M.S. degree in mechatronics
engineering from the National University of Sci-
ences and Technology, Pakistan, the second mas-
ter’s degree in automatica and control technologies
from Politecnico di Torino, Italy, and the Ph.D.
degree in robotics from the University of Siena,
Italy.

From 2008 to 2011, he was an Assistant Man-
ager of engineering with Trojans, Pakistan. He was a Research Assistant
with Gyeongsang National University, South Korea, from 2012 to 2013.
He was a Visiting Researcher with Centro Ricerche Fiat (CRF), Italy. He was
a Postdoctoral Researcher with the Robotics Institute, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates, and the
Siena Robotics and System Laboratory (SIRSLab), Italy. He is currently
an Assistant Professor of robotics and mechanical engineering with Khalifa
University, Abu Dhabi. He is the author of one book, more than 70 articles,
and three inventions. His research interests include embodied intelligence,
exoskeletons, extra robotic limbs, soft robotic hands, wearable haptics,
grasping, and manipulation. He is an Associate Editor of Proceedings of the
Institution ofMechanical Engineers—C: Journal ofMechanical Engineering
Science, a Research Topic Editor for a Special Issues on Wearable Robots
and Sensorimotor Interfaces: Augmentation, Rehabilitation, Assistance or
Substitution of Human Sensorimotor Function (ID 21096) of Frontiers in
Neurorobotics, and a Guest Editor for the Special Issue on Design and
Development of Vision-Based Tactile Sensors of Sensors (ISSN 1424-8220).
He is an Associate Editor of RAS/EMBS BioRob, in 2018, ICRA, in 2021,
ICRA, in 2022, and IEEE/RAS ICRA, in 2023.

50204 VOLUME 11, 2023


