
Received 27 April 2023, accepted 10 May 2023, date of publication 19 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3277959

The Prism Bridge: Maximizing Inter-Chip AXI
Throughput in the High-Speed Serial Era
ROBERT DREHMEL , (Member, IEEE), AND HANS-ULRICH HEISS
Faculty IV Electrical Engineering and Computer Science, Institute of Telecommunication Systems, Technische Universität Berlin, 10623 Berlin, Germany

Corresponding author: Robert Drehmel (drehmel@campus.tu-berlin.de)

This work was supported in part by the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes).

ABSTRACT In this paper, we present the Prism Bridge, a soft IP core developed to bridge FPGA-MPSoC
systems using high-speed serial links. Considering the current trend of ubiquitous serial transceivers
with staggeringly increasing line rates, minimizing overhead and maximizing data throughput becomes
paramount. Hence, our main design goal is to maximize bandwidth utilization for AXI data, which we
realize through an advanced packetization mechanism. We give an overview of the Prism Bridge’s design
and analyze its half-duplex bandwidth utilization. Additionally, we discuss the results of the experiments
we conducted to assess its real-world performance, including measurements of throughput and latency of
various combinations of line rates, link-layer cores, and bridge cores. Using a serial link with a 16.375Gbit/s
line rate, the Prism Bridge with an advanced packetizing mechanism achieved an AXI write throughput
of 1368.82MiB/s and an AXI read throughput of 1376.62MiB/s, an increase of 46.20% and 45.86%,
respectively, compared with the de-facto industry-standard core. The advanced packetization mechanism
had negligible impact on latency but required 69.15%–73.91% more LUTs and 33.62%–36.19% more flip-
flops. We conclude that for most designs that support inter-chip AXI transactions and will not be limited
to short transaction lengths, the higher data throughput of the Prism Bridge with an advanced packetization
mechanism is worth its cost in additional logic resource utilization.

INDEX TERMS Cluster computing, computer architecture, field-programmable gate arrays, high-speed
serial, inter-chip axi communication, protocols.

LIST OF SYMBOLS
faxis ∈ N AXI-Stream clock frequency in Hertz.
ksid ∈ N Data stream ID width.
kmsg ∈ N Data stream payload width.
k ∈ N Message width (k = ksid + kmsg = n− m).
l ∈ N Length of an AXI transaction in transfers

(i.e., AxLEN+ 1).
m ∈ N Number of Hamming code and parity bits per

word of n data bits.
n ∈ N AXI-Stream data width.
R(link)c ∈ R Link layer protocol overhead factor (e.g., 8

10
for Aurora 8B/10B).

sw ∈ N Data width in each AXI write transfer
(i.e., 8 · 2AWSIZE).

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilaria De Munari .

LIST OF SYMBOLS (CONT.)
sr ∈ N Data width in each AXI read trans-

fer (i.e., 8 · 2ARSIZE).
t ∈ N0 Number of AXI transactions.
τ ∈ {w, r} AXI transaction type.
u ∈ {aw,w, b, ar, r} AXI channel type.
v ∈ {0, 1, 2, 3} Packetizer behavior.
waw ∈ N0 AXI AW channel width.
ww ∈ N0 AXI W channel width.
wb ∈ N0 AXI B channel width.
war ∈ N0 AXI AR channel width.
wr ∈ N0 AXI R channel width.

I. INTRODUCTION
Chips that integrate programmable logic, general-purpose
processors, and serial transceivers have come a long way
since Xilinx introduced the Virtex II-Pro device family in

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 50867

https://orcid.org/0000-0002-8205-5202
https://orcid.org/0000-0002-9872-1695


R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

March 2002 [1]. The XC2VP100 device—the top-of-the-
line member of the Virtex-II Pro family—includes two IBM
PowerPC processors and up to 20 Rocket I/O multi-gigabit
transceivers (MGTs), each capable of a maximum line rate
of 3.125Gbit/s [2]. In September 2019, Xilinx introduced
the Versal family of devices [3]. Its recently presented, top-
end VP2802 chip from the Versal Premium series offers a
dual-core Arm Cortex-A72 and a dual-core Arm Cortex-
R5F28 processor in addition to 28 GTYP and 140 GTM
transceivers that supply the designer with a combined maxi-
mum full-duplex serial bandwidth of 17.6 Tbit/s [4].

A variety of FPGA clusters have been proposed,
predominantly in the domain of high-performance comput-
ing (HPC) [5], [6]. Especially chips featuring the triad of
programmable logic, an integrated processing system, and
high-speed serial connectivity lend themselves as building
blocks for highly interconnected clusters. From single-
chip modules that provide serial connectivity through mul-
tiple USB-C receptacles [7] to multi-chip modules with
intra- and inter-module serial links [8], the high-speed
serial era certainly inspires research on FPGA-MPSoC
clusters.

The Arm Advanced Microcontroller Bus Architecture
(AMBA) Advanced eXtensible Interface (AXI) protocol [9]
is the dominant standard for address-based intra-chip inter-
connectivity in FPGA-MPSoCs. It is used to interconnect
processors, on-chip memories, input/output devices, other
hard IP blocks, and the programmable logic fabric. AXI-
Stream is the analogous protocol for streaming data transfers.
A straightforward idea for the inter-chip interconnection of
FPGA-MPSoCs is to bridge the AXI protocol over serial
links.

This work presents the Prism Bridge that allows to forward
AXI transactions and interrupt requests to a remote system.
Our principal design goal is to utilize as much as possible
of the available bandwidth of the underlying link for AXI
data while imposing no constraints on the width of individual
AXI signals. It is supplemented by a link-layer core, a utility
core for link-layer management, and Linux kernel drivers to
facilitate research on FPGA-MPSoC chips running Linux.

The main contributions of this paper are:
• an overview of the design and implementation of the
Prism Bridge, particularly our gearbox-based packe-
tization mechanism designed to maximize bandwidth
utilization (Section III),

• an analysis of its half-duplex bandwidth utilization
(Section IV), and

• an evaluation of the performance of its variants and the
de-facto industry standard IP core (Section V).

The remainder of this paper is organized as follows:
Section II reviews related work, Section III presents the
design and implementation overview, Section IV analyses
the bandwidth utilization in half-duplex operation, Section V
outlines the experimental setup and the methodology and
discusses the evaluation results, and Section VI offers a con-
clusion and identifies prospects for future work.

II. RELATED WORK
The de facto standard core for bridging the AXI protocol is
the AXI Chip2Chip IP core [10] from AMDXilinx. It is used
in a wide range of commercial and academic applications.
It supports two different interfacing options: the SelectIO
(SDR or DDR) interface and the Aurora family of cores
using the AXI-Stream protocol. To our knowledge, there
are no other competitors to the AXI Chip2Chip core. AMD
Xilinx has worked with Arm on the AXI4 specification and
uses AXI4 throughout its product line as the interconnect
standard [11]. We suppose that—because of AMD Xilinx’s
commitment to the AXI IP ecosystem—its AXI IP cores are
generally expected to deliver optimal performance.

The AMD Xilinx Aurora 8B/10B core [12] is one of
the two family members of the Aurora family and imple-
ments the Aurora 8B/10B link-layer protocol [13]. Widmer
and Franaszek [14] described 8B/10B encoding as early as
1983. Analogously, the other member of the AMD Xilinx
Aurora family, the Aurora 64B/66B core [15], implements
the Aurora 64B/66B link-layer protocol [16]. Both encod-
ings have been adopted by well-established protocols. For
example, USB 3.0 and 1000BASE-X use 8B/10B encoding,
while 10GBASE-R uses 64B/66B. Tomori and Osana [17]
have implemented the Aurora 64B/66B protocol in their
open-source Kyokko core and claim that it exhibits lower
latency and utilizes fewer logic resources than AMD Xil-
inx’s Aurora 64B/66B core. They have recently demon-
strated Kyokko’s channel bonding (i.e., multi-lane channel)
capability [18].

Brewer et al. [19] used the AXI Chip2Chip IP core (in
combination with the Aurora 64B/66B core) for communi-
cation between boards in their RECON architecture in the
context of the NASA SpaceCube Intelligent Multi-Purpose
System (IMPS). Chimeh [20] presented an architecture for
Massive Multi Input Multi Output (Massive MIMO) in 5G
radio applications, with examples for 16×16 and 64×64 con-
figurations. Their architecture uses the AXI Chip2Chip core
for all communication between boards. Flich et al. [21] used
the AXI Chip2Chip core for both inter- and intra-cluster com-
munication in their MANGO project for HPC, their prototype
consisting of 96 FPGAs in total. Lettnin andWinterholer [22]
described a design that uses a larger and a smaller FPGA,
the latter providing a DDR controller for the former, bridged
by AXI Chip2Chip cores. In the realm of waveform design
and deployment, Wildman et al. [23] split Common-modem
Hardware Integrated Library (CHIL) [24] software and hard-
ware onto separate boards and connected them using AXI
Chip2Chip cores. Yang et al. [25] proposed a Processing-
In-Memory (PIM) architecture. In their setup, the master
board accesses the slave board with a bridge built using AXI
Chip2Chip cores. Zhu et al. [26] used the AXI Chip2Chip
core (with the Aurora 64B/66B core) to access remote mem-
ory in their photonic switched optically connected memory
system architecture.

As FPGAs are a mainstay in particle physics experiments,
particularly at the Large Hadron Collider (LHC) at CERN,

50868 VOLUME 11, 2023



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

FIGURE 1. Bridge block diagram (full type). Arrows coming from an AXI interface are pointing to AXI input modules that contain a FIFO (with its input
connected to the AXI interface) and a packetizer. Arrows going to an AXI interface are coming from AXI output modules that contain a depacketizer
and a FIFO (with its output connected to the AXI interface).

applications for AXI bridging are found in that realm as well.
Mehner et al. [27] presented board-management mezzanine
boards for the Serenity family of Advanced Telecommunica-
tions Computing Architecture (ATCA) blades. Each of these
mezzanine boards controls the main board it is connected
to using the IPBus protocol [28] over an AXI Chip2Chip
bridge. Similarly, Byszuk et al. [29] used the AXI Chip2Chip
core to bridge IPBus communication between the control and
processing FPGAs on the MTF7 board [30]. On the PIxel
detector high Luminosity UPgrade (πLUP) board [31], [32],
the AXI Chip2Chip core (using SelectIO DDR) is instanti-
ated on both FPGAs to enable communication. Loukas [33]
presented the Barrel Calorimeter Processor demonstrator
(BCPd) ATCA blade that hosts an Embedded Linux Mez-
zanine (ELM) [34] mezzanine board. The ELM controls the
FPGA on the main board using AXI over an AXI Chip2Chip
bridge. Spiwoks et al. [35] presented an implementation of
the Muon-to-Central-Trigger-Processor-Interface (MUCTPI)
ATCA blade. Its Control Processor uses an AXI Chip2Chip
core to manage the two Muon Sector Processors and the
Trigger Readout TTC.

The AXI Chip2Chip core is not identified as a bottleneck
in the works cited above. However, Ioannou et al. [36] at
one point identified the ‘‘inter-FPGA links’’ based on the
AXI Chip2Chip core as the bottleneck of their UniLogic
HPC architecture design. They report latency reduction by
replacing the Aurora core but do not elaborate on the Aurora
core replacement. They state

As data transfer, or throughput availability, is a
common cause for bottlenecks, additional research

that targets optimizations for inter-FPGA commu-
nication throughput ought to prove beneficial. [36]

and suggest increasing the bandwidth with link bonding to
increase throughput. We expect that our approach of increas-
ing bandwidth utilization and the approach of increasing
bandwidth would have a synergistic effect on AXI through-
put. We hope that our work serves as an impulse for designers
in academia and industry to evaluate whether their designs
could benefit from the throughput increase provided by the
Prism Advanced Bridge.

III. DESIGN
The Prism Bridge presented in this paper is part of the Prism
project that aims at developing an ecosystem for cluster com-
puting with Unix-like operating systems. The Prism Bridge is
an IP core written in SystemVerilog. It comes in three primary
types: The unidirectional slave type that provides interrupt
request input ports and an AXI slave interface to serialize
from, the unidirectional master type that provides interrupt
request output ports and an AXI master interface to deserial-
ize to, and the bidirectional full type that combines the master
and slave types. In this paper, we focus on the two unidirec-
tional types. All primary types also provide one AXI-Stream
master interface, one AXI-Stream slave interface, and one
AXI-Lite slave interface. The AXI-Stream interfaces provide
the connection to the link-layer protocol core. The AXI-Lite
slave interface allows access to memory-mapped registers for
control, status, configuration, and debugging. A Linux kernel
driver provides a sysfs-based interface to these registers.

VOLUME 11, 2023 50869



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

FIGURE 2. Prism Bridge AXI-Stream data word layout. ■ Data stream payload ■ Data stream ID ■ Hamming
code ■ Parity bit.

To assist designers in handling the AMD Xilinx Aurora
cores with a Linux system on an FPGA-MPSoC, the
Prism ecosystem supplies the Prism Aurora Control core.
This core also provides an AXI-Lite slave interface for
memory-mapped register access and is accompanied by a
Linux kernel driver that allows link-layer status management
using a sysfs-based interface.

Furthermore, we used the Kyokko source code as the
base for our Prism Kyokko link-layer core. Prism Kyokko
works with the Zynq UltraScale+ GTH transceivers con-
nected to the SFP+ connectors on the AMD Xilinx ZCU102
board. In contrast with Kyokko, which works in framing
mode (using the AXI-Stream TLAST signal), Prism Kyokko
works in streaming mode. We improved the code, added
ASYNC_REG attributes [37] where appropriate to potentially
strengthen CDC synchronization, and packaged it as an IP
core usable in AMD Xilinx Vivado IP Integrator Block
Designs [38], [39]. In its current form, one PrismKyokko core
provides two bidirectional communication channels, while
one Aurora core provides a single communication chan-
nel. We did not, however, change any clock-related parts of
Kyokko. Kyokko uses the asynchronous 64B/66B gearbox of
the transmitter and the receiver of the GTH transceivers [40]
and different clock domains for the transmit (TX) and receive
(RX) interfaces. It includes an asynchronous 66-bit-wide
FIFO to synchronize the RX signals with the clock of the
TX clock domain. Kyokko’s AXI-Stream master and slave
interfaces are synchronous with the TX clock as well.

From here on, we use the term AXI channel vector to refer
to the signals of an AXI channel (excluding the handshake
signals) seen as one consecutive string of bits. The block
diagram of the Prism Bridge is shown in Figure 1. At its core,
the Prism Bridge transports up to seven independent data
streams in each direction. Five of these data streams carry
AXI channel vectors, one is used for interrupts, and one is
used for the flow-control subsystem. Each AXI-Stream data
word transferred by the Prism Bridge consists ofmHamming
code and parity bits, ksid data stream ID bits, and kmsg data
stream payload bits. We refer to the data stream ID bits as the
data stream ID vector and to the data stream payload bits as
the data stream payload vector. The k-bit data stream vector
is made up of a data stream payload vector concatenated with
a data stream ID vector. The data stream ID vector specifies
to which data stream the data stream payload vector belongs.
Figure 2 shows the layout of an AXI-Stream data word.
An input module is the source, and an output module is the

sink of a data stream. The input module for an AXI-related
data stream contains a FIFO and a packetizer. This input
module’s inwards-facing FIFO stores an AXI channel vector
and passes it to the input module’s packetizer, which encodes

it into the data stream. Correspondingly, the output module
for an AXI-related data stream contains a depacketizer and
a FIFO. This output module’s depacketizer decodes the AXI
channel vector from the data stream and stores it in the output
module’s outwards-facing FIFO. Input and output modules
for the other data streams are more integrated and do not
have separate packetization and depacketization steps. The
interrupt data stream input module checks every clock cycle
whether interrupt request input signals are asserted and sends
a message on the interrupt data stream to the remote bridge
if necessary. The remote bridge’s interrupt data stream output
module receives this message and asserts the interrupt request
output signals for one clock cycle. A data stream payload
vector coming from an input module is tagged with a data
stream ID, multiplexed with other data streams, equipped
with error correction bits, and stored in the egress clock
domain crossing (CDC) FIFO for AXI-Stream transfer. Upon
reception by the remote bridge, the AXI-Stream data word is
stored in its ingress CDC FIFO, error-checked and possibly
error-corrected, demultiplexed, stripped of its data stream ID,
and the remaining data stream payload vector is passed to
the output module associated with the data stream. In the
following subsections, we provide details on some major
components of the Prism Bridge.

A. PACKETIZER AND DEPACKETIZER
We differentiate two packetization mechanisms supported by
the Prism Bridge: a simple, padding-based mechanism and an
advanced, gearbox-driven one.

The simple packetizer slices an AXI channel vector into
as many data stream payload vectors as necessary and keeps
the remaining bits of the last data stream payload vector
unused. That makes the work of the simple depacketizer easy:
It simply needs to concatenate the incoming data stream pay-
load vectors and drop the excess bits. The simple packetizer
produces

⌈
x

kmsg

⌉
data stream payload vectors for an x-bit-

wide AXI channel vector.
The AXI protocol allows flexibility regarding the width of

some of its signals (e.g., WUSER), resulting in variably-sized
AXI channel vectors. Parts of the advanced packetizer’s and
depacketizer’s logic vary based on the input data width and
the output data width (i.e., the width of the AXI chan-
nel vector and kmsg, respectively). Therefore, tailor-made
advanced packetizers and depacketizers are generated by
the Prism Bridge Generator. The Prism Bridge Generator
is a program that uses a custom C++ template engine and
appropriate template files to produce SystemVerilog source
code. Dynamically generated modules create a challenge
for a potential ASIC (application-specific integrated circuit)

50870 VOLUME 11, 2023



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

FIGURE 3. Advanced packetizer data stream payload vector layout. ■ I0 valid bit ■ I0 data bit ■ I1 valid bit ■ I1 data bit
I0: Input word 0 I1: Input word 1 O0: Output word 0 O1: Output word 1.

implementation. One obvious solution would be to restrict the
ASIC to a specific set of AXI signal widths. Another possible
and more flexible solution would be to redesign the advanced
packetizer and depacketizer to be nonspecific components
that operate based on specific information stored in some
form of configuration memory.

The advanced packetizer has a pipeline consisting of
shift-left modules connected in series to meet timing require-
ments. The advanced packetizer pipeline has an output sig-
nal to notify the subsequent gearbox circuit whenever the
pipeline is empty. A shift-left module instance is configured
by two major parameters: an offset y ∈ N0 and a width
z ∈ N. The Bridge Generator appropriately parameterizes
the instantiated shift-left modules to minimize the necessary
logic resources.

The merger circuit at the end of the pipeline constructs
a data stream payload vector from the shifted input data
and the data currently in its buffer. If there is no data in
the pipeline, it resets its state and forwards the current con-
tents of its buffer. A valid bit is set in front of every valid
AXI channel vector to distinguish between valid and invalid
data in outgoing data stream payload vectors, as depicted
in Figure 3. The advanced depacketizer uses this valid bit
to control the state of its pipeline and merger. Conclud-
ing, the advanced packetizer needs

⌈
l(x+1)
kmsg

⌉
AXI-Stream

transfer cycles for l consecutive x-bit-wide AXI channel
vectors.

Where an explicit differentiation is necessary, we call the
Prism Bridge a Standard Bridge when it uses simple packe-
tization for all AXI channels and an Advanced Bridge when
it uses the simple packetization for the AXI AW, B, and AR
channels and advanced packetization for the AXI W and R
channels.

B. MULTIPLEXER AND DEMULTIPLEXER
Our design uses four multiplexer/demultiplexer instantia-
tions. The first 2:1 priority multiplexer prioritizes data stream
vectors coming from the interrupt data stream and only for-
wards a data stream vector from the credit data stream if no
data stream vector from the interrupt data stream is available.

The 5:1 multiplexer forwards data stream vectors in a round-
robin fashion; it selects a data stream vector from the AXI-
related data streams and passes it on to the second 2:1 priority
multiplexer. The second 2:1 priority multiplexer forwards
either the output from the first 2:1 priority multiplexer or the
output from the 5:1 multiplexer, prioritizing the former. The
1:7 demultiplexer forwards each incoming data stream vector
to the correct output module.

C. ERROR CORRECTION CODE (ECC) ENCODING AND
DECODING
An Error Correcting Code (ECC) encoding module adds m
bits to the incoming data stream vector, and a complementary
ECC decoding module removes these bits and performs error
correction and detection. Together, these modules imple-
ment SECDED (single error correction, double error detec-
tion) [41], a Hamming(63,57) [42] scheme with an additional
parity bit. The Prism Bridge provides a signal that signifies
a correctable error (i.e., a single-bit error) and a signal that
signifies a detected but uncorrectable error (i.e., a double-bit
error). Both of these signals are asserted for one clock cycle
after the clock cycle in which the respective error occurs. The
designer employing the Prism Bridge can utilize these signals
as interrupt request sources or connect suitable counter cores
to them for diagnosis purposes, for example.

D. CLOCK DOMAIN CROSSINGS
The Prism Bridge core is in the same clock domain as its
one or two AXI interfaces. Its two AXI-Stream interfaces
can—and are assumed to—be in a different clock domain.
We call the former and the latter clock domain the AXI and
the AXIS clock domain, respectively. In the most likely usage
scenario we envisioned, the signals in the AXI clock domain
are synchronized with one of the Programmable Logic (PL)
clocks, and the signals in the AXIS clock domain are syn-
chronized with the clock signal provided by the link-layer
core. Crossing clock domains is an intricate topic involving
metastability [43]. When designing with Vivado, designers
can delegate the handling of such intricacies to Xilinx Param-
eterized Macros (XPMs) [44]. The Prism Bridge uses the
AXI-Stream FIFO XPM for the ingress and the egress CDC

VOLUME 11, 2023 50871



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

FIGURE 4. Abstract Petri net model of the flow-control mechanism for two channels. v
represents an AXI channel vector. c0 and c1 represent the initial number of credits for data
stream 0 and 1, respectively.

FIFO. It is parameterized in both instances to work with
independent clocks and to have the minimum possible depth
of 16 elements. Note that a CDC FIFO XPM can easily be
replaced with a regular FIFO XPM to optimize latency and
logic resource utilization in an alternative usage scenario with
a single clock domain. For example, both the signals in the
AXI clock domain and the signals in the AXIS clock domain
could be synchronized with the clock signal provided by
the link-layer core, forming a single, all-encompassing clock
domain.

E. FLOW CONTROL
The AXI protocol uses a valid /ready handshaking mecha-
nism for each of its five channels, so both sides of an AXI
channel can stall the transmission. Forwarding the ready
signal over the Prism Bridge would induce an unacceptable
performance penalty. Therefore, a handshake can occur on an
incoming AXI channel with an asserted output ready signal
(on Prism Bridge A) independently from the state of the input
ready signal of the corresponding outgoing AXI channel (on
Prism Bridge B). Consequently, flow control is needed to

avoid overflowing the output module’s FIFO when the AXI
channel vector is subsequently serialized and forwarded to be
deserialized on Prism Bridge B. The Prism Bridge solves this
using a credit-token-based flow control system that involves
a bookkeeping module used to acquire tokens for incoming
AXI channels and a bookkeepingmodule to release tokens for
outgoing AXI channels. For each AXI channel, an indepen-
dent pool of credit tokens is maintained in both bookkeeping
modules. The credit token acquiring module keeps track of
available tokens, and the credit token releasing module keeps
track of tokens that have been released and are to be made
available. A credit token must be available for the incoming
AXI channel vector to be passed on from the FIFO to the
packetizer. When the AXI channel vector is passed to the
packetizer, the credit token acquiring module removes one
token from the pool of the corresponding channel. In the
same manner, when an AXI handshake occurs to transfer an
outgoing AXI channel vector, the credit token releasing mod-
ule adds one token to its pool for the corresponding channel.
When a certain threshold of credit tokens for a channel in the
credit token releasing module has been reached, the current

50872 VOLUME 11, 2023



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

state of its credit token pools is sent on the credit data stream
to the remote bridge, and all credit token pools in the credit
pool releasing module are reset to zero—the credit tokens
pools are, figuratively, transferred to the remote bridge. Upon
reception of the credit token pools, the remote bridge’s credit
token acquiringmodule adds the tokens of each of these pools
to its corresponding own pool, and, thus, the credit tokens are
available again. In the default configuration, each channel’s
threshold to trigger the transfer of all released credit tokens to
the remote bridge is half the maximum number of available
tokens for that channel. Figure 4 shows an abstract view of
this system as a Petri net based on the modeling presented
in [45].

IV. BANDWIDTH ANALYSIS
For the following analysis, we use an AXI write address
channel width (waw) of 99 bits, the AXI write channel (ww)
has a width of 73 bits, the AXI write response channel (wb)
has a width of 8 bits, the AXI read address channel (war) has
a width of 99 bits, and lastly, the AXI read channel (wr)
is 73 bits wide. This represents a signal width configura-
tion with AxADDR and xDATA signals that have a width of
64 bits, AxID/xID signals that are 6 bits wide and without
AxUSER/xUSER signals.

We define the Wu,v function that returns the number of
AXI-Stream transfer cycles necessary to transfer t AXI trans-
actions of length l with indices for the AXI channel type and
packetizer behavior:

for the simple packetizer

Vsimple(x, t, l) = t ·
⌈

x
kmsg

⌉
Waw,v(t, l) = Vsimple(waw, t, l)

Wb,v(t, l) = Vsimple(wb, t, l)

War,v(t, l) = Vsimple(war, t, l)

V0(x, t, l) = tl ·
⌈

x
kmsg

⌉
Ww,0(t, l) = V0(ww, t, l)

Wr,0(t, l) = V0(wr, t, l) ,

for the advanced packetizer if its gearbox is never reset

V1(x, t, l) =
⌈
tl (x + 1)
kmsg

⌉
Ww,1(t, l) = V1(ww, t, l)

Wr,1(t, l) = V1(wr, t, l) ,

if its gearbox is reset after each AXI transaction

V2(x, t, l) = t ·
⌈
l (x + 1)
kmsg

⌉
Ww,2(t, l) = V2(ww, t, l)

Wr,2(t, l) = V2(wr, t, l) ,

and finally, if its gearbox is reset after each AXI transfer

V3(x, t, l) = tl ·
⌈
x + 1
kmsg

⌉
Ww,3(t, l) = V3(ww, t, l)

Wr,3(t, l) = V3(wr, t, l) .

We define the B(a)
τ,v function that gives the number of bits

transferred for the traffic class a. The decorations −→ and←−

signify a transfer to and from the bridge with the AXI master
interface, respectively. We define the function for

AXI data

−→
B (data)

w,v (t, l) = tlsw
←−
B (data)

w,v (t, l) = 0
−→
B (data)

r,v (t, l) = 0
←−
B (data)

r,v (t, l) = tlsr ,

AXI metadata

−→
B (meta)

w,v (t, l) = t (waw + l (ww − sw))
←−
B (meta)

w,v (t, l) = twb
−→
B (meta)

r,v (t, l) = twar
←−
B (meta)

r,v (t, l) = tl (wr − sr) ,

packetizer overhead

−→
B (oh)

w,v (t, l) = kmsg
(
Waw,v(t, l)+Ww,v(t, l)

)
− twaw − tlww

←−
B (oh)

w,v (t, l) = kmsgWb,v(t, l)− twb
−→
B (oh)

r,v (t, l) = kmsgWar,v(t, l)− twar
←−
B (oh)

r,v (t, l) = kmsgWr,v(t, l)− tlwr ,

protocol overhead

−→
B (proto)

w,v (t, l) = ksid
(
Waw,v(t, l)+Ww,v(t, l)

)
←−
B (proto)

w,v (t, l) = ksidWb,v(t, l)
−→
B (proto)

r,v (t, l) = ksidWar,v(t, l)
←−
B (proto)

r,v (t, l) = ksidWr,v(t, l) ,

and SECDED overhead

−→
B (secded)

w,v (t, l) = m
(
Waw,v(t, l)+Ww,v(t, l)

)
←−
B (secded)

w,v (t, l) = mWb,v(t, l)
−→
B (secded)

r,v (t, l) = mWar,v(t, l)
←−
B (secded)

r,v (t, l) = mWr,v(t, l) .

With the widths wu defined in the beginning of this section,
this function is used to visualize the bandwidth usage in

VOLUME 11, 2023 50873



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

FIGURE 5. Half-duplex bandwidth utilization.

Figure 5, wherein the increased bandwidth used for AXI
metadata and data and the decreased bandwidth used for
packetizer overhead are prominently visible.

Assuming an egress CDC FIFO (on the bridge that trans-
mits the AXI W or R channel) that never underflows, and using

W ′w,v(l) =Waw,v(kmsg, l)+Ww,v(kmsg, l)

W ′r,v(l) =Wr,v(kmsg, l)

B′(data)w,v (l) =
−→
B (data)

w,v (kmsg, l)

B′(data)r,v (l) =
←−
B (data)

r,v (kmsg, l) ,

the AXI data throughput (in bit/s) from bridge to bridge can
be approximated by

Xτ,v(l) =
faxis · R

(link)
c · B′(data)τ,v (l)
W ′τ,v(l)

.

This approximation considers traffic on theAXIwrite address
channel AW and the AXI write channel W in case of write

transactions and traffic on the AXI read channel R in case
of read transactions. It is implied here that faxis is equal to
the line rate divided by n, and not every clock cycle can
transfer an AXI-Stream word, because the link-layer core
has to account for encoding overhead (R(link)c ). Alternatively,
depending on the design of the link-layer core, faxis may
already be multiplied by R(link)c .

The reason we use kmsg as the number of transactions in
the functionW ′τ,v is that we need to insure that

∀i ∈ N :Wu,v(it, l) = iWu,v(t, l) .

In other words, the number of transactions must not have a
negative impact on throughput.

V. EVALUATION
A. EXPERIMENTAL SETUP
We implemented all designs for the evaluation with Vivado
2022.2 and conducted all measurements using the AMD

50874 VOLUME 11, 2023



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

FIGURE 6. Experimental setup for AXI throughput and latency measurements.

TABLE 1. FPGA post-implementation resource utilization (No URAM and DSP blocks have been used.).

Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC
on a ZCU102 evaluation board [46]. The components of
the experimental setup and their relations are depicted in
Figure 6. We used an AMD Xilinx AXI Traffic Genera-
tor [47] as the AXI master (i.e., transaction source) and
configured it for custom traffic generation in advanced mode
to allow for maximum flexibility. We used an AMD Xilinx
AXI Block RAM (BRAM) Controller [48] connected to a
True Dual-Port Block RAM generated by an AMD Xilinx
Block Memory Generator [49] as the AXI slave (i.e., trans-
action sink). We conducted measurements of AXI-related

metrics using the AMD Xilinx AXI Performance Moni-
tor [50], and we developed and used custom cores to mea-
sure IRQ latency and count clock cycles. The AXI chan-
nel widths and individual AXI signal widths used in all
evaluation designs were identical to those in Section IV.
We configured each AXI Chip2Chip core combined with
the Aurora 64B/66B core to use the appropriate AXI data
width, address width, ID width, and WUSER width. How-
ever, we configured each AXI Chip2Chip combined with
the Aurora 8B/10B core to use an AXI address width of
32 bits and an AXI data width of 32 bits. This was done

VOLUME 11, 2023 50875



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

FIGURE 7. Half-duplex AXI throughput (10 Gbit/s line rate, Aurora 64B/66B).

FIGURE 8. Difference of full-duplex AXI throughput compared to half-duplex AXI throughput (10 Gbit/s line rate, Aurora 64B/66B).

because the AXI Chip2Chip core does not support single-lane
operation if used with the Aurora 8B/10B core and either
the AXI address width or the AXI data width is set to
64 bits. Hence, we used an AMD Xilinx AXI Data Width
Converter to convert the 64-bit data width of the AXI Traffic
Generator’s AXI master interface to the 32-bit data width of
the AXI Chip2Chip core’s AXI slave interface for this case.

A disadvantage of the AXI Data Width Converter is that it
removes the AXI AxID signal, thereby reducing the number
of outstanding transactions to one. Note that we left the AXI
address width set to 32 bits for the AXI Chip2Chip and
Aurora 8B/10B combination. All AXI Chip2Core parameters
not concerned with AXI or PHY configuration remained set
to their default values.We evaluated the AXI Chip2Chip core,

50876 VOLUME 11, 2023



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

FIGURE 9. Half-duplex AXI throughput of transactions with a length of 256 transfers.

Prism Standard Bridge, and Prism Advanced Bridge in com-
bination with the Aurora 8B/10B and the Aurora 64B/66B
core. Additionally, we evaluated the Prism Standard Bridge
and Prism Advanced Bridge in combination with the Prism
Kyokko core. Although the AXI Chip2Chip core uses
AXI-Stream to communicate with an Aurora core, it needs
additional signals not provided by the Prism Kyokko core.
Hence, we did not evaluate the AXI Chip2Chip core with
the Prism Kyokko core. We performed the evaluations with
the Aurora 8B/10B core with a line rate of 6.6Gbit/s and
the evaluations with the Aurora 64B/66B core and the Prism
Kyokko core with line rates of 6.6Gbit/s, 10Gbit/s, and
16.375Gbit/s. We configured the Aurora 8B/10B and Aurora
64B/66B core to include shared logic when serving as the
link-layer core for a bridge with an AXI slave interface and to
use external shared logic when serving as the link-layer core
for a bridge with an AXI master interface. We call an Aurora
core with the former configuration a clock master and one
with the latter configuration a clock slave.

Most cores and all AXI interfaces in the designs used
the PL clock PL0 generated by the RPLL with a frequency

of ∼280MHz. The Aurora cores used the PL clock PL1
generated by the RPLL with a frequency of ∼50MHz as the
initialization clock.

The four SFP+ (Enhanced Small Form-factor Pluggable)
ports on the ZCU102 board are connected to the GTH
Quad 230. The ZCU102 board has two SiliconLabs Si570
chips, each producing a differential clock signal with a pro-
grammable frequency. One of these clock signals is buffered
by a Si53340 chip and distributed to the GTH Quad 230 as
MGTREFCLK0. Si570 chips are programmable via I2C; the
Linux driver for the Si570 uses the frequency specified in
the device tree to set the frequency when booting. We used
MGTREFCLK0 of GTH Quad 230 as the GT reference clock
with a frequency of 132MHz for a line rate of 6.6Gbit/s and
with a frequency of 125MHz for line rates of ≥ 10Gbit/s.
We used the GT lanes corresponding to the SFP+ ports
0 and 1, which we connected with a direct-attach copper
(DAC) cable. To ensure the measurement results of the
higher level protocols were not skewed by the bit error rate
(BER) of the physical link, we evaluated FS SFP-H10GB-
CU50CM cables specified to 10Gbit/s with a length of 0.5m.

VOLUME 11, 2023 50877



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

FIGURE 10. Latency.

We used the AMD Xilinx IBERT core for UltraScale GTH
Transceivers [51] for BER tests and tested the cables with
the line rates 6.6Gbit/s, 10Gbit/s, and 16.375Gbit/s. All of
the available bit patterns for BER tests were tested for one
hour, namely PRBS-7, PRBS-9, PRBS-15, PRBS-23, PRBS-
31, slowclk, and fastclk. The specific cable we selected for
all tests achieved a BER of zero for all combinations of line
rate and bit pattern.

The application that controls the measurement process was
compiled with AMD Xilinx Vitis 2022.2 and ran on a Linux
system we created with AMD Xilinx PetaLinux 2022.2. The
AXI Traffic Generator has a command RAM that is separated
into two arrays, each containing 256 commands, each com-
mand comprised of four 32-bit words. The first array is used
for commands describing read transactions, and the second

one is used for commands describing write transactions; both
are processed simultaneously. There are two AXI Traffic
Generators in each of our designs: an AXI Traffic Generator
handling the writing-related AXI channels (XATG-W) and
one handling the reading-related AXI channels (XATG-R).
For half-duplex AXI throughput measurements, the AXI
Traffic Generator handling the channels of interest ran a pro-
gram of 255 commandswhile the other AXI TrafficGenerator
remained idle. Two separate runs were necessary to conduct
full-duplex AXI throughput measurements. To observe AXI
write throughput in full-duplex mode, we generated a write
command array and ran it on ATG-W, and we generated a
read command array and ran it looped on ATG-R—vice-
versa to observe AXI read throughput. Using two unlooped
command arrays would have stopped the cycle counter as

50878 VOLUME 11, 2023



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

soon as the processing of any one of the two command arrays
finished. The Loop Enable bit in the Master Control register
to enable looped processing affects the processing of both
write and read command arrays; this is the reason we used
two separate AXI Traffic Generator instances. We configured
the commands to drive the AXI signals as follows:
• WSTRB=FF16
• AxPROT=0
• AxID=i mod j (where i is the command number and j
is the number of supported outstanding transactions)

• AxSIZE=3
• AxBURST=1 (INCR)
• AxLOCK=0
• AxLEN is set corresponding to the currently tested trans-
action length

• AxQOS=0
• AxCACHE=3

A consequential limitation of the AXI Traffic Generator is
that it supports a maximum of four outstanding transactions.
We conducted every AXI-related measurement using the fol-
lowing sequence:

1) generate appropriate command arrays,
2) configure and program the AXI Traffic Generators,
3) reset the clock cycle counter via a dedicated GPIO pin,
4) start both AXI Traffic Generators (using their external

trigger input) and the clock cycle counter simultane-
ously via a dedicated GPIO pin, and

5) wait for the Master Completion bit of the relevant AXI
Traffic Generator’s Error Status register to be set.

The signal coming from the AXI Traffic Generator’s done
port stops the clock cycle counter, resulting in an accurate
measurement of the number of clock cycles the processing
of the command arrays took. The AXI throughput mea-
surements were repeated 100 times and averaged, while the
latency measurements were repeated 1000 times. We con-
ducted AXI latency measurements using an AXI Traffic Gen-
erator command array containing a single valid command,
producing a transaction with a single transfer (AxLEN = 0).
Because the processing of a write command array is not
completed until the last AXIwrite response (B) channel hand-
shake occurs, our write transaction latency measurements are
effectively round-trip measurements.

B. RESULTS
1) LOGIC RESOURCES
Table 1 shows the post-implementation logic resource utiliza-
tion for the AMD Xilinx Aurora and AXI Chip2Chip cores,
the Prism Kyokko, Aurora Control and Prism Bridge cores,
and the latter’s packetizer and depacketizer modules. Note
that the logic utilization of the same instantiated module in
different designs often differs. Hence, the values shown in
the table and referred to in the following discussion are the
worst-case (i.e., highest) values from the designs used for the
evaluation.

The Aurora 64B/66B core configured for a line rate of
<10Gbit/s needed up to 188 look-up tables (LUTs) and

414 flip-flops more than when configured for a line rate of
≥10Gbit/s. This is because the AMD Xilinx Transceivers
Wizard [52] embedded in the Aurora 64B/66B core instan-
tiates CPLL calibration logic when the CPLL is used for
clocking. The Aurora 64B/66B core uses the CPLL for the
6.6Gbit/s line rate, and a QPLL for the higher line rates.
The Prism Kyokko core currently uses a QPLL for all line
rates. For line rates of ≥10Gbit/s, the Prism Kyokko core
needed 35 LUTs (3.82%) more than what two complemen-
tary Aurora 64B/66B cores needed. However, two Aurora
64B/66B cores required 1654 flip-flops (110.19%) more than
the Prism Kyokko core.

The Prism Bridge uses more logic resources when linked
to the Aurora 8B/10B core because additional logic is needed
to change the AXI data width to the internally used 64 bits.

Comparing bridges with an AXI slave interface, com-
bined with the Aurora 64B/66B core, the AXI Chip2Chip
core used up to 976 LUTs and 1434 flip-flops, the Prism
Standard Bridge used up to 989 LUTs and 1829 flip-flops,
and the Prism Advanced Bridge used up to 1720 LUTs and
2444 flip-flops. While the Prism Advanced Bridge needed
76.23%more LUTs and 70.43%more flip-flops than the AXI
Chip2Chip core, it needed 73.91% more LUTs and 33.62%
more flip-flops than the Prism Standard Bridge. The latter
comparison gives a better idea of the logic resource cost
premium induced by the advanced packetization required for
the higher throughput, as that is the only difference between
both variants.

Similarly, comparing bridgeswith anAXImaster interface,
combined with the Aurora 64B/66B core, the AXI Chip2Chip
core used up to 898 LUTs and 1554 flip-flops, the Prism Stan-
dard Bridge used up to 1021 LUTs and 1702 flip-flops, and
the Prism Advanced Bridge used up to 1727 LUTs and 2318
flip-flops. We see that the Prism Advanced Bridge caused a
92.32% increase in LUT utilization and a 49.16% increase
in flip-flop utilization compared with the AXI Chip2Chip
core and a 69.15% increase in LUT utilization and a 36.19%
increase in flip-flop utilization comparedwith the Prism Stan-
dard Bridge.

To put the logic resource requirements into context: The
Prism Advanced bridge consumed up to 1789 LUTs (0.65%)
and 2579 flip-flops (0.47%) of the 274 080 LUTs and 548 160
flip-flops provided by the ZU9EG [53] chip on our test board.

2) THROUGHPUT
The half-duplex AXI throughput we measured for a line rate
of 10Gbit/s and with the Aurora 64B/66B core is visual-
ized in Figure 7. The curves of the measurement results for
the other line rates look similar. Each measurement curve
aligns visibly with its corresponding approximation curve
after its knee point. The steep increase of the measurement
curves observed ahead of their knee point is a consequence
of the AXI Traffic Generator’s limitation to four outstanding
transactions. For example, when the AXI Traffic Genera-
tor has submitted the last transfer of the write transaction

VOLUME 11, 2023 50879



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

109, 110 will not be started and therefore no data will
be transferred until the AXI Traffic Generator has received
the response from write transaction 106. Depending on the
transaction length, the AXI Traffic Generator may receive the
write response for 106 before or after the last transfer of
109 occurred. In the latter case, idle time accrues, resulting

in the throughput gap observed in the curve before the knee
point. A similar issue arises when the AXI Traffic Generator
has to wait for a read transfer with the RLAST signal asserted
to complete a previous read transaction in order to be able
to start the next one. On the other hand, the response for
a transaction with a sufficient transaction length is received
during the transfers of a subsequent transaction, precluding
the idle time.

Figure 8 shows by what percentage AXI throughput differs
in full-duplex operation compared to half-duplex operation
when using a line rate of 10Gbit/s and the Aurora 64B/66B
core. Each curve appears turbulent before and gradually
increasing after crossing a certain transaction length thresh-
old. Once again, this point occurs earlier on the x-axis for
the AXI Chip2Chip core and the Prism Standard Bridge. The
AXI Chip2Chip AXI write throughput difference curve has
a small amount of unsteadiness sprinkled in—an effect not
shown by the AXI read throughput difference curve of the
AXI Chip2Chip core. The transaction length at which the
gradual increase starts is, not coincidently, the same trans-
action length at which the knee point in the corresponding
curve in Figure 7 occurs. The highest AXI write throughput
difference is −8.47% (at transaction length 22) for the AXI
Chip2Chip core, −5.35% (at transaction length 20) for the
Prism Standard Bridge, and −4.89% (at transaction length
29) for the Prism Advanced Bridge. The highest AXI read
throughput difference is −10.80% (at transaction length 20)
for the AXI Chip2Chip core, −4.52% (at transaction length
21) for the Prism Standard Bridge, and −4.60% (at transac-
tion length 30) for the Prism Advanced Bridge.

Figure 9 presents the maximum achievable half-duplex
AXI throughput of write and read transactions. It shows the
measurement results for the maximum transaction length:
transactions made up of 256 transfers (AxLEN = 255).
Notably, the design using the Aurora 8B/10B core and the
AXI Chip2chip core achieved an AXI write throughput of
286.57MiB/s and an AXI read throughput of 285.87MiB/s.
In contrast, the design using the same Aurora core and the
Prism Standard Bridge achieved an AXI write throughput of
314.07MiB/s (9.60% more) and an AXI read throughput of
312.85MiB/s (9.44% more). This discrepancy is due to the
former design’s limitation to a single outstanding transaction,
as described earlier.

We will now compare the results of designs with a
16.375Gbit/s line rate and the Aurora 64B/66B core han-
dling the link layer. Firstly, the AXI Chip2Chip core could
transfer 936.29MiB/s in write transactions and 943.80MiB/s
in read transactions. The maximum throughput achieved by
the AXI Chip2Chip core was very similar to the through-
put achieved by the Prism Standard Bridge. This observa-

tion strongly suggests that the AXI Chip2Chip core uses a
packetization mechanism similar to the simple packetization
mechanism found in the Prism Standard Bridge. Secondly,
with the Prism Advanced Bridge, we measured an AXI write
throughput of 1368.82MiB/s and an AXI read throughput
of 1376.62MiB/s. Compared to the AXI Chip2Chip core,
this represents a 46.20% increase in AXI write throughput
and a 45.86% increase in AXI read throughput. Lastly, the
Prism Advanced Bridge performed slightly better with the
Prism Kyokko core than with the Aurora 64B/66B core and
achieved an AXI write throughput of 1371.38MiB/s (0.19%
more) and an AXI read throughput of 1379.19MiB/s (0.19%
more).

The measured AXI throughput of transactions with a
length of 256 transfers differs from the function Xτ,v by
−0.08% (Prism Standard Bridge, 6.6Gbit/s, Prism Kyokko,
AXI write throughput approximation) to −0.68% (AXI
Chip2Chip, 16.375Gbit/s, Aurora 64B/66B, AXI write
throughput approximation). This excludes the measurements
for the combination of a 6.6Gbit/s line rate, Aurora 8B/10B
core, and Chip2Chip core, again because of the aforemen-
tioned limitation concerning outstanding transactions.

In summary, the Prism Advanced Bridge combined with
the Prism Kyokko core provided the highest AXI throughput
in our tests. Therefore, we consider this combination to be
the best choice for typical designs that need inter-chip AXI
communication. There is one caveat: In designs that will be
used to process mainly short AXI transactions, a bridge with
a simple packetizer mechanism may suffice.

3) LATENCY
Figure 10 shows the results of the latency measurements.
In the following discussion, we refer to and compare the
median values. On the one hand, combined with the Aurora
64B/66B core and with a line rate of 6.6Gbit/s, it took
the Prism Advanced Bridge 7.03% fewer clock cycles to
complete the write transaction than the AXI Chip2Chip core
needed. On the other hand, with a line rate of 16.375Gbit/s,
the Prism Advanced Bridge completed the write transac-
tion in 2.31% more clock cycles than the AXI Chip2Chip
core. The interrupt request latency measurements show a
concordant scenario. Considering both write and interrupt
request latency, the Prism Advanced Bridge needed more
clock cycles than the AXI Chip2Chip core in four cases,
fewer in three cases, and the same number of clock cycles in
one case. Conducting measurements without a link-layer core
(e.g., AXI-Stream only) may reduce the latency variability
enough for a more evident pattern to emerge.

Comparing the Prism Advanced Bridge to the Prism Stan-
dard Bridge when using the Aurora 64B/66B core, the former
needed up to 1.78% more clock cycles to complete an AXI
write transaction and up to 2.70% more clock cycles to for-
ward an interrupt request than the latter.

It took the Prism Advanced Bridge combined with the
Prism Kyokko core up to 24.13% fewer clock cycles to com-
plete an AXI write transaction and up to 28.44% fewer clock

50880 VOLUME 11, 2023



R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

cycles to forward an interrupt request than when combined
with the Aurora 64B/66B core.

Interestingly, the AXI write latency of the designs
using the Aurora 8B/10B core was 40.53%–48.65% lower
than the latency of the corresponding design using the
Aurora 64B/66B core with the same line rate and still
17.96%–26.64% lower than the latency of a correspond-
ing design using the Aurora 64B/66B core and a 51.52%
higher line rate (10Gbit/s). Again, interrupt request latencies
behaved similarly. We measured the lowest interrupt request
latency (55 clock cycles) with the Prism Standard Bridge
combined with the Prism Kyokko core and with a line rate
of 16.375Gbit/s.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have reviewed related work, presented
an overview of the design and implementation of the
novel, throughput-optimized Prism Bridge, and given a for-
mal analysis of its half-duplex bandwidth utilization. Fur-
thermore, we have outlined the experimental setup and
methodology of our performance evaluation of two vari-
ants of the Prism Bridge, along with one competitor bridge
core.

With a 16.375Gbit/s line rate and the Aurora 64B/66B
link-layer core, the AXI Chip2Chip core achieved a through-
put of 936.29MiB/s in write transactions and 943.80MiB/s
in read transactions whereas the Prism Advanced Bridge
attained an AXI write throughput of 1368.82MiB/s and an
AXI read throughput of 1376.62MiB/s. This amounts to a
46.20% increase in AXI write throughput and a 45.86%
increase in AXI read throughput. Our experiments indicate
that the advanced packetization mechanism has negligi-
ble impact on AXI or interrupt request latencies. Possi-
bly obscured by variability introduced by the link layer,
clock domain crossings, or both, no clear pattern regarding
latency differences among the tested bridge cores emerged.
As expected, higher line rates resulted in lower latencies. The
Prism Advanced Bridge combined with the Prism Kyokko
core needed up to 24.13% and 28.44% fewer clock cycles to
complete an AXIwrite transaction and to forward an interrupt
request, respectively. Combined with the Aurora 64B/66B
core, the PrismAdvanced Bridge used 76.23%–92.32%more
LUTs and 49.16%–70.43% more flip-flops than the AXI
Chip2Chip core, and it needed 69.15%–73.91% more LUTs
and 33.62%–36.19%more flip-flops than the Prism Standard
Bridge. The PrismKyokko core (for two transceivers) utilized
slightly more LUTs but less than half of the flip-flops two
Aurora 64B/66B cores required.

Based on the AXI throughput measurement results of
the Prism Standard Bridge and the AXI Chip2Chip core,
we suppose that the latter uses a similar simple packetization
mechanism.We have shown that it is possible to substantially
increase AXI write and read throughput over a high-speed
serial link by leveraging our novel advanced packetization
mechanism instead of a simple one. To verify the causa-
tion between the advanced packetization mechanism and the

increased AXI throughput, we have compared the Prism
Advanced Bridge with the Prism Standard Bridge, which uses
a simple packetization mechanism but is otherwise identical
to the former. In times of ever-increasing logic resources
and line rates of serial links, the AXI throughput increase
of the Prism Advanced Bridge likely warrants the necessary
additional logic resources for most designs. In the uncommon
case that a design is restricted to a comparably low line rate
of ≤6.6Gbit/s and latency is of paramount importance, the
Aurora 8B/10B may be preferable to the Aurora 64B/66B
core.

Evaluations of the Prism Bridge without a link-layer core
and in combination with a link-layer core configured to pro-
vide a multi-lane channel (i.e., multiple bidirectional physical
links appearing as one bidirectional logical channel) would
be intriguing. While the former enables precise latency mea-
surements, the latter provides more insight into the viabil-
ity of various architectural and clock-domain–related design
choices. We intend to use the architecture of the bridge
presented in this paper to implement an extended bridge
that supports the AXI Coherency Extensions (ACE) family of
protocols. This bridge will facilitate the further exploration
of hardware-supported coherency of memory shared across
systems. Furthermore, the existing Prism Bridge Generator
could be reworked into a more general application that pro-
duces protocol serializers based on input specifications. The
advanced packetizer and depacketizer could be redesigned to
be general (instead of individually generated) modules with
access to a configuration memory block. This would lay the
groundwork for an ASIC implementation configurable for
specific AXI signal widths. Additionally, we are currently
developing the Prism Interrupt Controller intended to add
conveniences, such as selectable level- and edge-sensitivity
and interrupt request routing capabilities based on the Prism
Bridge’s basic interrupt request forwarding. Finally, porting
the Prism Bridge to Intel hardware, like the recently released
Agilex SoC-FPGA series, would be a leap towards flexibly
bridging AMD Xilinx and Intel (MP)SoC-FPGA platforms
on a system level.

ACKNOWLEDGMENT
The authors acknowledge support by the German Research
Foundation and the Open Access Publication Fund of TU
Berlin. The AMD Xilinx University Program (XUP) donated
a Vivado ML Enterprise Edition license.

REFERENCES
[1] Form 10-K, Xilinx, San Jose, CA, USA, 2002.
[2] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet

DS083 (V5.0), Xilinx, San Jose, CA, USA, Jun. 2011.
[3] Form 10-K, Xilinx, San Jose, CA, USA, 2020.
[4] Versal Architecture and Product Data Sheet: Overview DS950 (V1.17),

AMD Xilinx, Santa Clara, CA, USA, Nov. 2022.
[5] J. Lant, C. Concatto, A. Attwood, J. A. Pascual,M. Ashworth, J. Navaridas,

M. Luján, and J. Goodacre, ‘‘Enabling shared memory communication
in networks of MPSoCs,’’ Concurrency Comput., Pract. Exper., vol. 31,
no. 21, p. e4774, Nov. 2019, doi: 10.1002/cpe.4774.

VOLUME 11, 2023 50881

http://dx.doi.org/10.1002/cpe.4774


R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

[6] M. Bielski, C. Pinto, D. Raho, and R. Pacalet, ‘‘Survey on mem-
ory and devices disaggregation solutions for HPC systems,’’ in Proc.
IEEE Int. Conf. Comput. Sci. Eng. (CSE), IEEE Int. Conf. Embed-
ded Ubiquitous Comput. (EUC), 15th Int. Symp. Distrib. Comput. Appl.
Bus. Eng. (DCABES), Aug. 2016, pp. 197–204, doi: 10.1109/CSE-EUC-
DCABES.2016.185.

[7] R. Giorgi, M. Procaccini, and F. Khalili, ‘‘AXIOM: A scalable,
efficient and reconfigurable embedded platform,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), May 2019, pp. 480–485, doi:
10.23919/DATE.2019.8715168.

[8] F. Chaix, A. Ioannou, N. Kossifidis, N. Dimou, G. Ieronymakis,
M. Marazakis, V. Papaefstathiou, V. Flouris, M. Ligerakis, G. Ailamakis,
T. Vavouris, A. Damianakis, M. Katevenis, and I. Mavroidis, ‘‘Imple-
mentation and impact of an ultra-compact multi-FPGA board for large
system prototyping,’’ in Proc. IEEE/ACM Int. Workshop Heterogeneous
High-Perform. Reconfigurable Comput. (HRC), Nov. 2019, pp. 34–41, doi:
10.1109/H2RC49586.2019.00010.

[9] AMBA AXI and ACE, Protocol Specification, Issue H.c, ARM IHI 0022H.c
(ID012621), Arm, Cambridge, U.K., Jan. 2021.

[10] AXI Chip2Chip V5.0, LogiCORE IP Product Guide, PG067, AMD Xilinx,
Santa Clara, CA, USA, May 2022.

[11] AMBA AXI4 Interface Protocol, AMD Xilinx, Santa Clara,
CA, USA, 2023. Accessed: Mar. 23, 2023. [Online]. Available:
https://www.xilinx.com/products/ intellectual—property/axi.html

[12] Aurora 8B/10B V11.1, LogiCORE IP Product Guide, PG046, AMDXilinx,
San Jose, CA, USA, May 2022.

[13] Aurora 8B/10B Protocol Specification, SP002 (V2.3), Xilinx, San Jose,
CA, USA, Oct. 2014.

[14] A. X. Widmer and P. A. Franaszek, ‘‘A DC-balanced, partitioned-block,
8B/10B transmission code,’’ IBM J. Res. Develop., vol. 27, no. 5,
pp. 440–451, Sep. 1983.

[15] Aurora 64B/66B V12.0, LogiCORE IP Product Guide, PG074, AMD
Xilinx, Santa Clara, CA, USA, Oct. 2022.

[16] Aurora 64B/66B Protocol Specification, SP011 (V1.3), Xilinx, San Jose,
CA, USA, Oct. 2014.

[17] A. Tomori and Y. Osana, ‘‘Kyokko: A vendor-independent high-speed
serial communication controller,’’ in Proc. 11th Int. Symp. Highly
Efficient Accel. Reconfigurable Technol., Jun. 2021, Art. no. 7, doi:
10.1145/3468044.3468051.

[18] A. Tomori and Y. Osana, ‘‘FPL demo: Kyokko—An aurora 64b66b com-
patible 100 Gbps communication controller,’’ in Proc. 32nd Int. Conf.
Field-Program. Log. Appl. (FPL), Aug. 2022, p. 472.

[19] C. Brewer, N. Franchoni, R. Ripley, A. Geist, T.Wise, S. Sabogal, G. Crum,
S. Heyward, and C. Wilson, ‘‘NASA SpaceCube intelligent multi-purpose
system for enabling remote sensing, communication, and navigation in
mission architectures,’’ in Proc. Small Satell. Conf., 2020. [Online]. Avail-
able: https://digitalcommons.usu.edu/smallsat/2020/all2020/136/

[20] J. D. Chimeh, ‘‘A new architecture for massive MIMO testbed laboratory
in 5G,’’ in Proc. 10th Int. Symp. onTelecommunications (IST), Dec. 2020,
pp. 15–19, doi: 10.1109/IST50524.2020.9345868.

[21] J. Flich, R. Tornero, D. Rodriguez, D. Russo, J. M. Martínez,
and C. Hernández, ‘‘From a FPGA prototyping platform to a
computing platform: The MANGO experience,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Feb. 2021, pp. 7–12, doi:
10.23919/DATE51398.2021.9474051.

[22] D. Lettnin and M. Winterholer, Embedded Software Verification and
Debugging (Embedded Systems), 1st ed. New York, NY, USA: Springer,
2017, doi: 10.1007/978-1-4614-2266-2.

[23] J. Wildman, S. Moore, L. Veytser, T. Capuano, J. Shapiro, J. Hillger, and
B. Cheng, ‘‘Towards rapid waveform design and deployment via modular
signal processing frameworks,’’ in Proc. IEEE Mil. Commun. Conf. (MIL-
COM), Jan. 2019, pp. 1031–1036, doi: 10.1109/MILCOM.2018.8599731.

[24] R. Murphy, B. Barnett, L. Wagner, J. Wildman, L. Veytser, D. Wiggins,
S. Buscemi, T. Arganbright, S. Clark, and B. Cheng, ‘‘CHIL: Common-
modem hardware integrated library,’’ in Proc. IEEE Mil. Commun. Conf.
(MILCOM), Jan. 2019, pp. 1–6, doi: 10.1109/MILCOM.2018.8599859.

[25] X. Yang, Y. Hou, and H. He, ‘‘A processing-in-memory architecture pro-
gramming paradigm for wireless Internet-of-Things applications,’’ Sen-
sors, vol. 19, no. 1, p. 140, Jan. 2019, doi: 10.3390/s19010140.

[26] Z. Zhu, G. Di Guglielmo, Q. Cheng, M. Glick, J. Kwon, H. Guan,
L. P. Carloni, and K. Bergman, ‘‘Photonic switched optically connected
memory: An approach to address memory challenges in deep learning,’’
J. Lightw. Technol., vol. 38, no. 10, pp. 2815–2825, Feb. 2020, doi:
10.1109/JLT.2020.2975976.

[27] T. Mehner, L. E. Ardila-Perez, M. N. Balzer, O. Sander,
D. Tcherniakhovski, M. Schleicher, M. Fuchs, G. Fedi, G. Gimas,
G. M. Iles, M. Pesaresi, A.W. Rose, and T. Schuh, ‘‘ZynqMP-based board-
management mezzanines for serenity ATCA-blades,’’ J. Instrum., vol. 17,
no. 3, Mar. 2022, Art. no. C03009, doi: 10.1088/1748-0221/17/03/c03009.

[28] C. G. Larrea, K. Harder, D. Newbold, D. Sankey, A. Rose, A. Thea,
and T. Williams, ‘‘IPbus: A flexible Ethernet-based control system for
xTCA hardware,’’ J. Instrum., vol. 10, Feb. 2015, Art. no. C02019, doi:
10.1088/1748-0221/10/02/C02019.

[29] A. Byszuk, K. Pozniak, W. M. Zabolotny, K. Bunkowski, M. Bluj,
K. Doroba, P. Drabik, M. Górski, A. Kalinowski, K. Kierzkowski,
M. Konecki, J. Królikowski, W. Oklinski, M. Olszewski, A. Skala, and
K. Zawistowski, ‘‘OMTF firmware overview,’’ Proc. SPIE, vol. 9662,
Sep. 2015, Art. no. 966241, doi: 10.1117/12.2207432.

[30] D. Acosta, G. Brown, A. Carnes, M. Carver, D. Curry, G. P. D. Giovanni,
I. Furic, A. Kropivnitskaya, A. Madorsky, M. Matveev, P. Padley, D. Rank,
C. Reeves, B. Scurlock, and S. Wang, ‘‘The CMS modular track finder
boards, MTF6 and MTF7,’’ J. Instrum., vol. 8, no. 12, Dec. 2013,
Art. no. C12034, doi: 10.1088/1748-0221/8/12/C12034.

[31] A. Gabrielli, G. Gebbia, F. Alfonsi, G. D’Amen, N. Giangiacomi,
D. Soverini, G. Balbi, D. Falchieri, and R. Travaglini, ‘‘A PCI express
board proposed for the upgrade of the ATLAS TDAQ read-out sys-
tem,’’ in Proc. 6th Annu. Conf. Large Hadron Collider Phys.-PoS(LHCP),
Oct. 2018, p. 76, doi: 10.22323/1.321.0076.

[32] N. Giangiacomi, F. Alfonsi, G. d’Amen, G. Balbi, D. Falchieri,
A. Gabrielli, G. Gebbia, G. Pellegrini, and D. Soverini, ‘‘General purpose
readout board π LUP: Overview and results,’’ IEEE Trans. Nucl. Sci.,
vol. 66, no. 7, pp. 1021–1027, Jul. 2019, doi: 10.1109/TNS.2019.2914332.

[33] N. Loukas, ‘‘The barrel calorimeter processor demonstrator board for
the phase II upgrade of the CMS ECAL barrel,’’ CERN, Meyrin,
Switzerland, Tech. Rep. CMS-CR-2018-301, Oct. 2018. [Online]. Avail-
able: https://cds.cern.ch/record/2644903

[34] W. Smith, M. Vicente, T. Gorski, A. Svetek, J. Tikalsky, R. Fobes,
and S. Dasu, ‘‘Next generation ATCA control infrastructure for the
CMS phase-2 upgrades,’’ in Proc. Top. Workshop Electron. Part. Phys.-
PoS(TWEPP-17), Mar. 2018, p. 102, doi: 10.22323/1.313.0102.

[35] R. Spiwoks, A. Armbruster, G. Carrillo-Montoya, M. Chelstowska,
P. Czodrowski, P.-O. Deviveiros, T. Eifert, N. Ellis, G. Galster, S. Haas,
L. Helary, O. L. Nikolos, A. Marzin, T. Pauly, V. Ryjov, K. Schmieden,
M. S. Oliveira, J. Stelzer, P. Vichoudis, and T. Wengler, ‘‘The ATLAS
muon-to-central-trigger-processor-interface (MUCTPI) upgrade,’’ in Proc.
Int. Conf. Technol. Instrum. Part. Phys., in Springer Proceedings in
Physics, vol. 212. Singapore: Springer, Aug. 2018, pp. 360–365, doi:
10.1007/978-981-13-1313-4_69.

[36] A. D. Ioannou, K. Georgopoulos, P. Malakonakis, D. N. Pnevmatikatos,
V. D. Papaefstathiou, I. Papaefstathiou, and I. Mavroidis, ‘‘UNILOGIC:
A novel architecture for highly parallel reconfigurable systems,’’ ACM
Trans. Reconfigurable Technol. Syst., vol. 13, no. 4, pp. 1–32, 2020, doi:
10.1145/3409115.

[37] Vivado Design Suite User Guide, Synthesis, UG901 (V2022.2), AMD
Xilinx, Santa Clara, CA, USA, Nov. 2022.

[38] Vivado Design Suite User Guide, Creating and Packaging Custom IP,
UG1118 (V2022.2), AMD Xilinx, Santa Clara, CA, USA, Nov. 2022.

[39] Vivado Design Suite User Guide, Designing IP Subsystems Using IP Inte-
grator, UG994 (V2022.2), AMDXilinx, Santa Clara, CA, USA, Oct. 2022.

[40] UltraScale Architecture GTH Transceivers, User Guide, UG576 (V1.7.1),
Xilinx, San Jose, CA, USA, Aug. 2021.

[41] C. L. Chen and M. Y. Hsiao, ‘‘Error-correcting codes for semiconductor
memory applications: A state-of-the-art review,’’ IBM J. Res. Develop.,
vol. 28, no. 2, pp. 124–134, Mar. 1984, doi: 10.1147/rd.282.0124.

[42] R. W. Hamming, ‘‘Error detecting and error correcting codes,’’ Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147–160, Apr. 1950, doi: 10.1002/j.1538-
7305.1950.tb00463.x.

[43] W. J. Dally and J. W. Poulton, Digital Systems Engineering. Cambridge,
U.K.: Cambridge Univ. Press, 1998, doi: 10.1017/CBO9781139166980.

[44] UltraScale Architecture Libraries Guide, UG974 (V2022.2), AMD Xilinx,
Santa Clara, CA, USA, Oct. 2022.

[45] W. Reisig, Understanding Petri Nets, 1st ed. Berlin, Germany: Springer,
2013, doi: 10.1007/978-3-642-33278-4.

[46] ZCU102 Evaluation Board, User Guide, UG1182 (V1.7), AMD Xilinx,
Santa Clara, CA, USA, Feb. 2023.

[47] AXI Traffic Generator V3.0, LogiCORE IP Product Guide, PG125, Xilinx,
San Jose, CA, USA, Feb. 2019.

50882 VOLUME 11, 2023

http://dx.doi.org/10.1109/CSE-EUC-DCABES.2016.185
http://dx.doi.org/10.1109/CSE-EUC-DCABES.2016.185
http://dx.doi.org/10.23919/DATE.2019.8715168
http://dx.doi.org/10.1109/H2RC49586.2019.00010
http://dx.doi.org/10.1145/3468044.3468051
http://dx.doi.org/10.1109/IST50524.2020.9345868
http://dx.doi.org/10.23919/DATE51398.2021.9474051
http://dx.doi.org/10.1007/978-1-4614-2266-2
http://dx.doi.org/10.1109/MILCOM.2018.8599731
http://dx.doi.org/10.1109/MILCOM.2018.8599859
http://dx.doi.org/10.3390/s19010140
http://dx.doi.org/10.1109/JLT.2020.2975976
http://dx.doi.org/10.1088/1748-0221/17/03/c03009
http://dx.doi.org/10.1088/1748-0221/10/02/C02019
http://dx.doi.org/10.1117/12.2207432
http://dx.doi.org/10.1088/1748-0221/8/12/C12034
http://dx.doi.org/10.22323/1.321.0076
http://dx.doi.org/10.1109/TNS.2019.2914332
http://dx.doi.org/10.22323/1.313.0102
http://dx.doi.org/10.1007/978-981-13-1313-4_69
http://dx.doi.org/10.1145/3409115
http://dx.doi.org/10.1147/rd.282.0124
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1017/CBO9781139166980
http://dx.doi.org/10.1007/978-3-642-33278-4


R. Drehmel, H.-U. Heiss: Prism Bridge: Maximizing Inter-Chip AXI Throughput in the High-Speed Serial Era

[48] AXI Block RAM (BRAM) Controller V4.1, LogiCORE IP Product Guide,
PG078, Xilinx, San Jose, CA, USA, May 2019.

[49] Block Memory Generator v8.4, LogiCORE IP Product Guide, PG058,
Xilinx, San Jose, CA, USA, Aug. 2021.

[50] AXI Performance Monitor V5.0, LogiCORE IP Product Guide, PG037,
Xilinx, San Jose, CA, USA, Oct. 2017.

[51] IBERT for UltraScale GTH Transceivers v1.4, Logi-CORE IP Product
Guide, PG173, Xilinx, San Jose, CA, USA, Feb. 2021.

[52] UltraScale FPGAs Transceivers Wizard V1.7, Logi-CORE IP Product
Guide, PG182 (V1.7), Xilinx, San Jose, CA, USA, Dec. 2020.

[53] Zynq UltraScale+MPSoC Data Sheet: Overview, DS891 (V1.10), AMD
Xilinx, Santa Clara, CA, USA, Nov. 2022.

ROBERT DREHMEL (Member, IEEE) received
the master’s degree (Hons.) in computer science
from the Trier University of Applied Sciences,
Germany, in 2016. He is currently pursuing the
Ph.D. degree in computer science with Technis-
che Universität Berlin, Germany. He has been
with the software and hardware development
industries, since 2001, and has been a FreeBSD
developer. His research interests include embed-
ded systems, field-programmable gate arrays

(FPGAs), and operating systems. He received the Ph.D. Scholarship from the
German Academic Scholarship Foundation (Studienstiftung des deutschen
Volkes).

HANS-ULRICH HEISS received the Diploma,
Ph.D., and Habilitation degrees in computer sci-
ence from the Karlsruhe Institute of Technology,
Germany. He had research and teaching positions
at the IBM Watson Research Center, Yorktown
Heights, NY, USA; the University of Helsinki, the
Ilmenau University of Technology; and Paderborn
University. From 2001 to 2021, he was a Full Pro-
fessor of computer science with Technische Uni-
versität Berlin (TU Berlin). His research interests

include operating systems, distributed and parallel systems, performance
evaluation, resource management, and self-organization.

VOLUME 11, 2023 50883


