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ABSTRACT The 5th generation of mobile communications, currently being rolled out, aims to improve
network performance and efficiency over the older generations. With mmWaves, densified cell deployment
is necessary for 5G networks, increasing capacity and improving network coverage. This imposes a consid-
erable increase in the energy consumption of the 5G stations, which not only increases operating expenses
for operators but also burdens the environment. Optimizing the energy consumption of 5G networks would
be necessary to curb the energy curve. In this context, this paper presents a new algorithm called Energy
Consumption Optimization Algorithm (ECOA), which combines cell selection and standby techniques to
optimize energy consumption while preserving network performance. A comparison is conducted between
ECOA and standard cell selection modes to evaluate the performance of the conventional approach. Our
algorithm exhibits good performance, particularly in high-density, high-load scenarios. For instance, in a
site with 25 Pico base stations serving 500 users, our algorithm achieves an average throughput of 23 Mb/s
per user while consuming 1750.75 W of energy. This represents a 2.44% increase in energy consumption
compared to the optimal solution.

INDEX TERMS 5G, cell selection, ecology, energy consumption, energy efficiency, hetnet, optimization,
UE-BS association.

I. INTRODUCTION
The strong growth of users and volumes of data exchanged
has led to increased energy expenditure in mobile networks.
One of the objectives of 5G is to significantly improve energy
efficiency to slow down the evolution of the energy curve
observed generation after generation within networks. The
‘‘green domain’’ is a new development stage focusing on
protecting the environment through energy-efficient wireless
networks. Radio networks consume about 80% of energy,
with base stations alone accounting for over 50% of the total
energy usage [1], [2]. Numerous studies have focused on
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optimizing base station design to improve energy efficiency.
Some studies have proposed algorithms for task offload-
ing in mobile edge computing networks and resource allo-
cation schemes in 5G ultra-dense networks to optimize
energy consumption. However, excessive use of edge com-
puting resources may increase energy consumption, necessi-
tating solutions to reduce the energy consumption of these
resources. Other studies have proposed massive MIMO, lean
carrier design, advanced idle modes, and artificial intelli-
gence capabilities for maximizing both spectral efficiency
(SE) and energy efficiency (EE) in 5G networks [3].

In [4], researchers propose a new model to accurately eval-
uate and optimize 5G base stations (BSs) power consumption.
The model uses machine learning and data collected from a
large-scale campaign. The proposed model is expected to be
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a fundamental tool for optimizing network energy efficiency
and understanding the power consumption of 5G BSs.

These studies demonstrate promising approaches to
improving energy efficiency in 5G networks, particularly in
base stations and radio interfaces.

5G deployments consist mainly of macro stations asso-
ciated with pico or femto base stations. One of the critical
solutions to the energy consumption problem is associating
mobile users with a Macro, a Pico, or a Femto base station,
especially controlling this choice’s impact on the base sta-
tions’ energy consumption.

Various association strategies are based on cell selection
or load balancing algorithms; however, the problem of con-
ventional load balancing should only arise when the network
is heavily loaded or overloaded [5]; otherwise, even if it
remains essential, energy efficiency must also be taken into
consideration by the 5G optimization algorithms. Ideally,
these two issues should be combined to define algorithms that
simultaneously consider these constraints and contextually
prioritize one over the other.

The main objective of this article is to study the impact
of the UE-BS association strategy or cell selection on
energy consumption and thus propose a low-complexity
UE-BS association algorithm that takes this constraint into
account.

The originality of our approach lies in the fact that we
want to offer a low-complexity algorithm that can be imple-
mented autonomously to optimize energy consumption with-
out degrading other metrics.

Our solution uses a cell selection algorithm based on the
energy efficiency of UE-BS association and cell load to
reduce the transmit power of active and standby base stations,
leading to higher energy efficiency and network capacity.

The rest of this paper is organized as follows. Section II
presents several related works on cell selection algorithms
that aim to improve network performance and optimize
energy efficiency. Section III introduces the main problem
of this article and provides a modeling of 5G cells’ energy
consumption, demonstrating the impact of cell load and UE-
BS association constraints on energy efficiency optimization.
Section IV presents our new low-complexity algorithm for
optimizing energy consumption in 5G networks. Section V
provides the scenarios and parameters used in the simulations
and details the results, including analysis and comparison of
the newly developed algorithm’s performance with those in
the literature. Finally, the last section summarizes the work’s
findings and provides a conclusion.

II. RELATED WORK
The ‘‘green domain’’ concept refers to a new stage of devel-
opment that seeks to protect the environment by optimizing
energy consumption. In light of this, there is a growing
demand for energy-efficient wireless networks that aim to
reduce operating expenses and minimize power usage in the
telecommunications infrastructure. Studies show that radio
networks account for around 80% of energy consumption,

making it critical to focus on reducing energy consumption
in this area. It is also a general consensus that base stations
(BSs) consume substantial energy, making up over 50% of
the total energy usage in a cellular network [2]. As such,
optimizing power usage in BSs with a focus on environmental
considerations is necessary.

Numerous researchers have dedicated significant efforts
to studying BS design problems in cellular networks, with
a substantial amount of published work focused on optimiz-
ing performance and energy efficiency. In [6], the authors
present an algorithm for dependent task offloading in mobile
edge computing networks that optimizes the tradeoff between
energy consumption and task latency. The algorithm uses
subtask-dependent graphs (SDGs) to model general task
topologies with dependencies among subtasks and considers
execution constraints of special subtasks. By jointly opti-
mizing the task latency and energy consumption of devices
using a weighted sum, the proposed algorithm optimizes the
scheduling sequence and decision of subtasks while ensuring
logical dependence of subtasks. The simulation results show
that with the proposed algorithm, it is possible to reduce
latency from 0.75 ms to 0.5 ms with a 10% increase in energy
consumption due to parallel task processing at the edge.
In [7], the authors propose a mobile edge computing (MEC)
based task offloading and resource allocation scheme in 5G
ultra-dense networks (UDN). The algorithm aims to address
the high computing demand for new-generation mobile appli-
cations while attempting to reduce energy consumption. The
results show that the algorithm effectively increases users’
quality of service (QoS). However, the algorithm’s efficiency
in optimizing energy consumption decreases as the number
of users in the cell increases.

While these methods focus on improving users’ QoS,
it is essential to note that excessive use of edge comput-
ing resources may increase QoS at the cost of increased
energy consumption. Therefore, it is essential to propose
solutions to reduce the energy consumption of these edge
resources.

In [8], the authors propose a load balancing-based,
software-defined, multi-objective optimization routing pro-
tocol to optimize energy consumption in 5G mobile access
networks. The protocol enhances security by classifying data
using deep belief Boltzmann neural network. The proposed
technique achieved a high throughput of 92%, a packet deliv-
ery ratio of 88%, and high network routing energy efficiency.
However, it is essential to note that this technique optimizes
energy consumption only in the routing part of the access
network and does not present energy optimization solutions in
the Radio Base Station part, constituting the greatest energy
consumption in the access network. Therefore, the Radio
Base Station part needs additional energy optimization solu-
tions to achieve overall energy efficiency in 5Gmobile access
networks.

In [9], the authors present a framework for maximiz-
ing spectral efficiency (SE) and energy efficiency (EE)
using ultra-dense in-building small cells for 5G and beyond
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mobile systems. The framework exploits the four most
interconnected domains for SE and EE: power, time, fre-
quency, and space. The paper describes the framework and
derives system-level performance metrics for SE and EE.
An algorithm is developed, and an extensive performance
evaluation is carried out to show the impact of each domain
on SE and EE. The paper also defines an upper limit for
reusing the same spectrum in a building in terms of horizontal
spatial reuse of the spectrum. Depending on the environment
and building profiles of a particular area, horizontal, vertical,
or both spatial reuse of spectrum can be exploited to achieve
both SE and EE targets. Overall, this framework offers a
promising approach to achieve both SE and EE targets in
ultra-dense in-building small cells for 5G and beyond mobile
systems. It’s important to note that this technique can offer
a specific solution for ultra-dense in-building small cells and
does not provide a general solution for the entire 5G access
network.

Other research work primarily focuses on reducing energy
consumption in base stations, especially in the radio inter-
face. Research in [10] and [11] has researched optimizing
energy efficiency for service transmissions with heteroge-
neous latency requirements in the flexible 2-dimensional
resource allocation of 5G wireless technology. They have
proposed a sliding window-based algorithm that utilizes
frequency-selective resource allocation and an ‘‘on-off’’
operation of the power amplifier to maximize energy effi-
ciency while meeting varying quality of service require-
ments. Their findings indicate that this proposed algorithm
can achieve up to a 16.7% reduction in power consumption
compared to other baseline systems. This research provides
valuable insights into improving energy efficiency for var-
ious 5G wireless technology service transmission require-
ments. In [11], the authors introduce a novel approach to
enhance MU-MIMO systems’ energy efficiency and capac-
ity rate. The proposed system, which employs norm-based
user and antenna selection, outperforms existing user-based
systems by 43% in sum rate and 19% in energy efficiency
for 100 users. This study presents a promising solution for
enhancingMU-MIMO systems’ energy efficiency and capac-
ity rate.

The study in [2] proposes a modified Real-coded Genetic
Algorithm (RGA) for optimizing the positioning of 5G base
stations to achieve optimal coverage while minimizing power
consumption. The study’s results demonstrate the potential
of the modified RGA method to significantly improve the
energy efficiency and coverage of 5G networks. However,
it is essential to note that the study does not consider the
practical challenges associated with the constrained position-
ing of cells in real-world scenarios. Despite this limitation,
the study’s findings offer valuable insights into the role of
location intelligence and green communications in designing
and deploying 5G networks, with potential implications for
reducing operating expenses and minimizing power usage in
the telecommunications infrastructure.

In [12], researchers investigate various energy optimization
techniques and focus on the potential of massive MIMO
(mMIMO) as a solution for improving energy efficiency in
future wireless networks. The article discusses the archi-
tecture, operation, and requirements of mMIMO and eval-
uates its performance using different precoding algorithms.
Furthermore, the article explores using machine learning to
switch off underused mMIMO arrays and minimize energy
usage. Finally, the article highlights open research issues
in mMIMO and machine learning for future research and
implementation in next-generation wireless networks.

In [13], the authors discuss the challenges posed by
deploying 5GUltra-Dense Networks (UDNs) and explore the
potential of using reinforcement learning to optimize energy
consumption. They propose a sleep mode management sys-
tem based on State-Action-Reward-State-Action (SARSA)
that uses specific metrics to find the best tradeoff between
energy reduction and QoS constraints. Simulations show that
in low-traffic load scenarios, energy savings of up to 80% can
be achieved with aminimal impact on latency if a reduction in
energy consumption is preferred over QoS. However, if QoS
is preferred, the maximum energy savings reach only up to
5% with a minimal impact on latency. The study highlights
the significant role of AI and machine learning in develop-
ing next-generation mobile networks that prioritize energy
efficiency. However, implementing reinforcement learning
requires significant amounts of data and real-world scenar-
ios, and the complexity of the model and training can be
challenging.

One technique widely studied for optimizing energy con-
sumption in radio access networks is the association between
the base station (BS) and users. Previous studies have pro-
posed various algorithms or methods of UE-BS association
with the primary objective of load balancing, quality of
service, spectral efficiency, and moderate energy efficiency
[14], [15]. However, in heterogeneous networks, traditional
association techniques such as Max-SINR or maximum
achievable throughput, which rely mainly on the power
received by the mobile, are no longer suitable due to the
differences in transmission power between macrocells and
small cells. This often results inmost associations beingmade
with macrocells [16]. To address this issue, authors in [17]
proposed a cell selection heuristic algorithm that maximizes
energy efficiency based on network metrics. In addition, [18]
developed an association method that minimizes power con-
sumption through a heuristic algorithm on a generalized
quadratic assignment problem.

Similarly, the authors in [19] based their energy optimiza-
tion algorithm on defining a cost function that assigns a
weight to each user based on the available BS [20]. While
these proposed algorithms offer energy efficiency, they can
also lead to the degradation of other performance metrics,
such as latency and achievable throughput. Furthermore, the
complexity of these algorithms may increase implementation
difficulties and impact the network load. In the table below,
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you will find a summary of the strengths and weaknesses of
the techniques discussed.

Based on previous research, our work focuses on proposing
a low-complexity algorithm to optimize energy consumption
in 5G networks. The algorithm is based on cellular cell
selection and association techniques and also incorporates the
‘‘standby’’ state of underloaded cells while ensuring the QoS
of mobile users.

III. SYSTEM MODEL AND PROBLEM FORMULATION
METHODOLOGY
A. PROBLEMATIC
The ecological footprint of mobile networks has placed
energy issues at the heart of 5G research, particularly those
aimed at defining cell selection algorithms. Energy efficiency
has thus become a significant issue in cell selection. The
algorithms used in the first generations had signal strength
as their primary metric. With the advent of heterogeneous
networks and power disparities betweenmacrocells and small
cells, they have become increasingly complex, integrating
new metrics such as quality of service, spectral efficiency,
energy efficiency, and latency.

Our work focuses on proposing a low-complexity algo-
rithm to optimize energy consumption in 5G networks. To do
this, we make a model of the energy consumption of a base
station to expose the different constraints of associations
present in 5G. Then we introduce two new concepts, the
energy break-even point, and the load index. Finally, we give
a detailed presentation of our new proposed algorithm.

B. ENERGY CONSUMPTION MODELING
The consumption of a base station can be modeled using an
affine function, with the station load as a variable.

C (x) = Ax + B (1)

where C is the power consumed by the base station, and A is
the load factor of the base station. B is the zero-load power,
and x is the percentage of charge.

The authors of [21] highlight the impact of base station
loading on power consumption for each 4G cell type. This
research shows that the energy consumption of BS Macro-
cells is more sensitive to load than BS Picocells. This is
explained by the size of the Macrocells and the transmis-
sion power required for that cell type. Table 2 details the
energy costs of base stations for Macrocells and Picocells
related to 4G.

We can thus model the energy consumption for any cell
through the following formulas:

Cm (c) = Com + Fm × c (2)
Cp (c) = Cop + Fp × c (3)

where Cm and Cp represent respectively the power consumed
by the BS of theMacrocell and the Picocell,Com and Cop rep-
resent respectively for each type of cell the power consumed
at zero loads, and c represents the charge percentage.

TABLE 1. Summary of techniques for energy consumption optimization in
mobile wireless networks.
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TABLE 2. Power consumption of 4G Macro and Pico BS.

The study [22] published in the Huawei 5G white paper
shows that the average power consumption of a BS 5G is
about 300% to 350% greater than that of 4G BS. This study
used field data from a Chinese operator to compare the aver-
age energy consumption between a 4G BS and a 5G BS at
different load levels. Table 3 compares the average power
consumed by the 5G BS with the 4G BS at different load
levels.

TABLE 3. Comparison of the average power consumption of a 4G and 5G
base station.

The levels of data collection on the energy consumption
of 5G base stations do not make it possible to establish
an exact model considering the capacity and the different
specificities of 5G. However, the studies’ results suggest
an average consumption multiplied by 3. This justifies the
energy consumption table of a 5G BS, which we use in our
simulations (Table 4).

TABLE 4. Energy consumption of BS Macro and Pico 5G.

C. UE-BS ASSOCIATION CONSTRAINTS
In heterogeneous 5G networks, we cannot turn off the BS
of the Macrocells, and only the Picocells can see their base
station turned off. Several optimization constraints can be
noted based on the energy consumption models of the BS of
Macrocells and Microcells.

The unit energy cost relative to the association with a UE is
more critical for a Macrocell than a Picocell. It is, therefore,
appropriate to associate a new UE with a Picocell. Only a
Picocell can be powered off, unlike a Macrocell. Therefore,
in the next part of this section, the UE and BS Picocell

associations allow only optimization of energy consumption
from a certain number of UEs, called the energy break-even
point.

Regarding energy, the optimal states of the Picocells are
the off, the standby, or the saturated state. In other words,
as soon as you turn on a Picocell, transferring as many UEs
as possible without altering the UEs QoS is better.

A UE associated with the BS of the Macrocell costs much
more energy than being associated with a Picocell. This unit
energy cost makes it preferable to associate the UEs with the
BS of the Picocells, from an energy point of view, considering
direct consumption.

As the picocells can be put on standby, the energy cost
at zero charges is associated with the UEs of the Picocells.
A Picocell is only energy-efficient from a certain number of
associated UEs, called the energy break-even point. We have:

Cum × Sre = Cup × Sre + Cop − Cmv (4)

where Cum and Cup represent the unit energy cost of a
UE-BS combination for the Macrocell and the Picocell.
Cmv represents the energy consumption of a standby pico-
cell. Sre represents the energy break-even point of the Pico-
cell, which means that the number of associated UEs at which
the energy cost of the whole would be less than if the whole
were associated with a Macrocell.

Cum × Sre − Cup × Sre = Cop − Cmv
Sre(Cum − Cup ) = Cop − Cmv

Sre =
Cop − Cmv
Cum − Cup

(5)

The energy efficiency of a small cell is thus defined as the
ability to serve the user equipment while consuming less
energy compared to the association with the Macrocell.

In an initial configuration, only the BS of the Macrocells
needs to be active, with the BS of the Picocells being put to
sleep. It is necessary to monitor the level of charge of the
Macro BS. The first UEs thus be directly associated with
Macrocells.

For a given Macrocell, the UEs of its coverage area are
associated with it as long as it can satisfy them without
the quality of service degradation. This decision is managed
by the load index based on the BS’s capacity to meet the
UEs’ demand. This index named Ic must meet the following
requirements:

Ic = 0, 5 when rEU = dEU (6)

Ic = 1 when rEU = 0 (7)

Ic = 0 when rEU = ∞ (8)

With dEU the bit rate request of the UE and rEU is the possible
response defined by the BS.

These different requirements allow us to define the load
index as a function with values between 0 and 1 and inversely
proportional to the UE requests. This allows us to define the
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load index as follows:

Ic =
dEU

dEU + rEU
(9)

The index Ic is defined to measure the satisfaction of the
speed request made by the User Equipments (UEs) in the
5G enhanced Mobile Broadband (eMBB) case. It serves as
a metric to assess how well our proposed algorithm meets
the speed requirements of the UEs. It is important to note
that while the current formulation of the index focuses on
the eMBB use case, it can be adapted and extended to
accommodate other 5G use cases, such as Massive Machine-
Type Communications (mMTC) or ultra-reliable low latency
communications (URLLC).

IV. PROPOSED SOLUTION
The algorithm we propose aims at minimizing the energy
consumption of the base stations, BS Macrocell (BSm) and
BS Picocell (BSp), through a cellular association based on
the energy efficiency of BSp and the load of BSm. Figure 1
shows the diagram of our proposed algorithm.

When a UE solicits an association in each Macrocell, the
first step is to analyze the UE metrics, especially bandwidth
demand in the EMBB case, to find a cost-effective BSp that
can serve it. If such a BSp, the UE shall associate with it;
otherwise, the BSm load index is evaluated. If it is greater
than the defined threshold, a Picocell wake-up algorithm
is executed to release the resources of the BS Macro by a
downward transfer of the users. This involves scanning the
metrics of the UEs connected to the BSmin to choose the BSp
to wake up and perform a downlink transfer of the UEs. But
If there is no BSp available, the UE joins the BSm.

We also offer optimization functions to keep overall con-
sumption at or near optimal levels. Figure 2 shows the dia-
gram of our energy consumption optimization Algorithm.

The energy optimization algorithm, which can be run peri-
odically, scans the BSps of a Macrocell to identify those
below the defined break-even point. An assessment of the
impact of an up transfer of the US of this BSp Is then carried
out to be able to put it on hold. All the UEs are transferred to
the BSm if the load index Ic is below the defined threshold;
otherwise, the transfer is impossible.

Ic =
dEUs

dEUs + rEUs
(10)

where dEUs and rEUs represent respectively the overall
demand of the UEs to be transferred, and rEUs the overall
response of the BS.

When a BSp sees its load fall less than Sre, an up transfer
of the UEs can be made if the calculated load index does not
exceed the defined threshold.

In this way, we want to measure the impact of the UE-BS
association mode on BS’s energy consumption. We have
two expressions of energy consumption depending on the
selection algorithm: when BSps can be put to sleep and when
they cannot be.

FIGURE 1. Cell selection algorithm.

For the latter, we have the energy consumption C, which is
defined as follows:

C =

n∑
i=1

Cmi +
m∑
j=1

Cpj (11)

where n and m represents the number of Macrocells and the
number of Picocells, respectively.

C =

n∑
i=1

(Com + Fm × ci) +

m∑
j=1

(Cop + Fp × cj) (12)

C = n · Com + Fm ·

n∑
i=1

ci + m · Cop + Fp ·

m∑
j=1

cj (13)

When the picocells can be put to sleep, the following expres-
sion is used:

C =

n∑
i=1

Cmi +
m∑
j=1

Cpj

p∑
k=1

Cpk (14)
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FIGURE 2. Energy consumption optimization algorithm.

where n,m and p represent the number of Macrocells, the
number of active Picocells, and the number of Picocells in
the standby state, respectively.

C =

n∑
i=1

(Com + Fm × ci) +

m∑
j=1

(Cop + Fp × cj) + p · Cvp

(15)

C = n · Com + Fm ·

n∑
i=1

ci + m · Cop + Fp ·

m∑
j=1

cj + p · Cvp

(16)

V. RESULTS AND DISCUSSION
For our simulations, we used the Vienna 5G Link Level
Simulator, a powerful simulation tool used to evaluate the
performance of 5G wireless communication systems. This
software package models the physical layer of the 5G net-
work, including the channel, antenna, modulation and coding
schemes, and propagation effects. The simulator is based on
the MATLAB programming language and provides a flexi-
ble and customizable environment for conducting link-level
simulations [23]. In our simulations, we consider a dimen-
sion 500m × 500m surface with a BSm in the center (0.0)

and 25 BSp distributed according to a Poisson distribution.
BS transmits on a frequency of 2GHz. There are 500 users,
80% indoors with a speed of 0.3m/s and 20% outdoors with
a speed of 10m/s.

The different deployment scenarios are inspired by the
‘‘Urban Dense’’ architecture of [24] while strengthening the
density of small cells and remaining on the low-frequency
bands to highlight further the problem of cell selection in this
heterogeneous architecture and also to comply more closely
with the first 5G deployment forecasts.

The calculated break-even point is as follows:

Sre =
Cop − Cmv
Cum − Cup

(17)

Sre =
40, 8 − 25, 8

564
800 −

3
32

(18)

Sre = 24, 540 (19)

A picocell is, therefore, only energy-efficient from 25 UEs.
Below, consumption would be lower if the UEs are associated
with the Macrocell. Table 4 provides the simulation parame-
ters for our simulation scenarios [25].

TABLE 5. Simulation parameters.

4G mainly uses pairing methods based on signal strength,
such as ‘‘Max-SINR,’’ and introduces the concept of extend-
ing cellular coverage. Max-SINR [26] is a standard associ-
ation technique based, as its name suggests, on the power
ratio between the received signal and the sum of noise and
interference.

Cell Range Expansion (CRE) [27] extends the cellular
coverage of small cells by adding a bias to the signal received
by the UE. Applied to BSp and combined with Max-SINR,
it allows BSp to offer a higher signal strength than BSm over
a wider area around the BSp station (extension of coverage)
and, thus, more UEs connected to the latter. This technique
allows a better load balancing between BSm and BSp.

As far as 5G is concerned, one of the significant integra-
tions in this area is the adoption of cellular standby in the
basic specifications found in [28], [29], and [30]. Therefore, it
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is a question of selectively turning ‘‘Off’’ ‘‘One’’ or more
equipment in the absence of traffic.

We compared our energy consumption optimization algo-
rithm (ECOA) to the calculated minimum consumption
(Optimum), which is an optimal theoretical limit from the
point of view of energy consumption, and to the twomodes of
the association presented above, ‘‘Max-SINR’’ and ‘‘CRE.’’
Moreover, we have integrated the possibility of putting
unloaded BSp on standby. We compare 6 techniques:
– The Max-SINR ‘‘SMV’’ (without standby),
– The Max-SINR ‘‘AMV’’ (with standby),
– TheCRE ‘‘SMV’’ (without standby), with a bias of 6 dB,
– The CRE ‘‘AMV’’ (with standby), with a bias of 6 dB,

The ‘‘Urban Dense’’ model defines a base of 10 UEs per
antenna, up to 20, at a very high load. We have thus defined
a situation of a low load with 100 UEs and a high load
with 500 UEs.

First, we compared the different algorithms for many UEs
of 500 (scenario 1) and 100 (scenario 2) to analyze the level of
energy consumption induced by each algorithm in situations
of high and low load.

Next, we varied this number from 10 to 500 (scenario 3) to
analyze the energy consumption for each algorithm according
to the number of users. This scenario allows us to measure the
evolution of the consumption of each algorithm from a low
load level to a high level and to compare them.

Subsequently, we compared the energy consumption
induced by our algorithm to the optimum by varying the
number of Picocells, always in high with 500 UEs (scenario
4.a) and low loads with 100 UEs (scenario 4.b), to evaluate
the impact of BSp density on this energy consumption. Con-
sidering our simulation area (500m × 500m) and estimating
the radius of a BSp between 50m and 100m, we can see that
it takes between 30 and 50 BSp to cover the simulation area
in a regular distribution entirely. Thus, we have retained two
key density values about the simulation area: 5 BSp for a low
density and 30 BSp for a high density.

Finally, we compared the data rates per user versus the total
UE number for each algorithm to analyze the impact of cell
selection on user throughput (scenario 5).

In the following, we present the results of the simulation
scenarios.

In scenario 1, figure 3 shows the average energy consump-
tion for each algorithm, with a UE number of 500.

The minimum energy consumption (Optimum) would be
obtainedwhen the 15BSpwere saturated, 480UEs associated
with BSp, and the remaining 20 below-break-even would be
associated with BSm.

In a real situation, the probability of having an optimum
is almost zero because it requires a particular distribution of
UEs on the Macrocell.

Compared to the optimum, the ECOA allows overcon-
sumption of less than 3%, which constitutes a real perfor-
mance compared to other algorithms that lead to more than
17% overconsumption. It offers, compared to other algo-
rithms, the energy gains presented in the following table:

FIGURE 3. Energy consumption as a function of UE-BS association
algorithms (500 UEs).

TABLE 6. Energy savings of ECOA compared to other BS association
algorithms.

FIGURE 4. Energy consumption according to UE-BS association
algorithms (100 UEs).

Also, we instead notice a low energy gainwhen introducing
a standby of unloaded BSp for Max-SINR algorithms and
CRE (1 to 2%). Thus, an effective strategy of standby of BSp
must be accompanied by a policy of transfer of low-loaded
BSp to BSm, as integrated by our ECOA algorithm.

In scenario 2, figure 4 also compares each algorithm’s
average energy consumption at a low load for 100 UEs.

At a low load (100 UEs), the ECOA offers overcon-
sumption of less than 1%, compared to the optimum of
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FIGURE 5. Average energy consumption by cell selection algorithm as a
function of EU number.

1481.82 watts. It is very close to the optimum and thus allows
a significant energy gain.

One of the significant lessons we can draw from this
comparison is the lower impact of the standby of BSp for the
case of CRE than forMax-SINR. This is explained by the fact
that the added power bias promotes the association with BSp,
however creating more BSp very low charged, far from the
energy efficiency of these. At low loads, the power bias thus
becomes counterproductive on an energy level.

Figure 5 shows the evolution of the average energy con-
sumption as a function of the load for each algorithm
(scenario 3).

From the various evolution curves, we can observe three
distinct trends:

The Max-SINR SMV and CRE SMV algorithms do not
optimize energy consumption. At low loads, as at high loads,
they have consumption levels above the optimum.

The Max-SINR AMV and CRE AMV algorithms promote
overconsumption as the cellular load increases, and their
curve approach that of BSp’s no-standby algorithms. This is
explained by the fact that the more the load increases, the
fewer empty cells we do not have. Consequently, the strategy
of putting empty cells to sleep loses efficiency.

Our algorithm, ECOA, demonstrates remarkable efficacy
in minimizing energy consumption, as evidenced by its abil-
ity to maintain proximity to the optimal solution even at
high loads where the optimal configuration remains almost
unaltered.

The two graphs below (Figures 6 and 7) compare the
average energy consumption of the optimum solution and
the ECOA with 500 UEs (scenario 4.a) and 100 UEs
(scenario 4.b).

With a load of 500 UEs, the higher the number of BSp, the
more difficult the optimum is to achieve; the probability of

FIGURE 6. Average energy consumption as a function of the number of
BSp per 500 UEs.

FIGURE 7. Average energy consumption as a function of the number of
BSp per 100 UEs.

having the required UE distribution is almost zero. However,
the algorithm remains very efficient with overconsumption of
less than 3%, as shown in the following table:

TABLE 7. Average energy consumption by the number of BSp per 500 UEs.

At a low load, the consumption for the ECOA is very
close to the optimum, with very low overconsumption (less
than 1%).

Figure 8 shows the average throughput per user as a func-
tion of the total UE number with a BSp of 25.

The analysis of this graph allows us to notice that the Opti-
mum guarantees, by far, a better throughput than the other
algorithms. This can be understood because it simulates an
ideal situation where the BSp is associated with themaximum
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FIGURE 8. Average throughput per UE as a function of the number of UE
for 25 BSp.

of UEs, guaranteeing them a better throughput. Also, the CRE
algorithm offers better throughput than the Max SINR.

Analysis of the ECOA curve shows that it provides lower
average throughput with a low number of UEs. This is
because the UEs associated with the unprofitable BSp are
transferred to the BSm, which provides a lower average
throughput than a BSp.

However, evaluating the Macro load index ensures that the
requested quality of service is maintained.

This trend is reversed from several UEs (about
370 onwards). Indeed, the large number of UEs means that
several BSps can become profitable or be made profitable,
and more transfers are made to BSps.

VI. CONCLUSION
With the specifications and requirements of 5G, environmen-
tal issues have returned to the heart of research, including
energy consumption, to slow down the observed generation-
after-generation curve. The 5G specifications include the
possibility of putting to sleep uncharged small base stations;
however, our research has shown that cellular extension tech-
niques become counterproductive from an energy point of
view, mainly under low-load conditions due to the existence
of several low load Picocells which induce overconsumption.
More generally, research into the mode of cell selection in
heterogeneous networks has shown the importance of cell
selection in the network’s energy consumption. We have thus
proposed an algorithm to optimize this consumption.

Our algorithm demonstrates strong performance, espe-
cially in high user and base station density scenarios. In a site
where 25 Pico base stations serve 500 users, our algorithm
delivers an average throughput of 23 Mb/s per user with an
energy consumption of 1750.75 W. This results in only a
2.44% increase compared to the optimal solution.

Regarding throughput, transfers at the BSm level mean that
the ECOA offers a lower average when the number of UE is
small. This trend was subsequently reversed. However, the
evaluation of the Macrocell’s load index Ic guarantees the
maintenance of the quality of service requested by the UE.

These two metrics (Ic and Sre) are, therefore, essential for
our optimization strategy. However, their expression can be
adapted to other contexts or environments in the 5G networks.

As part of our future work, we aim to incorporate massive
MIMO into our solution to mitigate interference, which is
expected to enhance user throughput and decrease energy
consumption.
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