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ABSTRACT Colonic endoscopy is the gold standard for detecting rectal polyps and rectal cancer.
In which polyps are a major predisposing factor for colorectal cancer, the precise diagnosis of polyps within
colorectal endoscopy is highly dependent on a physician of professional level. With the development of
deep learning, some semantic segmentation methods have recently been applied to polyp detection, but
there are problems with insufficient accuracy and segmentation speed. To this end, we propose a precision
adaptive global context network (AGCNet) based on real-time colon endoscopy. Firstly, in order to adapt to
the problem of large-scale variation of polyps, we designed a multi-scale semantic fusion module (MSFM),
which enhances the representation capability by varieties of filters to collect contextual information at
different scales, thus adapting to the problem of large variation of polyp size, especially smaller polyps.
In addition, modelling long-range dependence by simply using complex spatial pixels tends to introduce
more background noise and increase the computational effort. To this end, a context-aware pyramid aggre-
gation module (CPAM) was designed, which internally includes a novel dual attention mechanism whereby
the CPAM aggregates feature information across different regions to boost the network’s ability to utilize
global context and model long-range dependency through dual attention to further reinforce the features
information of important regions and efficiently suppress features in non-important regions. Additionally,
the CPAM performs multi-level pooling on the input features to extract multi-scale context information
from the image and uses an attention mechanism to selectively highlight informative regions of the image
that are most relevant to the segmentation task. The module fuses the multi-level pooled features with the
attention map to produce enhanced feature representations that capture both global and local information.
Thereby achieving precise polyp segmentation and taking real-time into account. Our proposed AGCNet
performed extensive experimental studies on datasets Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB and
ETIS-LaribPolypDB. Specifically, AGCNet achieved an IoU of 87.40% and a Dice score of 92.63% on
the Kvasir dataset, achieving accurate segmentation results faster than many current state-of-the-art models.

INDEX TERMS Colonoscopy, polyp segmentation, multi-scale semantic feature, context-guided pyramid
aggregation module, feature aggregation.

I. INTRODUCTION
Early diagnosis of colorectal cancer (CRC) improves the
patients’ survival rate. Most CRCs start as adenomatous
polyps: surface protrusions on the colon and rectum lining.
Over time, they grow into malignant tumours and spread to
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surrounding organs. The survival rate drops from 95% in the
first stage to 35% in the fourth and fifth stages [1]. Early
screening and removal of polyps can increase the survival
rate. Colonoscopy is the standard for screening CRC, but even
so, accurate identification of polyps remains challenging due
to (1) the large variation in scale between polyps (Fig.1).
(2) the blurring of polyp border information (Fig.1(c)-(d)).
(3) low contrast between polyps and gastrointestinal tract.
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(4) endoscopist’s skill [2], [3]. Adenomatous polyps detection
rate (ADR) measures physician quality, which indicates the
percentage of polyps diagnosed in patients after a complete
colonoscopy. ADR varies from 7% to 53%, yet statistically,
there is a 25% probability that polyp will be missed in each
patient’s diagnosis [4]. It is worth mentioning that there
is a causal relationship between ADR and reduced CRC
mortality. According to the data, a 1% increase in ADR is
associated with a 3% decrease in interval cancer [5]. The
main factors that can affect ADR are mescal intubation rates,
withdrawal times, and quality of bowel preparation, which
depend on human intervention by endoscopists. However, the
human approach brings great uncertainty and reliability to
the diagnostic results, so there is an urgent need for an auto-
mated polyp segmentationmethod to reduce the misdiagnosis
brought by human factors.

Polyp segmentation during colonoscopy screening can pre-
vent colorectal cancer (CRC), which is mainly caused by
polyps. Polyps are surface protrusions on the colon and rec-
tum lining that can grow into malignant tumours and spread
to surrounding organs. Segmentation is challenging because
some polyps are flat, with low contrast to the mucosal bor-
der [6]. This requires the expertise of endoscopists to reduce
the rate of missed examinations during colonoscopy. Most
CRC patients (91% to 94%) do not have endoscopy before the
disease; others (6% to 9%) have endoscopy but misdiagnose
flat polyps [7]. Despite timely colon endoscopy, the leading
cause of cancer is the high rate of misdiagnosis of flat polyps,
which are also the focus of segmentation.

The subsequent efforts have been made to develop
appropriate protocols to address the many challenges in
polyp segmentation in colon endoscopy. Previous studies
used hand-crafted methods [8], [9] to train a classifier model
based on shape, color, texture and appearance. This method
could not segment heterogeneous polyps well, resulting
in low accuracy and performance [10]. Later studies used
deep learning methods to extract features automatically [11].
Although these approaches improve traditional manual seg-
mentation, using bounding boxes alone can only yield image-
wise results that cannot distinguish the boundary line between
the polyp and themucosa [12]. FCNwas proposed to segment
polyps using pre-trained weights for pixel-wise results. How-
ever, this method lost spatial information at low dimensions
and did not calibrate deep semantic information with shallow
information. Inspired by FCN,UNet with an encoder-decoder
U-shaped architecture was proposed [13], [14]. The network
has been widely used in medical image segmentation since its
introduction. However, the UNet model had limitations, such
as generating redundant information and increasing compu-
tation with traditional convolution. This also provided an
opportunity to improve performance further.

Since the encoding process of UNet directly uses a pooling
operation to compress the resolution, it is easy to cause the
loss of some spatial information. In addition, in skip archi-
tecture, the feature map of the encoder-decoder is directly

concatenated as feature input easily increases the amount
of redundant information. MRUNet provides a multi-scale
and residual scheme, using multi-parallel and multi-scale
convolution instead of the traditional convolution of the UNet
encoder and decoder can effectively reduce the semantic
information gap. Simultaneously, the skip connection part
is replaced by the residual model. However, MRUNet’s
operation-only models skip architecture by specifying the
feature maps of the encoding layers at a certain level to
reduce the semantic information gap of the corresponding
decoders. UNet++ takes into account the semantic differ-
ences between the encoding and decoding layers and designs
a series of nested and dense jump paths at the skip archi-
tecture, allowing the decoding layer to take advantage of
more rich contextual information in the encoding layer [15].
However, this approach introduces more complex compu-
tation and leads to more difficulty of optimizer and back-
propagation [16]. To further enhance the ability of context
information extraction and computing optimization, CPFNet
discards a single stage to model the context information,
using and modelling a double pyramidal module to extract
the global context information [17]. Besides, PraNet applies
region and boundary cues to design a parallel reverse atten-
tion mechanism that corrects some misaligned predictions.
Considering the uncertainty region of the salient features
of polyp segmentation, UACANet proposed an uncertainty-
enhanced contextual attention model [18]. However, these
methods cannot bridge the semantic information gap between
different levels and utilize the global information to achieve
an excellent segmentation result while maintaining real-time
performance.

In this paper, we propose an adaptive global context archi-
tecture named AGCNet, equipped with two new multi-scale
semantic extraction and dual attention approaches that can
meet the current challenges in segmenting polyps under
colonoscopy video. AGCNet compares with the currently
existing methods. It models a long-range dependency by
using contextual information at different scales without intro-
ducing extra computational costs to build confidence in the
network to identify the large variation scale and shape of
polyps. In addition, a novel method of dual attention mech-
anism is proposed to effectively suppress background noise
without employing sophisticated non-local modelling tech-
niques. The contribution of this work can be summarized as
follows:

• We propose a novel MSFM module to enhance the
network’s multi-scale representation at a more granular
level and aggregate multi-scale contextual information
to model long-range global dependency. Thus, it can be
self-adaptive to scale-variant polyps.

• In order to solve the interference of background noise
in the gastrointestinal channel, we further designed the
CPAM module to extract more discriminative features
by suppressing the interference of irrelevant information
through a dual-channel attention approach.
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FIGURE 1. Typical challenging polyp image segmentation case: (a)-(b) show images of smaller polyps, while (c)-(f) show some
images of polyps with large scale and blurred borders.

• Extensive experimental studies on five publicly avail-
able datasets have confirmed that AGCNet can produce
more competitive results when compared with other
state-of-the-art network models.

II. METHOD
Colorectal endoscopic images from four publicly available
datasets, Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB and
ETIS-LaribPolypDB, are preprocessed and passed through
our AGCNet for feature extraction and segmentation of the
polyp region. The whole network can be divided into a clas-
sical symmetric encoding and decoding region. The network
framework is shown in Fig.2, which employs two novels and
effectively validated new components Multi-scale Semantic
Fusion Module (MSFM) and Context-aware Pyramid Aggre-
gation Module (CPAM). To capture multi-scale contextual
information, we use our proposed MSFM module in the
encoding part of each layer, where the features are pro-
cessed by multi-scale convolution and then passed back by
the residual unit to obtain more discriminative representative
features to fit the polyp size at different scales. At the bottom
of the network, in order to mitigate the interference of the
background noise of the polyps on the high-level semantic
information, we further employ the CPAM module, which is
used to enhance the target region and weaken the background
region employing pyramid aggregation and a two-channel
attentionmechanism to exploit the global contextual informa-
tion. The operation of the different modules in the AGCNet
is discussed in detail in the following subsections.

A. MULTI-SCALE SEMANTIC FUSION MODULE
Due to the diversity of polyps and their different scales, the
network tends to lose the boundary information in the down-
sampling process, resulting in the inability to identify variable
polyps accurately. In this case, if the contextual informa-
tion of the shallow represents information can be reasonably
used, it will help the network to identify polyps of different
shapes and scales. Inspired by Res2Net [19], we propose a
Multi-scale Semantic FusionModule (MSFM).Most existing
methods use input feature maps with different resolutions to
improve the multi-scale representation ability. However, it is

easy to cause the loss of boundary information by reducing
the fine-grained. We use convolution kernels with differ-
ent scales to extract features at the more granularity level
to increase the network’s perception field and maintain the
model’s multi-scale representation ability. Then concatenate
to output the final feature map.

As shown in Fig.3 We extract feature from input feature
X ∈ RC×H×W by, including 1 × 1 convolution, Batch
Normalization (BN) and activation function ReLU. Keep-
ing the original input scale constant, we get a new feature
map X ′

∈ RC×H×W , where C, H and W represent the
number of channels, length and width of the feature map,
respectively. Dividing features into four feature maps with
an equal number of channels in channel dimension X ′′

=

[X0,X1,X2,X3] ∈ R
C
4 ×H×W , where X1,X2,X3 are trans-

formed via W2(·). Note that W2(·) includes 3 × 3 convolu-
tion and BN operations. We concatenate the feature maps
W2 (X1) ,W2 (X2) ,W2 (X3) and X0 transformed by W2(·)
in the channel dimension in turn, as shown in the following
equation.

Xcat = CONCAT (W2 (X1) ,W2 (X2) ,W2 (X3) ,X0) (1)

From the above equation, we obtain contextual information
at different scales based on the extraction of different convo-
lutional kernels, thus increasing the receptive field of the layer
network. Finally, we fuse the resulting feature outputs with
the original input features via a residual network operation,
as defined by the following equation.

XOut = W3 (XCat ) ⊕ X (2)

where ⊕ represents the pixel-level additive summation oper-
ation, W3(·) represents the 1× 1 convolution, BN and ReLU
nonlinear activation functions. To summarize the advantages
of MSFM, firstly, it is different from using the resolution
feature map to enhance the representational power of the net-
work. MSFM enhances the network’s representational power
at a finer granularity level. Designing different convolutional
kernels for feature extraction and then concatenating enables
the network to obtain multi-scale contextual information
increasing the perceptual field of the network. Finally, the
model models the long-range dependence between the model
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FIGURE 2. Schematic of the AGCNet architecture, which internally contains two main modules, MSFM and CPAM.

FIGURE 3. Schematic diagram of MSFM.

and the original input image, allowing the network to retain
sufficient spatial detail information.

B. CONTEXT-AWARE PYRAMID AGGREGATION MODULE
In order to reduce the misjudgment of foreground and
background information, we need to exploit a more exten-
sive range of contextual information, which requires not
only modelling the global context to capture the long-range
dependencies more efficiently but also deepening the net-
work to guide it to focus on the region of interest. Current
state-of-the-art approaches model more complex long-range

dependencies mainly by correlating pixels or channels, which
not only increases the computational effort but also intro-
duces some unavoidable background noise, thus reducing the
segmentation accuracy of the network.

Inspired by ECA-Net [20] and PSPNet [21], we propose
a Context-aware Pyramid Aggregation Module (CPAM),
which adopts a more efficient context modelling to estab-
lish long-range dependencies and effectively enhances the
information of cross-channel interactions. The procedure is
divided into Context-Aware Fusion and Attention Calibration
Operation.
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FIGURE 4. Schematic diagram of CPAM.

Operation of the Context-Aware Fusion, as shown in Fig.3.
Given the input feature map as D ∈ RC×H×W , first extract
four feature map D0 ∈ RC×6×6,D1 ∈ RC×3×3,D2 ∈

RC×2×2 and D3 ∈ RC×1×1 with different resolutions of con-
stant number of channels using multiple pooling operations
(MPA) at different scales, and then reduce the dimensionality
of the above four feature maps by CBR.

D′′
i =

(
Up

(
D′
i, βi

))
(3)

where D′
i ∈ R

C
4 ×H×W , i = 0, 1, 2, 3, and Up(·) denote bilin-

ear interpolation up-sampling and βi is the correlation coef-
ficient. Through the operation of the context-aware fusion
part, we obtain rich contextual information that is sufficient
for subsequent long-range dependency modelling, which
enhances feature differentiation. We connect the obtained
feature mappings into the channel dimension as follows.

DCat = CONCAT
(
D′′

0,D
′′

1,D
′′

2,D
′′

3
)

(4)

The Attention Calibration Operations section is designed
to enhance the network’s representation capabilities further.
In this section, Dual attention mechanisms are designed to
model long-range dependency as shown in Fig.5. In the
spatial attention mechanism, we first use convolution to
reduce the dimension of the channel, get the attention
weights through the Sigmoid activation function, then per-
form the attention matrix multiplication operation to reshape
the weights of the original input feature maps, as follows.

DSpatial = DCat ⊗ (σ (S0 (DCat , α))) (5)

where ⊗ is the multiplication of the attention matrix, σ (·)
is the Sigmoid activation function to get the attention

weight map, S0(·) is the 1 × 1 convolution operation, and
α is the S0 correlation coefficient. In addition, to explicitly
model the relationship between context and channel, we used
an efficient channel attention mechanism in the other part,
which is expressed as follows.

DChamnel = DCat ⊗
(
σ

(
FAdaptive (G (DCat , θ))

))
(6)

where FAdaptive (·) enables local cross-channel information
interaction, i.e., how many neighbours are involved in the
prediction of a channel’s attention. Also, FAdaptive (·) can
adapt to the size of the kernel. G(·) denotes the global
average pooling. G(D) =

1
H×W

∑H
i=1

∑W
j=1D(i, j) generates

channel-wise statistics, θ is the correlation coefficient of
G(·), and finally pixel-level multiplication is used to recal-
ibrate the channel weights of DCat . We aggregate the fea-
ture maps processed by the channel and spatial attention
mechanisms.

Dout = DSpatial ⊕ DChannel (7)

where ⊕ denotes the pixel-level addition operation that
achieves feature fusion, our proposed multiscale context
module based on a dual-channel attention mechanism, which
does not need to build complex pixel-level and channel-level
long-distance dependency, is equally capable of capturing
different contextual information and can obtain the same
ability to suppress background noise. In addition, enhanced
model discriminative power for different features and precise
segmentation can be achieved between polyps’ background
and foreground information.
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FIGURE 5. Schematic diagram of CPAM.

III. EXPERIMENT
A. LOSS FUNCTION
The loss function is essential for polyp image segmentation in
colorectal endoscopic scenarios. Since there is a severe imbal-
ance between the foreground and background information in
the polyp image, choosing the most appropriate loss function
can help suppress the background noise and accelerate the
better convergence of the network. The current mainstream
and advanced two loss functions are binary cross-entropy
loss, which is formulated as follows [22], [23].

LBCE = −

∑ (
pi ln

(
p̂i

)
+ (1 − pi) ln

(
1 − p̂i

))
(8)

LDice =

∥∥p(h,w)∥∥i + p̂(h,w)∥i − 2 ·
〈
p(h,w), p̂(h,w)

〉∥∥p(h,w)∥∥i + ∥∥p̂(h,w)∥∥i + α
(9)

where pi and p̂i denote the label value of the polyp and
the predicted value of the polyp region, respectively, (h,w)
denotes the image pixel coordinates, α represents the LaPlace
smoothing factor used to accelerate the aggregation of the
network. We set it to 1e-8 in our network and set up ablation
experiments to find the best loss function for training our
network model. Table 1 shows the segmentation results under
three different loss functions, as shown in the table. The opti-
mal segmentation results can be achieved when the combined
mode’s loss function is used, mainly due to the different
scales of polyps and the interference of a large amount of
background noise under the colorectal endoscope.

When using a single loss function for optimization, the
gradient of the polyp region will be affected by the gra-
dient of other background regions, increasing the diffi-
culty of network training and affecting the accuracy of the
final training results. However, the combination of two loss

TABLE 1. The ablation study of loss function on Kvasir-SEG dataset.

functions can be used for targeted learning and optimization
of polyp regions in the process of backpropagation to alleviate
the severe imbalance between foreground and background
information. Finally, we obtain the final loss function.

Ltotal = λ1 · LBCE + λ2 · LDice (10)

where λ1 and λ2 denote the loss function’s relevant weight
coefficient, we set them to 0.6 and 0.4, respectively.

B. DATASET AND EVALUATION
Four publicly available datasets were chosen for training and
evaluating the performance of AGCNet. The CVC-ClinicDB
dataset [24] consists of 612 images taken from 31 videos
of different types of polyps, where the ground truth masks
are hand-labelled by industry professionals, and all images
have a resolution size of 384× 288. The Kvasir-SEG dataset
[25] contains 1000 images of polyps, and endoscopic experts
annotated the corresponding ground truth mask maps at Oslo
University Hospital. The ETIS-Larib dataset [29] contains
196 images of polyps with 1225×966 resolution. It was used
as one of the dedicated test sets for automatic polyp seg-
mentation in MICCAI 2015, which was a challenge to eval-
uate different polyp detection methods. The CVC-ColonDB
dataset [1] contains 300 polyp images and their correspond-
ing pixel-level annotated polyp mask maps with a resolution
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of 574 × 500, and it was extracted from 15 video sequences,
each containing one polyp. The image resolution sizes ranged
from 332 × 482 to 1920 × 1072. The experimental part
of AGCNet unified the resolution of all images to
512×512 size. We followed PraNet’s [6] setup of the dataset
and used 900 and 550 images for training, respectively, from
the datasets Kvasir-SEG and CVC-ClinicDB. To effectively
validate the model, we used a mixture of datasets developed
by different medical centers to test the generalization ability
of the model, including the CVC-ColonDB and ETIS-Larib
datasets. We kept 100 and 62 images for testing, respectively.

In order to validate the performance of AGCNet from
multiple perspectives, we used four main evaluation metrics
to measure the effectiveness of different models for polyp
image segmentation, mainly Recall, Precision, the Dice score
and the Jaccard similarity coefficient, and also these metrics
are widely used in the field of medical image segmentation.
The specific equation is as follows.

TP and TN represent true positives and negatives, indicat-
ing the network’s ability to segment the polyp’s foreground
and background pixels correctly. Similarly, FP and FN are
false positives and false negatives, respectively, representing
the network metrics misclassifying the foreground and back-
ground pixels of polyps. A represents the set of polyp seg-
mentation result pixels and B refers to the set of actual polyp
data label pixels. In addition, Recall and Precision metrics
only focus on the distribution of independent pixels, which
may affect the final evaluation results, so we introduced the
area under the curve (AUC) value in addition to the four
main metrics mentioned above to enable a complete evalu-
ation of the results. The GFLOPS stands for Giga Floating-
point Operations Per Second, which is a unit of measure for
the computational speed of a computer or a processor. The
Parameter means the number of parameters the model learns
during the training process, and we use millions as the unit
of measurement. Finally, considering the need for inherent
real-time performance in the colorectal endoscopy scenario,
we introduce FPS (Frames Per Second) and execution time
to evaluate the real-time performance to meet the clinical
needs.

Recall =
TP

TP+ FN
(11)

Precision =
TP

TP+ FP
(12)

Dice =
2 · TP

FP+ FN + 2 · TP
(13)

IoU (A,B) =
A ∩ B
A ∪ B

(14)

1) IMPLEMENTATION DETAILS
The choice of different hyperparameters is of great impor-
tance for improving network performance. For the two main
current optimizers, SGD optimization [26] and Adam opti-
mization [27]. We conducted comparative experiments as

shown in Table 2, seeing that the SGD optimizer is more
suitable for AGCNet and set the initial learning rate to 1e-3.
We set the batch size to 4 and used an NVIDIA RTX3090
24GB graphics card for the experiments. We also used sev-
eral data enhancements: RandomRotate, HorizontalFlip and
RandomBrightnessContrast. The network tends to be stable
when the number of epochs is 80.

TABLE 2. The ablation study of optimizer on Kvasir-SEG dataset.

2) ABLATION STUDIES
To demonstrate the performance of AGCNet, this paper leads
ablation experiments to evaluate the effectiveness of both
MSFM and CPAM modules on the dataset Kvasir-SEG.

As shown in Fig.6, our ablation experiments compared
some representative cases of visual challenges. As shown in
the third column of Fig.6, the baseline model shows a mis-
match of semantic information. After MSFM extracted the
contextual information of multi-scale polyps and calibrated
the semantic information of the encoding layer, as shown in
the fourth column of Fig.6, we obtained more explicit polyp
segmentation images. In addition, we also performed a com-
parison on the Kvasir-SEG dataset as shown in Table 3, and
the Baseline+MSFM approach achieved 77.69%, 82.06%
and 94.88% for IoU, Dice and Precision, respectively, which
were ahead of Baseline by 7.45%, 3.99% and 5.37%. The
result also means that MSFM can enhance the network to
adapt to multi-scale polyps at a more granular level using
rich semantic information. CPAM suppressed background
noise in deep semantic information through a hybrid attention
mechanism, which effectively enhanced the model’s discrim-
inatory ability between the target region and background
tissue. Compared with the Baseline, our Baseline+CPAM
can better suppress the background noise and obtain better
polyp segmentation results, as shown in the fifth column of
Fig.6. In addition, the advantages of CPAM for processing
polyp images with low contrast between foreground and
background can be seen in Table3, where CPAM achieves
71.53%, 79.25% and 89.66% for IoU, Dice and precision,
respectively. Finally, we have seamlessly integrated MSFM
and CPAM onto AGCNet. In this way, we not only obtain
a more granular level of feature information in the encoder
part and a wider range of contextual information through
multi-level feature fusion but also strengthen the feature
information of important regions and weaken the interference
of background noise before decoding starts. AGCNet not
only allows richer contextual information transfer between
two adjacent layers in the coding layer but also enhances
the ability of features to suppress the background noise of
high-dimensional semantic information, as shown in the sixth
column of Fig.6.
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FIGURE 6. Ablation experiments between AGCNet internal modules.It is worth noting that the green, red and blue colors in the
image indicate ture positive, false positive and false negative, respectively.

TABLE 3. Ablation experiments of the internal module of AGCNet on the
Kvasir-SEG dataset.

C. COMPARISON WITH STATE-OF-THE-ARTS
To further validate the segmentation performance of the
proposed AGCNet, we compared several current state-of-
the-art models, including the U-Net [14], UNet++ [16],
MRUNet [15], PraNet [6], CPFNet [17], and UACANet [28].
We set all models to the same computational environment and
data augmentation for a fairer comparison. It is worth noting
that all models are trained from scratch and are not loaded
with pre-trained weights.We can see themain problems faced
by the current polyp segmentation from the visualization
of different competitors on the challenging cases (Fig.7 to
Fig.10). The irregular and variable scale of polyp shapes
and excessive background noise interfere with the model’s

sensitivity to foreground information. Simply stacking the
depth of the network by some simple convolution and pool-
ing operations, as shown in UNet, cannot cope with these
challenging cases. MRUNet utilizes multi-scale and multi-
parallel convolution to obtain richer contextual informa-
tion and improve polyp segmentation results. By optimizing
architecture connections to reduce the difference in seman-
tic information between the encoding and decoding layers,
UNet++ obtains more accurate segmentation results than
UNet. Similarly, PraNet can effectively solve the problem
of blurring between the target region and the background
tissue by designing a parallel reverse attention mechanism
that makes the boundaries of the polyp region more sensitive.
CPFNet progressively develops and incorporates rich contex-
tual information by modelling the global pyramid guide mod-
ule and also obtains better segmentation results. UACANet
constructs an improved version of the UNet architecture
by using enhanced contextual information to capture those
salient features that are easily overlooked. These methods
described above remain deficient in polyp segmentation
because they do not fully exploit the multi-scale contextual
information in the feature extraction process,
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FIGURE 7. Results of the polyp segmentation images visualized on the dataset Kvasir-SEG, where the green, red and blue colors in the image
indicate ture positive, false positive and false negative, respectively.

FIGURE 8. Results of the polyp segmentation images visualized on the dataset CVC-Clininc-DB.

which tends to result in the weak ability of the features to dis-
criminate the target region from the Gut tissue. Our proposed
AGCNet with MSFM and CPAMmodules can fully solve the
current problems, surpassing the abovementioned approaches.

As shown in the ninth column of Fig.8, AGCNet pro-
duces segmentation results that are closest to ground truth,
which can effectively cope with multi-scale polyps and sup-
press background noise. Since there is an inherent need for

59010 VOLUME 11, 2023



L. Shi et al.: AGCNet: A Precise AGCNet for Real-Time Colonoscopy

FIGURE 9. Results of the polyp segmentation images visualized on the dataset ETIS-LaribPolypDB.

FIGURE 10. Results of the polyp segmentation images visualized on the dataset CVC-ColonDB.

real-time performance in the polyp segmentation task, AGC-
Net combines both accurate segmentation and guaranteed
real-time performance.

D. RESULTS ON CROSS-DATASET
In addition, we conducted a statistical comparison for better
quantitative analysis by collecting metric data for IoU, Dice,

Precision, Recall, AUC, FPS, GFLOPS, Parameters(M) and
Time(ms). As described above, we used two mixed datasets,
Kvasir-SEG and CVC-ClinicDB, to train all the models
during the execution of the experiments. Since different polyp
datasets have different feature distributions, the model needs
good generalization ability to obtain excellent segmentation
results. In this part, we use Kvasir-SEG and CVC-ClinicDB
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datasets for testing and introduce ETIS-LaribPolypDB and
CVC-ColonDB datasets to test the generalization ability of
the model.

Table 4 and Table 5 show the comparisons of quantitative
result on Kvasir-SEG and CVC-ClinicDB datasets. As shown
in Table 4, our proposed AGCNet achieves excellent per-
formance on the Kvasir-SEG dataset. It outperforms the
second-best UAUCNet with an IoU of 87.40% and a Dice
of 92.63%, leading by 5.01% and 6.19%,respectively. It is
worth mentioning that our model surpasses the benchmark
model UNet by a large margin. Specifically, it achieves
17.16% and 14.56% higher on IoU and Dice, respectively.
The SOTA model PraNet achieves the highest FPS metric
of 28 and the shortest execution time of 166.09ms, but Dice
and Jaccard are unsatisfactory. In Table 5, our proposed
AGCNet achieved scores of 83.82%, 86.95%, 93.23%, and
88.93% on IoU, Dice, Precision, and Recall, respectively.
These surpass all state-of-the-art models reported in the
Table 5. Through the extensive experiments described above,
the validity of AGCNet was verified, and it was able to cope
with the main problems faced by current polyp segmentation,
including the irregular shape and multiple scales of polyps,
the slight difference between foreground and background
information, and the inherent real-time needs of clinical
applications.

We test the model’s generalization ability across different
datasets. In Table 6, on ETIS-LaribPolypDB dataset, our pro-
posed AGCNet outperforms the models in the table, achiev-
ing 80.55%, 74.95% and 86.25% on IoU, Dice and Recall,
respectively. As shown in Table 7, PraNet and UACANet
all lead U-Net by 11% to 16% on average in IoU and Dice
metrics. However, our proposed AGCNet is still ahead of it
in IoU and Dice. The above comparison results show that
AGCNet can maintain high accuracy while ensuring strong
generalization ability.

The superiority of AGCNet over current state-of-the-art
models originates from its two inherent submodules: MSFM
and CPAM, each fulfilling a distinct purpose. Specifically,
MSFM enhances the representation of target features at a
finer granularity level. Meanwhile, CPAM suppresses back-
ground noise in deep networks and highlights polyp features
through a dual attention mechanism. AGCNet has the fol-
lowing advantages: 1.Multi-level pooling: AGCNet performs
multi-level pooling on the input features multiple times to
extract multi-scale contextual information from the image.
2. Dual attention mechanism: AGCNet utilizes two integrated
attention mechanisms to selectively focus on the most infor-
mative regions of the image that are most relevant to the seg-
mentation task. 3. Feature fusion: AGCNet fuses the multi-
level pooled features with the attention maps to generate
enhanced feature representations that capture global and local
information. Overall, AGCNet first obtains richer semantic
information at a finer level of granularity. Then it strengthens
the targets while weakening the background, offering an opti-
mal solution for addressing similar segmentation tasks with
blurred boundaries between different categories.

IV. CONCLUSION
In this paper, we propose a novel convolutional neural net-
work, AGCNet, which can extract multi-scale contextual
information to bridge the semantic information gap between
different layers and effectively suppress the interference of
background noise in deep semantic information by using
dynamic modelling of long-range dependency. The AGCNet
includes two novel modules: a multi-scale semantic fusion
module (MSFM) and a context-aware pyramid aggregation
module (CPAM). The MSFM enhances the representation
capability by collecting contextual information at different
scales to adapt to the problem of large variation in polyp size.
The CPAM aggregates feature information across different
regions to boost the network’s ability to utilize global con-
text and model long-range dependency through dual atten-
tion. More importantly, AGCNet can maintain excellent real-
time performance while considering segmentation accuracy,
which is of great significance for clinical practice. We have
also done extensive experiments on the datasets Kvasir-SEG,
CVC-ClinicDB, ETIS-LaribPolypD and CVC-ColonDB to
confirm the effectiveness of AGCNet. Our subsequent work
focuses on using more extreme cases to train AGCNet to
strengthen its learning yet ability, enhance its robustness, and
integrate it into the procedure of colonoscopy.

REFERENCES
[1] J. Bernal, J. Sánchez, and F. Vilariño, ‘‘Towards automatic polyp detec-

tion with a polyp appearance model,’’ Pattern Recognit., vol. 45, no. 9,
pp. 3166–3182, Sep. 2012, doi: 10.1016/j.patcog.2012.03.002.

[2] G. C. Lou, J. M. Yang, Q. S. Xu, W. Huang, and S. G. Shi, ‘‘A retrospective
study on endoscopic missing diagnosis of colorectal polyp and its related
factors,’’ Turkish J. Gastroenterol., vol. 1, pp. 182–186, Dec. 2014, doi:
10.5152/tjg.2014.4664.

[3] D. K. Rex, ‘‘Colonoscopic withdrawal technique is associated with ade-
noma miss rates,’’ Gastrointestinal Endoscopy, vol. 51, no. 1, pp. 33–36,
2000, doi: 10.1016/S0016-5107(00)70383-X.

[4] M. F. Kaminski, P. Wieszczy, M. Rupinski, U. Wojciechowska,
J. Didkowska, E. Kraszewska, J. Kobiela, R. Franczyk, M. Rupinska,
B. Kocot, A. Chaber-Ciopinska, J. Pachlewski, M. Polkowski, and
J. Regula, ‘‘Increased rate of adenoma detection associates with reduced
risk of colorectal cancer and death,’’ Gastroenterology, vol. 153, no. 1,
pp. 98–105, Jul. 2017, doi: 10.1053/j.gastro.2017.04.006.

[5] D. A. Corley, C. D. Jensen, A. R. Marks, W. K. Zhao, J. K. Lee,
C. A. Doubeni, A. G. Zauber, J. de Boer, B. H. Fireman, J. E. Schottinger,
V. P. Quinn, N. R. Ghai, T. R. Levin, and C. P. Quesenberry, ‘‘Adenoma
detection rate and risk of colorectal cancer and death,’’ New England
J. Med., vol. 370, no. 14, pp. 1298–1306, Apr. 2014, doi: 10.1056/NEJ-
Moa1309086.

[6] D. P. Fan, G. P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, ‘‘Parallel
reverse attention network for polyp segmentation,’’ in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
2020, pp. 263–273, doi: 10.48550/arXiv.1802.00368.

[7] C. M. Rutter, E. Johnson, D. L. Miglioretti, M. T. Mandelson, J. Inadomi,
and D. S. M. Buist, ‘‘Adverse events after screening and follow-up
colonoscopy,’’ Cancer Causes Control, vol. 23, no. 2, pp. 289–296,
Feb. 2012, doi: 10.1007/s10552-011-9878-5.

[8] B. Li andM. Q.-H.Meng, ‘‘Automatic polyp detection for wireless capsule
endoscopy images,’’ Expert Syst. Appl., vol. 39, no. 12, pp. 10952–10958,
Sep. 2012, doi: 10.1016/j.eswa.2012.03.029.

[9] P. Klare, C. Sander, M. Prinzen, B. Haller, S. Nowack, M. Abdelhafez,
A. Poszler, H. Brown, D. Wilhelm, R. M. Schmid, S. von Delius, and
T. Wittenberg, ‘‘Automated polyp detection in the colorectum: A prospec-
tive study (with videos),’’ Gastrointestinal Endoscopy, vol. 89, no. 3,
pp. 576–582.e1, Mar. 2019, doi: 10.1016/j.gie.2018.09.042.

59014 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.patcog.2012.03.002
http://dx.doi.org/10.5152/tjg.2014.4664
http://dx.doi.org/10.1016/S0016-5107(00)70383-X
http://dx.doi.org/10.1053/j.gastro.2017.04.006
http://dx.doi.org/10.1056/NEJMoa1309086
http://dx.doi.org/10.1056/NEJMoa1309086
http://dx.doi.org/10.48550/arXiv.1802.00368
http://dx.doi.org/10.1007/s10552-011-9878-5
http://dx.doi.org/10.1016/j.eswa.2012.03.029
http://dx.doi.org/10.1016/j.gie.2018.09.042


L. Shi et al.: AGCNet: A Precise AGCNet for Real-Time Colonoscopy

[10] L. Yu, H. Chen, Q. Dou, J. Qin, and P. A. Heng, ‘‘Integrating
online and offline three-dimensional deep learning for automated polyp
detection in colonoscopy videos,’’ IEEE J. Biomed. Health Infor-
mat., vol. 21, no. 1, pp. 65–75, Jan. 2017, doi: 10.1109/JBHI.2016.
2637004.

[11] P. Wang, ‘‘Effect of a deep-learning computer-aided detection system
on adenoma detection during colonoscopy (CADe-DB trial): A double-
blind randomized study,’’ Lancet Gastroenterol. Hepatol., vol. 5, no. 4,
pp. 343–351, 2020, doi: 10.1016/S2468-1253(19)30411-X.

[12] R. Zhang, Y. Zheng, C. C. Y. Poon, D. Shen, and J. Y.W. Lau, ‘‘Polyp detec-
tion during colonoscopy using a regression-based convolutional neural net-
work with a tracker,’’ Pattern Recognit., vol. 83, pp. 209–219, Nov. 2018,
doi: 10.1016/j.patcog.2018.05.026.

[13] P. Brandao, ‘‘Fully convolutional neural networks for polyp segmentation
in colonoscopy,’’ Proc. SPIE, vol. 10134, pp. 101–107, Mar. 2017, doi:
10.1117/12.2254361.

[14] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241, doi: 10.1007/978-3-319-24574-4-28.

[15] N. Ibtehaz and M. S. Rahman, ‘‘MultiResUNet: Rethinking the U-
Net architecture for multimodal biomedical image segmentation,’’ Neu-
ral Netw., vol. 121, pp. 74–87, Jan. 2020, doi: 10.1016/j.neunet.2019.
08.025.

[16] Z. Zhou, ‘‘UNet++: A nested u-net architecture for medical image seg-
mentation,’’ in Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support. Cham, Switzerland: Springer,
2018, pp. 3–11, doi: 10.1007/978-3-030-00889-5-1.

[17] S. Feng, H. Zhao, F. Shi, X. Cheng,M.Wang, Y.Ma, D. Xiang,W. Zhu, and
X. Chen, ‘‘CPFNet: Context pyramid fusion network for medical image
segmentation,’’ IEEE Trans. Med. Imag., vol. 39, no. 10, pp. 3008–3018,
Oct. 2020, doi: 10.1109/TMI.2020.2983721.

[18] T. Kim, H. Lee, and D. Kim, ‘‘UACANet: Uncertainty augmented
context attention for polyp segmentation,’’ in Proc. 29th ACM Int.
Conf. Multimedia, Oct. 2021, pp. 2167–2175, doi: 10.1145/3474085.
3475375.

[19] S. Gao, M. Cheng, K. Zhao, X. Zhang, M. Yang, and P. Torr,
‘‘Res2Net: A new multi-scale backbone architecture,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662, Feb. 2021, doi:
10.1109/TPAMI.2019.2938758.

[20] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu. (2019). ECA-Net:
Efficient Channel Attention for Deep Convolutional Neural Networks.
[Online]. Available: http://arxiv.org/licenses/nonexclusive-distrib/1.0

[21] H. Fang and F. Lafarge, ‘‘Pyramid scene parsing network in 3D: Improving
semantic segmentation of point clouds with multi-scale contextual infor-
mation,’’ ISPRS J. Photogramm. Remote Sens., vol. 154, pp. 246–258,
Aug. 2019, doi: 10.1016/j.isprsjprs.2019.06.010.

[22] Y. Ho and S.Wookey, ‘‘The real-world-weight cross-entropy loss function:
Modeling the costs of mislabeling,’’ IEEE Access, vol. 8, pp. 4806–4813,
2020, doi: 10.1109/ACCESS.2019.2962617.

[23] C. H. Sudre, ‘‘Generalised dice overlap as a deep learning loss function for
highly unbalanced segmentations,’’ in Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support. Cham,
Switzerland: Springer, 2017, pp. 240–248, doi: 10.1007/978-3-319-67558-
9-28.

[24] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez,
and F. Vilariño, ‘‘WM-DOVA maps for accurate polyp highlighting
in colonoscopy: Validation vs. saliency maps from physicians,’’ Com-
puterized Med. Imag. Graph., vol. 43, pp. 99–111, Jul. 2015, doi:
10.1016/j.compmedimag.2015.02.007.

[25] D. Jha, ‘‘Kvasir-SEG: A segmented polyp dataset,’’ in Proc. Int. Conf.
Multimedia Modeling. Cham, Switzerland: Springer, 2020, pp. 451–462,
doi: 10.1007/978-3-030-37734-2-37.

[26] C. Zhang, ‘‘Theory of deep learning IIb: Optimization properties of SGD,’’
2018, arXiv:1801.02254.

[27] D. P. Kingma and J. Ba. (2014). Adam: A Method for Stochastic Optimiza-
tion. [Online]. Available: http://arxiv.org/licenses/nonexclusive-distrib/1.0

[28] J. Zhang and N. Tansu, ‘‘Optical gain and laser characteristics of InGaN
quantumwells on ternary InGaN substrates,’’ IEEEPhoton. J., vol. 5, no. 2,
Apr. 2013, Art. no. 2600111.

[29] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, ‘‘Toward embed-
ded detection of polyps in WCE images for early diagnosis of colorectal
cancer,’’ Int. J. Comput. Assist. Radiol. Surg., vol. 9, no. 2, pp. 283–293,
Mar. 2014, doi: 10.1007/s11548-013-0926-3.

LIANTAO SHI received the B.S. degree from
Huaqiao University, in 2018, and the M.S. degree
from the University of Science and Technology
Liaoning, in 2022. His main research interests
include embedded systems and computer vision
semantic segmentation.

ZHENGGUO LI received the B.S. degree from the
Wuhan University of Technology and theM.S. and
Ph.D. degrees fromCentral South University. He is
currently a Professor and a Master’s Supervisor
with the School of Electronics and Information
Engineering, University of Science and Technol-
ogy Liaoning, the DeputyDirector of the Scientific
Research Department, Shenzhen Polytechnic, and
the Dean of the Research Institute for Carbon-
Neutral Technology. His research interests include

the simulation and study of electromagnetic radiation of new energy vehicle
drive systems, EMC, and artificial intelligence.

JIANYANG LI received the B.S. degree from the
Shandong University of Science and Technology,
in 2019. He is currently pursuing the M.S. degree
with the University of Science and Technology
Liaoning. His main research interests include deep
learning and electromagnetic compatibility.

YUFENG WANG received the B.S. and Ph.D.
degrees from the Dalian University of Technology,
in 2001 and 2007, respectively. He is currently
an Associate Professor and a Master’s Supervisor
with the School of Electronics and Information
Engineering, University of Science and Technol-
ogy Liaoning. His main research interests include
power quality, electromagnetic compatibility, and
metallurgical automation.

HONGYU WANG received the B.S. and M.S.
degrees from the University of Science and Tech-
nology Liaoning, in 2019 and 2022, respectively.
He is currently pursuing the Ph.D. degree with
the Wuhan University of Technology. His main
research interests include unsupervised learning,
reinforcement learning, and robotics.

YUBAO GUO received the B.S. and M.S. degrees
from the University of Science and Technology
Liaoning, in 2020 and 2023, respectively. His main
research interests include power electronics and
intelligence algorithm.

VOLUME 11, 2023 59015

http://dx.doi.org/10.1109/JBHI.2016.2637004
http://dx.doi.org/10.1109/JBHI.2016.2637004
http://dx.doi.org/10.1016/S2468-1253(19)30411-X
http://dx.doi.org/10.1016/j.patcog.2018.05.026
http://dx.doi.org/10.1117/12.2254361
http://dx.doi.org/10.1007/978-3-319-24574-4-28
http://dx.doi.org/10.1016/j.neunet.2019.08.025
http://dx.doi.org/10.1016/j.neunet.2019.08.025
http://dx.doi.org/10.1007/978-3-030-00889-5-1
http://dx.doi.org/10.1109/TMI.2020.2983721
http://dx.doi.org/10.1145/3474085.3475375
http://dx.doi.org/10.1145/3474085.3475375
http://dx.doi.org/10.1109/TPAMI.2019.2938758
http://dx.doi.org/10.1016/j.isprsjprs.2019.06.010
http://dx.doi.org/10.1109/ACCESS.2019.2962617
http://dx.doi.org/10.1007/978-3-319-67558-9-28
http://dx.doi.org/10.1007/978-3-319-67558-9-28
http://dx.doi.org/10.1016/j.compmedimag.2015.02.007
http://dx.doi.org/10.1007/978-3-030-37734-2-37
http://dx.doi.org/10.1007/s11548-013-0926-3

