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ABSTRACT The concept of cryptcoding arises from the need to obtain secure and accurate transmission.
This has led to an intensive development of coding theory and cryptography as scientific fields dealing
with these problems. To ensure efficient and secure data transmission at the same time, the concept of
cryptcoding is being developed, in which the coding and encryption processes are merged into one process.
Cryptcodes provide correction of a certain number of errors in the transmitted message and data confiden-
tiality, using only one algorithm. In this paper, we consider cryptcodes based on quasigroups, proposed
elsewhere. Also, Burst-Cut-Decoding, Burst-4-Sets-Cut-Decoding, FastB-Cut-Decoding and FastB-4-Sets-
Cut-Decoding algorithms for transmission of messages through burst channels have been defined and
investigated elsewhere. Here, we investigate performances of these algorithms for transmission of images
through burst channels. We made experiments for different channel parameters and compared the results
obtained with different decoding algorithms of these cryptcodes. In all experiments, we considered the
bit-error probability and the differences between the transmitted and decoded images. From the results
presented in this paper we can conclude that Fast algorithms improve the performances of these cryptcodes
for transmission of images over a burst channel. The best results are obtained by FastB-4-Sets-Cut-Decoding
algorithm. In addition, to enhance the quality of the decoded images, we examined the application of a
filter for visual correction of unsuccessfully decoded pixels using the surrounding pixels. The considered
cryptcodes and presented results can be useful for application in satellite digital video broadcasting
(DVB-S) coding and encryption schemes.

INDEX TERMS Cryptcoding, error-correcting codes, burst channel, image, quasigroups.

I. INTRODUCTION
Nowadays, when data are transmitted through a noisy chan-
nel, in addition to correcting the errors in themessages caused
by the noise in the channel, increasing emphasis is placed
on the security of the transmitted messages. Thus, there is
a need to combine two scientific fields, cryptography and
coding theory, which deal with these two problems in data
transmission into a concept called cryptcoding.

One way, to ensure secure and accurate transmission, is to
use two different algorithms, one for encryption of the mes-
sage and another for coding [1], [2]. In [3], authors propose
a combined scheme of Turbo codes codes and AES where a

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

turbo encoder block is embedded in AES encryption block
in the first round. Another secure channel coding scheme
based on turbo codes [4], is defined in such a way that
the redundant information used for error correction can be
selected at random from the entire set of potential strings.
In [5] authors proposed a cryptocoding system for flash
memory or transmission, where they first encrypt the infor-
mation using AES, and then encode the encrypted data by
concatenated BCH and QC-LDPC codes. Here, we consider
error-correcting codes resistant to an intruder attack which
consists of only one algorithm that provides a correction
of a certain amount of transmission errors and information
security. These cryptcodes, called Random Codes Based on
Quasigroups are proposed in [6] and they use a cryptographic
algorithm during the encoding/decoding process.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 50823

https://orcid.org/0000-0002-1578-6275
https://orcid.org/0000-0002-6779-0014


A. Popovska-Mitrovikj et al.: Fast Decoding of Images With Cryptcodes for Burst Channels

RCBQs use several parameters (redundancy pattern, initial
keys, quasigroups) in their design. Their error-correction
performances and decoding speed depend on these param-
eters. The decoding process is a list decoding, and the size
of the lists (called decoding candidate sets) has an impact
on the decoding speed and probability of correct decod-
ing. Therefore, several modifications of coding/decoding
algorithms (Cut-Decoding algorithms, 4-Sets-Cut-Decoding
algorithms) are proposed in [7] and [8]. In these algorithms,
using intersections of decoding candidate sets obtained in
parallel decoding process, a significant speed-up of decoding
process is obtained. For improving the performances of
RCBQ for transmission through a burst channel, two new
algorithms called Burst-Cut-Decoding and Burst-4-Sets-Cut-
Decoding algorithm are proposed in [9]. In these algorithms,
an interleaver in coding algorithm and the corresponding
deinterleaver in the decoding algorithm, are included. In this
way, the results for packet-errors and bit-error probabili-
ties are better than with the old Cut-Decoding and 4-Sets-
Cut-Decoding algorithm. Also, Burst-4-Sets-Cut-Decoding
algorithm gives from 2 to 8 times better results than Burst-
Cut-Decoding algorithm [9]. Additionally, to provide faster
and more efficient decoding, particularly for transmission
over a low-noise channels in [10] and [11] authors consider
new modifications (Fast-Cut-Decoding, Fast-4-Sets-Cut-
Decoding, FastB-Cut-Decoding and FastB-4-Sets-Cut-
Decoding algorithms) of previously mentioned coding/
decoding algorithms for RCBQs. In [10] it is concluded
that Fast-Cut-Decoding and Fast-4-Sets-Cut-Decoding algo-
rithms provide more efficient and faster decoding, especially
for transmission through a low noise Gaussian channel.
Also, the results given in [11] show that with FastB-Cut-
Decoding and FastB-4-Sets-Cut-Decoding algorithms results
for packet-error and bit-error probabilities are better thanwith
Burst-Cut-Decoding and Burst-4-Sets-Cut-Decoding algo-
rithms for transmission through a burst channels. Also, in [11]
authors conclude that for some channel parameters FastB-
Cut-Decoding and FastB-4-Sets-Cut-Decoding algorithms
provide faster decoding.

In this paper, we will examine performances of Burst
and FastB algorithms for transmission of images. We made
experiments with Burst-Cut-Decoding, Burst-4-Sets-Cut-
Decoding, FastB-Cut-Decoding and FastB-4-Sets-Cut-Deco-
ding algorithms for transmission of images through a burst
channel, and we compare the obtained results. We will
present experimental results for different channel parame-
ters and compare the results obtained with different coding/
decoding algorithms of these cryptcodes. In all experiments,
we consider the differences between transmitted and decoded
images. Also, for enhancing the quality of decoded images,
we examine the application of a median filter for visual cor-
rection of unsuccessfully decoded pixels using the surround-
ing pixels. From the presented results it can be seen that Fast
algorithms improve the performances of these cryptcodes
for transmission of images over a burst channel. Also, the

proposed filter enhances the quality of the images for all
considered channel parameters.

The rest of the paper is organized as follows. First,
we briefly describe coding/decoding process of RCBQs
using different (mentioned above) algorithms. In Section III,
we explain the Gilbert-Elliot model for burst channel that we
use in our experiments and we define the filter for enhancing
decoded images. Then, in the same section, we present, ana-
lyze and compare the experimental results for image trans-
mission through a burst channel using Burst-Cut-Decoding,
Burst-4-Sets-Cut-Decoding algorithm and their fast modifi-
cations. At the end, we will derive some conclusions about
the practical use of these cryptcodes in the considered noisy
channels.

II. CRYPTCODES BASED ON QUASIGROUPS
As we mention in the previous section, RCBQs are crypt-
codes that use a cryptographic algorithm in the encoding/
decoding process. In the encoding process we use encryp-
tion algorithm and in the decoding process - corresponding
decryption algorithm from the Totally Asynchronous Stream
Ciphers (TASC) designed using quasigroup string transfor-
mations [12]. These encryption/decryption algorithms use the
alphabet Q and a quasigroup operation ∗ on Q together with
its parastrophe \. In the experiments for this paper, we use
the alphabet of nibbles, the quasigroup of order 16 and its
parastrophe, given in [8].

A. ENCODING
In the coding process of the first version of coding/decoding
algorithm for RSBQs called Standard algorithm of RCBQ
([6]) first we choose a pattern for adding redundant zero
symbols and using this pattern we extend the message M
of l nibbles to message L of m nibbles. Then we divide
the message L in a blocks of r nibbles. The codeword C
for M is obtained by applying the encryption algorithm of
TASC (given in Fig. 1) to the message L. For this we need to
choose an initial key, k of n nibbles, that is also used in the
decoding process. As we can see from the algorithms given
in Fig. 1, the complexity of encryption/decryption algorithms
is polynomial and depends of the key size.

In Cut-Decoding (Burst-Cut-Decoding, FastB-Cut-
Decoding) algorithm, for code with rate R instead of using
a pattern for redundant symbols for rate R, we use a two
times shorter pattern, i.e., a pattern for rate 2R. We form the
redundant message L and we apply the encryption algorithm
(given in Fig. 1) two times, but using different parameters,
different keys or different quasigroups, and we obtain two
parts of the codeword. The concatenation of these two parts
give the codeword of the message. Similarly, in 4-Sets-Cut-
Decoding (Burst-4-Sets-Cut-Decoding, FastB-4-Sets-Cut-
Decoding) algorithm we use a four times shorter pattern (for
code with rate 4R) and we apply the encryption algorithm
four times to obtain 4 parts of the codeword.
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FIGURE 1. Algorithms for encryption and decryption.

B. DECODING
After transmission through a noisy channel, we receive a
messageD. In all algorithms, the decoding is iterative. In each
iteration we form a decoding candidate set. The speed of the
decoding process depends of the cardinality of these sets. For
the decoding we need to divide the message D in a blocks
of r nibbles and to choose an integer Bmax - the assumed
maximum number of bit transmission errors in one block.
In the ith iteration of the decoding process we form the set Hi
which contains the strings of r nibbles that are at Hamming’s
distance ≤ Bmax from the ith block of the message D and
we use this set in forming the decoding candidate set Si of
the ith iteration. In all algorithms we start with an initial set
S0 = (k; λ), where λ is the empty sequence, and k is the
initial key used in the coding process.

In the ith iteration of the Standard decoding process of
RCBQs, using the sets Si−1 and Hi we construct the set
Si of elements (β,w1 . . .wri), where wj are nibbles, on the
following way. For each element h ∈ Hi and each (α,w1 . . .

wr(i−1)) ∈ Si−1, we apply the decryption algorithm of
TASC, given in Fig. 1, with input (h, α). If the output
is the pair (δ, β) and if the string δ has redundant zero
nibbles at the same positions as the chosen pattern, then
(β,w1 . . .wr(i−1)c1c2 . . . cr ) ≡ (β,w1 . . .wri) is an element
of Si.

In Cut-Decoding algorithm ([7]), we split the received
message D in two messages of equal lengths and we decode
them in parallel with the parameters used in two applica-
tions of the encryption algorithm in the encoding process.
So, in each iteration of the decoding process we form two
decoding candidate sets S(1)i and S(2)i , Before the next iteration
we reduce the number of elements in these sets by removing
from S(1)i all elements whose second part does not match with
the second part of an element in S(2)i , and vice versa. In the
next iteration the both processes use the reduced sets.

In 4-Sets-Cut-Decoding algorithm ( [8]) we split the
received message D in four messages of equal lengths and
we decode them in parallel with the parameters used in the
four applications of the encryption algorithm in the encoding
process. Similarly, as in Cut-Decoding algorithm, in each
iteration we reduce the four obtained decoding candidate

sets. Here, we use the following algorithm for reduction.
If S(1)i , S(2)i , S(3)i and S(4)i are the decoding candidate sets
obtained in the ith iteration of the decoding process, then V1,
V2, V3 and V4 are sets of all strings that are second part of
an element in S(1)i , S(2)i , S(3)i and S(4)i , correspondingly, and
V = V1∩V2∩V3∩V4. IfV = ∅ thenV = (V1∩V2∩V3)∪(V1∩
V2∩V4)∪(V1∩V3∩V4)∪(V2∩V3∩V4). Next, we remove from
S(1)i , S(2)i , S(3)i and S(4)i all pairs with second part that is not in
V . In the next iteration all four parallel decoding process use
these smaller decoding candidate sets.

Since, in each iteration we form the decoding candidate
sets using the sets in the previous iteration it is clear that
if in some iteration all decoding candidate sets are empty
the decoding process can not continue. In this case we say
that a null-error appears. But, in Cut-Decoding and 4-Sets-
Cut-Decoding algorithms if we have at least one nonempty
decoding candidate set then the decoding continues with the
nonempty sets and the reduced sets are obtained by intersec-
tion of the non-empty sets only. If after the last iteration the
reduced decoding candidate sets have more than one element,
then we have a more-candidate-error. In this case, we can
choose one message from the intersection of the reduced
sets and take this message as a decoded message. Experi-
ments shows that almost always the correct message is in the
decoding candidate sets. We have a successful decoding, if all
reduced sets (two in Cut-Decoding algorithm, four in 4-Sets-
Cut-Decoding algorithm) in the last iteration have only one
element with a same second component. This component is
the decoded message L and the messages M is obtained by
removing the redundant zero nibbles. If the decoded mes-
sage is not correct, then we say that an undetected-error
appears.

For transmission over a binary-symmetric and Gaussian
channels Cut-Decoding and 4-Sets-Cut-Decoding algorithms
give a great improvement of the performances of RCBQ,
compared with the Standard algorithm. But, they do not give
good results in the experiments for burst channels. To solve
this problem we use an interleaver in the coding process,
and the corresponding deinterleaver in the decoding process.
Thus, we define algorithms called Burst-Cut-Decoding and
Burst-4-Sets-Cut-Decoding algorithms [9]. In encoding pro-
cess of Burst algorithms, before concatenating two (or four)
codewords, we apply interleaving to each codeword, sepa-
rately.With this, we scatter accumulated burst errors through-
out the message. Then, after transmission through a burst
channel we split the outgoing message D in two (or four)
parts of equal length and we apply deinterleaver on each part,
separately. Then parallel decoding of two (four) parts of the
message continues using the appropriate decoding algorithm.

As we mentioned previously, the speed of decoding pro-
cess depends on the cardinality of the decoding candidate sets
(smaller sets gives faster decoding). From the algorithm for
forming decoding candidate sets it is clear that for smaller
values of Bmax (the assumed maximum number of bit trans-
mission errors in one block), smaller sets are obtained. But,
we do not know the number of transmission errors in a block,
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in advance. If this number of errors in one block is larger than
Bmax , the algorithmwill fail to correct the errors. On the other
side, if we choose too large value for Bmax , we will obtain
large decoding candidate sets and the decoding process will
be too slow. Also, this can lead to a more-candidate-error.
In this case, if there are nomore thanBmax transmission errors
the correct message will be in the decoding candidate sets
of the last iteration. This means that even when the bit-error
probability of the channel is small (the number of bit errors in
a block is not greater than Bmax), or there are no errors during
transmission, more-candidate-errors can be obtained. This
give us an idea to made a modifications of Cut-Decoding and
4-Sets-Cut-Decoding algorithms, called Fast-Cut-Decoding
and Fast-4-Sets-Cut-Decoding algorithms [10]. In this algo-
rithms, instead of using a fixed valueBmax , we start the decod-
ing process with Bmax = 1. If we have successful decoding,
the procedure is done. If not, we increase the value of Bmax by
1 and we repeat the decoding process with the new value of
Bmax , etc. We finish the decoding with Bmax = 4 (for codes
with rate 1/4) or with Bmax = 5 (for codes with rate 1/8).
In these algorithms we try to decode using smaller decoding
candidate sets and in the case of successful decoding with a
small value of Bmax (Bmax < 4), we avoid large sets, and
the decoding of the message is faster. Also, on this way we
decrease the number of more-candidate-errors. In [11] we
made this modification of the decoding process in Burst-Cut-
Decoding and Burst-4-Sets-Cut-Decoding algorithms, and
we proposed so called FastB-Cut-Decoding and FastB-4-
Sets-Cut-Decoding algorithms.

In all decoding algorithms for RCBQ, when a null-error
appears, the decoding process ends earlier and only a part
of the message is decoded. Therefore, when we use these
codes for transmission of images and a null-error appears,
we find the maximum common prefix sub-string for all the
strings (without redundant zeros) from the previous itera-
tion’s decoding candidate sets. If the length of this sub-string
is k , then we take those k symbols and add l−k zero symbols
at the end of the message to produce the decoded message
of l symbols. Also, in order to be able to detect a place of
more-candidate-errors in an image, when decoding ends with
this type of error we take a message of all zero symbols as
a decoded message. Using these zero symbols (added in the
case of a null-error or a more-candidate-error) in [13] we
propose a filter for enhancing the quality of decoded images.
But, with this filter we cannot enhance pixels damaged by
undetected-errors (we can not locate this type of errors).
We use this filter for enhancing the decoded images obtained
in the experiments made for this paper.

III. EXPERIMENTS AND ANALYSIS
A. GILBERT-ELLIOTT BURST MODEL
For simulation of burst errors we use Gilbert-Elliott Burst
Model introduced by Edgar Gilbert and E. O. Elliott. The
basis of this widely used model is a Markov chain with two
states: G (good or gap) and B (bad or burst). The probability

of a bit being transmitted incorrectly is small in the good state,
and large in the bad state.

The model is presented in Fig. 2, where G indicates the
good state and B the bad state. The probability of moving
from bad to good state is PBG and the probability of moving
from good to bad state is PGB [14], [15].

FIGURE 2. Gilbert-Elliott Burst Model.

B. CODE PARAMETERS USED IN THE EXPERIMENTS
Cut-Decoding and 4-Sets-Cut-Decoding algorithms improve
performances of RCBQs for transmission through a
Gaussian channel and binary-symmetric channel. But, these
algorithms do not give good results for burst channels.
Therefore in [9] authors propose the modification of these
algorithms called Burst-Cut-Decoding and Burst-4-Sets-
Cut-Decoding algorithms. In the same paper performances
of Cut-Decoding and 4-Sets-Cut-Decoding algorithms are
compared with the suitable Burst versions of the algo-
rithms and it is concluded that Burst algorithms give
much better results than Cut-Decoding and 4-Sets-Cut-
Decoding algorithms when transmission is over a burst
channel.

In this paper, our goal is to compare performances of Burst-
Cut-Decoding and Burst-4-Sets-Cut-Decoding algorithms
with FastB-Cut-Decoding and FastB-4-Sets-Cut-Decoding
algorithms, correspondingly. We made experiments for code
(72, 576) using different parameters in the coding/decoding
process. Here, we will present the best experimental results
obtained using the following code parameters:

• in Burst-Cut-Decoding/FastB-Cut-Decoding - redun-
dancy pattern: 1100 1100 1000 00001100 1000 1000
0000 1100 1100 1000 0000 1100 1000 1000 0000 0000
0000, for rate 1/4 and two different keys of 10 nibbles,

• in Burst-4-Sets-Cut-Decoding/FastB-4-Sets-Cut-
Decoding - redundancy pattern: 1100 1110 1100 1100
1110 1100 1100 1100 0000 for rate 1/2 and four differ-
ent keys of 10 nibbles.

The above redundancy pattern are used for obtaining
the message L in the encoding process. Namely, we form
extended message L such that on the place of ’’1’’ in the
pattern we put a nibble form the original message, and on
the place of ’’0’’ we put zero nibble. The same pattern is used
in the decoding process for forming the decoding candidate
sets, i.e., in the i-th iteration we check whether the output of
the decryption algorithm has the redundancy zero nibbles in
the same position as the i-th block in the pattern.
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The maximum value of Bmax is 5 and we use the same
quasigroup on Q of order 16 and its parastrophe, given in [8].

In all experiments for this paper we use the image of
‘‘Lenna’’, given in Fig. 3 a). The second image in Fig. 3 is
the image obtained at the output of a burst channel, without
use of any error-correcting code.

FIGURE 3. Original and image without using any error-correcting code.

C. FILTER FOR IMAGES DECODED BY CRYPTCODES
BASED ON QUASIGROUPS
In order to enhance the quality of the decoded images,
we apply a filter. We try a different filters, but the best results
are obtained using the following median filter. First, the filter
has to identify the location of the damaged pixels. This is easy
in the case of null-error, because then we add zero symbols
in the place of the undecoded part of the message. To enable
the location ofmore-candidate-errors, when this type of error
appears we take a message of all zero symbols as a decoded
message. In the filter, we consider the pixel as damaged if it
is in a sub-block with at least four consecutive zero nibbles.
The basic concept of this filter is to replace a damaged pixel
intensity value with a new value that is a median of the
nonzero gray values of the surrounding pixels.

D. EXPERIMENTAL RESULTS
In this subsection, we present experimental results obtained
with RCBQ for transmission through a burst channel with
considered algorithms. We compare the values of bit-error
probability (BER) and images obtained with Burst-Cut-
Decoding, Burst-4-Sets-Cut-Decoding, FastB-Cut-Decoding
and FastB-4-Sets-Cut-Decoding algorithms.

In this subsection, we present the experimental results for
Gilbert-Elliott model with Gaussian channels with SNRG = 4
(SNR in good state) and for different values of SNRB =

−3, −2, −1 (SNR in bad state). We made experiments with
the following two combinations of transition probabilities
PGG from good to good state and PBB from bad to bad state:

• PGG = 0.2 and PBB = 0.8
• PGG = 0.8 and PBB = 0.2.
We choose these combinations for transition probabilities

to see the different behavior of the channel when the tran-
sition probability from bad to bad state is larger than the
transition probability from good to good state and opposite.

TABLE 1. Experimental results for BER.

FIGURE 4. Experimental results for BER for PGG = 0.2 and PBB = 0.8.

FIGURE 5. Experimental results for BER for PGG = 0.8 and PBB = 0.2.

Namely, with the first combination of probabilities we obtain
a channel with a bigger probability to be in a good state, which
corresponds to low noise. On the other side, the situation with
the second combination of the probabilities is opposite, the
channel is more often in the bad state with high noise.

The image is transmitted through the channel and the
corresponding decoding algorithm is applied.

In Table 1 and Fig. 4- 5, we present experimental results
for bit-error probabilities BERfb−cut , BERb−cut , BERfb−4sets,
BERb−4sets obtained with FastB-Cut-Decoding algorithm,
Burst-Cut-Decoding algorithm, FastB-4-Sets-Cut-Deco-
ding algorithm and Burst-4-Sets-Cut-Decoding algorithm,
respectively.

We can conclude that with FastB-Cut-Decoding and FastB-
4-Sets-Cut-Decoding algorithms, we obtained better results
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FIGURE 6. Images for PGG = 0.2, PBB = 0.8 and SNR = −3.

for bit-error probabilities than with Burst-Cut-Decoding and
Burst-4-Sets-Cut-Decoding algorithms of RCBQ for trans-
mission through a burst channels. Also, we can see that FastB-
4-Sets-Cut-Decoding algorithm gives from 2 to 16 times
better results than FastB-Cut-Decoding algorithm.

For visual comparison in Fig. 6 – Fig. 8, we present
images obtained for SNRB = −3, SNRB = −2, and
SNRB = −1, correspondingly, for PGG = 0.2, PBB = 0.8.
In each figure, the first image is obtained using Burst-
Cut-Decoding, the second image is obtained using Burst-
4-Sets-Cut-Decoding algorithm, the third image using
FastB-Cut-Decoding algorithm and the fourth one using
FastB-4-Sets-Cut-Decoding algorithm. In the second row,
we give the corresponding images obtained after applying the
filter defined in Subsection III-C.

FIGURE 7. Images for PGG = 0.2, PBB = 0.8 and SNR = −2.

FIGURE 8. Images for PGG = 0.2, PBB = 0.8 and SNR = −1.

In Fig. 9 – Fig. 11, we present images obtained for
SNRB = −3, SNRB = −2, and SNRB = −1, correspond-
ingly, for PGG = 0.8, PBB = 0.2.
The images from the first row of each figure (Fig. 5 -

Fig. 10) give visual confirmation of the previous conclusions

FIGURE 9. Images for PGG = 0.8, PBB = 0.2 and SNR = −3.

FIGURE 10. Images for PGG = 0.8, PBB = 0.2 and SNR = −2.

FIGURE 11. Images for PGG = 0.8, PBB = 0.2 and SNR = −1.

derived fromTable 1. and Fig. 4. Namely, we can see that with
FastB algorithmswe obtain clearer images (with less damage)
than with Burst algorithms for both considered combinations
ofPGG andPBB and all different values of SNR. This confirms
smaller values of BER (bit-error-probability) given in Table 1,
and presented graphically in Fig. 4. Comparing the images
before and after applying the filter (the corresponding images
in the first and second row of each figure) we can conclude
that the proposed filter enhances the quality of the images for
all considered values of SNR.

IV. CONCLUSION
In this paper, we consider the performances of crypt-
codes based on quasigroups for image transmission
through burst channels. We compare experimental results
for codes obtained by Burst-Cut-Decoding, Burst-4-Sets-
Cut-Decoding, FastB-Cut-Decoding and FastB-4-Sets-Cut-
Decoding algorithms. The presented results confirm that Fast
algorithms improve the performances of these cryptcodes
for transmission over a burst channel. The best results are
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obtained by FastB-4-Sets-Cut-Decoding algorithm. For fur-
ther improvement of the damaged parts of images, we apply
a median filter on these parts in the decoded images. The
considered codes and presented results can be useful for
application in satellite digital video broadcasting (DVB-S)
coding and encryption schemes.
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