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ABSTRACT Deep learning and digital image technologies have combined to create a potentially effective
tool for identifying partial discharge (PD) patterns precisely. However, it is necessary to investigate which
algorithm guarantees the best performance. The more common tools are restricted by a lack of training
data and an advanced model in itself. Therefore, the main goal of this paper is to develop an efficient hybrid
network comprising two deep networks, long short-termmemory (LSTM), and convolutional neural network
(CNN), for identifying the form of PD. A total of 8186×25 (non-PD×PD) images were applied to assess
the proposed methods. The size of the PD type was increased to 3675 images using data augmentation
techniques. The results indicated that the integration of CNN and LSTM networks can provide a more robust
implementation for PD detection. The integrated CNN-LSTM deep network based on data augmentation
outperformed features derived from a single deep network. The recall, F-measure, and classification precision
have 99.9% as a validation accuracy with a 99.8% intersection over union and a loss of 0.004.

INDEX TERMS Partial discharge, RGB, gray, data augmentation, LSTM, CNN.

I. INTRODUCTION
Monitoring, partial discharges (PD) are necessary for deter-
mining the condition of cable insulation and boosting the
dependability of power distribution and transmission sys-
tems [1], [2]. There have been more reports in recent years
regarding industrial applications that employ PD for offline
or online condition monitoring and issue diagnostics [3].
However, recognizing the various sorts of defects using PD
data has proven to be a formidable obstacle, limiting the
widespread implementation of PD-based condition monitor-
ing in the industry. It is extremely challenging to differentiate
PD signals caused by insulation flaws due to their similarities
in PD pattern structure [4].

Various pattern recognition techniques have been
employed to recognize PD patterns in an effort to overcome
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the difficulty of distinguishing between defect types. These
approaches involve decision tree (DT), rough set (RS) theory,
back propagation neural network (BPNN), and support vector
machine (SVM) [5], [6]. Because of their outstanding and
reliable pattern recognition capabilities, SVM and BPNN
have been the most commonly used approaches [6]. Refer-
ence [7] employed wavelet transforms in conjunction with
SVM to distinguish PD signals from a variety of sources.
Reference [5] implemented particle swarm optimization for
tuning SVM parameters to find PD signals in gas-insulated
switchgear (GIS). Reference [6] integrated two kinds of
BPNN with the input considerations of time-resolved PD
form and phase-resolved PD form to develop the pattern iden-
tification ac-curacy of many kinds of PD signals from GIS.

Conventional methods for machine learning, for instance,
BPNN and SVM, have been identified to have bottlenecks in
their development, limiting future increases in their pattern
identification accuracy. In the last decay, deep learning (DL)
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has been more significant in the improvement of artificial
intelligence and pattern detection systems [8]. Deep neu-
ral networks with numerous nonlinear layers are used in
DL approaches. It is capable of capturing high-dimensional
nonlinearity and complicated correlation that typical shallow
neural network topologies cannot learn [9]. Deep neural net-
works with many nonlinear layers are used in DL techniques.
These are able to learn high-dimensional non-linearity and
complex correlation, which are not captured by more con-
ventional, shallow neural network architectures.

CNN-based deep learning algorithms are becoming impor-
tant in the power sector and have been effectively imple-
mented in various disciplines, including voice recognition
and image identification [8], [10]. In contrast with other DL
approaches, CNN’s complexity and difficulty in training are
considerably decreased by the sharing and local connection
parameters, which also lower the risk of over-fitting [9].
CNN makes it very simple to build a network with a deep
architecture [9]. CNN is a deep feedforward neural network,
which allows it to efficiently extract spatial properties of
signals but it is not for processing time series data. Long-
short-termmemory (LSTM) networks can analyze time series
data, establish the appropriate lag time, and predict time
series data extremely successfully [11].

The superiority of DL algorithms in PD identification
relies on three primary factors: data augmentation, select-
ing the optimal feature for an image in color space, and
combining different training deep networks. Fundamentally,
several preliminary studies have applied data augmentation
that can influence the PD detection model while training the
model. Data augmentation has been established as a valuable
approach to the process of image classification. This tech-
nique has demonstrated its effectiveness in mitigating over-
fitting issues commonly encountered in models. By repeating
several modifications, such as turning or spinning the picture,
the advanced technique of ‘‘data augmentation’’ can expand
the amount of a dataset [12]. The PD form discovery precision
is enhanced by 0.99% when tested with SVM and Random
Forest using the Variable Noise Superposition data augmen-
tation approach [13].

The best feature of a color space image is a different
element that could be decisive to our investigation. There are
many researches work that applied digital images to diagnose
PD [13], [14]. These images may be converted into CMYK
(cyan-magenta-yellow-black), RGB (red-green-blue), HSV
(hue-saturation-value), and grayscale color spaces [15], then
utilized as color characteristics. In this work, incorporating
different DL models is an important component to increase
the quality and resilience of the PD detection model. The
CNN-LSTM has better pattern detection performance com-
pared with the CNN network and LSTM network for the
defect of metal protrusion, surface discharge, and oil paper
void [16]. Reference [11] indicated that CNN-LSTM has the
greatest pattern detection rate for diagnosing GIS PD, with an
average of 97.9%, and its total precision is greater than other
standard analytic approaches.

Despite the fact that these strategies are frequently uti-
lized for PD detection and are effective in PD identifica-
tion, the high-performance algorithm could be investigated
with an accuracy rate of 100%. Furthermore, few research
has compared the efficiency and precision of various deep
networks, especially LSTM, CNN, and CNN-LSTM with
data augmentation, to discover PD patterns in high-voltage
cables. Therefore, the aim of this paper is to (i) present how
a robust detection of PD-based digital pictures implemented
using a hybrid deep network as it is an indicator for making
decisions about high voltage cables isolation status (ii) apply
LSTM and CNNmodel to support unlike types of color space
images, (iii) combine characteristics acquired from several
deep networks which improve the behavior of the produced
model, and (iv) investigate the high-quality elements of the
hybrid deep network.

The remainder of this paper is organized as follows. The
data collection and preparation are explained in Section II.
Section III describes the proposed method including the per-
formance analysis. Section IV discuss the results and the eval-
uation of the proposed method. The conclusion is remarked
in SectionV.

II. DATA COLLECTION AND PREPARATION
A. DATASET DESCRIPTION
On Kaggle, one of the largest data science collaboration
platforms in the world, the Technical University of Ostrava
(VSB) published the ENET (Centre in Czech Republic) data
set in 2018. There are 8711 labeled voltage signals in total
from four different locations in the data collection. These
areas are intended for use in practical settings (forested and
difficult-to-access terrain). Each signal has an 800,000-data-
point 50-Hz voltage waveform that is pre-marked as PD
(525) or non-PD (8186). The Hadoop distributed file system
storage format is used because the data collection is so large.
Examples of PD and non-PD signals are presented in Fig. 1
1. As can be seen, the oscillation of the non-PD signals is
fairly stable, whereas that of the PD signals is significantly
increased.

B. SPLIT DATASET AND SOFTWARE
A total of 8186×25 images (non-PD×PD) were split into
training and testing with corresponding sizes of 6550×420
and 1636×105, respectively. In addition, the augmented ver-
sion of 8186×3675 images was applied for data analysis. The
dataset was divided into 80% and 20% samples for training,
and validation, respectively. Analysis methods were carried
out in Python 3.7.10 with the assistance of deep learning
modules. The data analysis and model development were
completed using the Kaggle platform which gives free access
to NVidia K80 GPUs embedded system. This benchmark
indicates that adding a graphic processing unit (GPU) to our
kernel leads to a 12.5X speedup during deep learning model
training. The simulation of this case study was conducted
using a PC with a Core i7-3630QM CPU, 2.4GHz, and
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FIGURE 1. ENET dataset signal examples: (a) normal type (non-PD) and (b) PD type.

8.0 GB of RAM. The CCN and LSTM units which were
obtained from the TensorFlow library 2.6.2 version to be used
for the regression task.

C. IMAGE PREPROCESSING
This system involves steps like data augmentation to raise
the dimension of the trained dataset and reform to normalize
the features. First, data augmentation is a significant step for
improving the process of learning and enabling the network
to recognize objects for photographs taken under various
environmental conditions. The reason for using the augmen-
tation process in this study is to enhance confidence in the
classification process. As exhibited in Fig. 2, image-based
data augmentation dealings, such as a shear range of 0.2,
a zoom range of 0.2, a rotation range of 90, a horizontal flip,
a width shift range of 0.01, and a height shift range of 0.01,
have been implemented. Second, normalization is changed
across specific elements to consider the magnitude differ-
ences across various features (f). By subtracting the minimal
image data from the maximum feature value and dividing the
variation between them, the feature normalization fnorm can
be determined as the following:

fnorm =
f − fmin
fmax − fmin

(1)

where fmin and fmax are the minimum and maximum feature
values of the image data, respectively.

III. PROPOSED METHOD
A. DEEP LEARNING MODELS
1) CONVOLUTIONAL NEURAL NETWORK (CNN)
The Convolutional Neural Network is usually employed for
two-dimensional input data, with a feed-forward deep learn-
ing structure which is the product of the number of data
channels (n), width (w), and height (h). The CNN algorithm
is made of input layers, hidden layers, and output layers.
The main data of the network is considered to be the input
layers. The model was provided with grayscale and RGB
color space images as its inputs. The grayscale images have
a corresponding value of 1 band (n = 1), while the RGB
images have a corresponding value of 3 bands.

Convolutional layers and pooling are an example of the
basic structure of the hidden layers. Based on the number
of classes, the output layers are generated by utilizing fully
connected layers. The CNN design consists of completely

linked layers whereas the input matrix is smoothed and
directed to convert the output toward a single expected value.
Fig. 3 presents the proposed deep network architecture of
CNNwith RGB images. Convolutional layers in the proposed
framework function as aspects are taken out from tiny slices
of complete data using kernels or filters. The output layer
Oli that was used to estimate the descriptive features can be
calculated as follow:

Oli = Bli +
m1(l−1)∑

i

K (
i,jl) × O(l−1)

j (2)

where Bli , K
l
(i,j), and m

l
1 are the bias matrix, the filter linking,

and the feature maps, respectively.
For each layer, a collection of convolutional kernels (fil-

ters) are used to perform a variety of changes. This filter is
manipulated to the input slice whereas the non-linear opera-
tional unit is observing the filter’s output which simplifies the
training process to abstract the embedded nonlinearity of the
space feature [17]. Non-linear processing facilitates learning
semantic differences throughout the entire image by provid-
ing a variety of activation patterns that correlate to a range
of responses. Then, the pooling layers that use max-pooling
to collect the highly important characteristics minimize the
output dimension. The over-fitting issue is resolved by using
2× 2 max-pooling layers that have been primarily applied to
the derived matrix. There are two parameters that determine
the pooling layers, (1) filtering F l in the spatial domain, (2)
the stride S l . These layers create an output with a dimension
of ml1 × ml2 × ml3 while requiring input of size m(l−1)

1 ×

m(l−1)
2 × m(l−1)

3 . Equations (3) present maximum pooling
approximation as described in the following equations.

m(l)
1 = m(l−1)

1

m(l)
2 =

m(l−1)
2 − F (l)

S(l)
+ 1 (3)

m(l)
3 =

m(l−1)
3 − F (l)

S(l)
+ 1

The proceeding output layers are accepting only one-
dimensional vectors due to the act of smoothing that has been
done on the max-pooling layers. The following rule specifies
the dimensions of the resultant vector.

n[i−1]
= n[i−1]

h × n[i−1]
w × n[i−1]

c (4)
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FIGURE 2. RGB images after applying data augmentation to PD type: (a) shear range of 0.2, (b) zoom
range of 0.2, (c) rotation range of 90, (d) horizontal flip, (e) width shift range of 0.01, and (f) height
shift range of 0.01.

FIGURE 3. Proposed deep network architecture of CNN with RGB images.

where nw is the width, nh is ith layer height, and nc is the
channel count.

As a result of building relu function from a dense class,
the last fully connected layers adapted the activation function
(SoftMax) to serve as a detector. These layers have limited
neurons and consider node (jth) out from layer (ith) to return
a vector a[i] from an input vector a[i−1]. At the lth layer, the
learned factors can be calculated as follows:

Z [i]
j =

ni−1∑
l=1

W[i]
j,la

[i−1]
l + b[i]j → a[i]j = ψ [i]

(
Z [i]
j

)
(5)

whereWj,l , nl−1∗nl , b
[i]
j , andψ [i] stand for weights, weights’

parameters, layer’s bias, and activation function, respectively.

2) LONG SHORT-TERM MEMORY (LSTM)
The well-known advanced version of the recurrent neural net-
work (RNN) is the LSTM [18]. As a default, LSTM can retain
long-time info and is trained to acquire a knowledge of depen-
dent long-termmemory. The duplicating module is structured
as a chain even if its architecture is distinct [19]. The LSTM
contains four interacting layers whereas each layer has its

own means of communication. Cells (cell and hidden states)
are the units of memory that make up an LSTM network in
its most basic form. The hidden state is intended to encode
a form of characterization of the data from the previous time
step, whereas the cell state is intended to encode an aggregate
of data from all previously processed time-steps. These states
are both transmitted to the subsequent cell. The primary chain
of data flow is the cell state, which enables the data to move
ahead mostly unchanged. However, there may be some linear
modifications. Data can be added to or removed from the cell
state using sigmoid gates. An equivalent of a gate is a layer
or sequence of matrix operations that have various discrete
weights. These gates are designed to control the data-saving
procedure. The operations of memorizing data are organized
by these gates.

LSTM-based PD recognition model was constructed on
RGB and gray images, and its components are shown in
Fig. 4, where the first layer was the input data for RGB (None,
2500, 3) or gray-scale images (None, 2500, 1). In this work,
the LSTM model’s structure for both RGB and grayscale
images is identical except for a unique difference observed
in the first layer. Another layer in this model called dropout
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FIGURE 4. A deep network LSTM architecture with RGB images.

arose to decrease over-fitting DL models [20]. The term
‘‘dense layer,’’ also known as a ‘‘fully connected layer,’’
describes a layer whose internal neurons are coupled to every
neuron in the proceeding layer. A matrix-vector multiplica-
tion is utilized to update a vector’s dimensions. Backpropa-
gation can aid in the training and updating of matrix values.
Since there are more than two class labels, SoftMax was
utilized as an activation function to predict a multinomial
probability distribution. The category with the highest like-
lihood will be used by the model to create a precise forecast.

B. HYBRID DEEP NETWORK ARCHITECTURE
This study analyzed different forms of space color images
(RGB and gray) when training CNN and LSTM models.
The hybrid deep network’s architecture combined CNN and
LSTMmodels. F1, features generated byCNNalgorithm, and
F2, features produced by an LSTM-based model, were the
two features that were recovered from these sources. With a
high level of precision, the hybrid model’s properties offered
a reliable categorization of PD.

C. CLASSIFICATION PERFORMANCE EVALUATION
Overall accuracy Acc, precision Pr, recall Re, intersection
over union IoU, and F-measure (Fm) measurements were
used to quantitatively evaluate the performance of the sug-
gested deep networks. These measures are detailed in the
following equations.

Acc =

∑
TP+

∑
TN∑

TP+
∑
TN +

∑
FP+

∑
FN

× 100

IoU =
TP

FP+ TP+ FN
× 100

Pr =

∑
TP∑

TP+
∑
FP

× 100

Re =

∑
TP∑

TP+
∑
FN

× 100

Fm = 2 ∗

(
Pr ∗ Re
Pr + Re

)
× 100 (6)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

IV. RESULTS AND DISCUSSIONS
A. ASSESSMENT OF THE CNN-BASED MODEL
The proposed model for monitoring the partial discharge
images was based on different properties retrieved from gray
and RGB images. Throughout the training process, features
were extracted and normalized before they have been used
as input into the deep learning model. The model identified
the patterns associated with partial discharge in the data and
leveraged this understanding tomake predictions about future
occurrences. As shown in Table 1, the CNN deep network
outcomes (accuracy and losses) were evaluated with training
and validation datasets. As well, the classification perfor-
mance was examined. The CNN-RGB technique exhibited
superior performance compared to the CNN-gray algorithm,
as indicated by the accuracy metrics. The proposed method’s
performance achieves a recall = 0.961, precision = 0.956,
over union = 0.925, and F-measure = 0.955. The model
shows validation of an accuracy=0.961 and a model-loss (M-
loss) =0.093.

B. ASSESSMENT OF THE LSTM-BASED MODEL
The LSTM model was executed with gray and RGB images
for evaluating the classification performance. Table 2 shows
the training model, the validation model, and the perfor-
mance model for RGB and Gray images. With respect to
the LSTM model, RGB color space images had better partial
discharge definition with recall = 0.947, precision = 0.896,
over union = 0.899 and F-measure = 0.921. The model
validation shows an accuracy of 0.947 and anM-loss of 0.208.
Apparently, the CNN model demonstrated a higher accuracy
(96.1%) compared to the LSTM model (94.7%). In contrast
to LSTM model (94.7%), the CNN model demonstrated a
higher accuracy (96.1%).

C. EVALUATION OF THE HYBRID DEEP NETWORK
Various types of images including RGB and grayscale were
executed as the main source input for the LSTM and CNN
model. Likewise, image data augmentation has been per-
formed to evaluate the studied methodologies. The classi-
fication model of CNN-LSTM was evaluated as explained
in Table 3, and performance metrics (Pr, Re, Fm, and IoU)
were used to validate the strength of the model in mon-
itoring partial discharge. The CNN-LSTM model outputs
based on the augmentation technique accomplish great pre-
cision using gray and RGB images. The results in Table 3
approved that the CNN-LSTM-RGB and CNN-LSTM-gray
models with augmented versions were high-quality mod-
els for partial discharge identification as opposed to hybrid
deep models with non-augmented versions. The model
achieves a validation accuracy, of 0.999, and a loss model,
of 0.004.
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TABLE 1. Results of CNN deep network using partial discharge images.

TABLE 2. Results of LSTM deep network using partial discharge images.

FIGURE 5. Evaluation metrics of partial discharge detection model of CNN-LSTM based on gray images (a, b)
non-augmented version, and (c, d) augmented version.

TABLE 3. Results of hybrid deep network using partial discharge images.

D. DEEP NEURAL NETWORK LEARNING CURVE
The learning curve of the detection model was improved by
selecting the upper-most parameters, adapting the selection

features using the deep learning model, and investigating
the architectural components of the deep network. While
these operations were being carried out, novel hybrid deep
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FIGURE 6. Evaluation metrics of partial discharge detection model of CNN-LSTM based on RGB images: (a, b)
non-augmented version, and (c, d) augmented version.

networks were established. The CNN-LSTM behavior using
higher variations recovered from gray and RGB images dur-
ing the training and validation set is explained in Fig. 5, 6.
The learning curves of the CNN-LSTM-gray model attained
a validation accuracy of 95.3% (Ls=0.123) and 99.9%
(Ls=0.004), for non-augmented (Fig. 5 (a-b)) and aug-
mented (Fig. 5 (c-d)) versions, respectively. Otherwise, the
validation accuracies of the CNN-LSTM-RGB model with
non-augmented (Fig.6 (a-b)) and augmented (Fig. 5 (c-d))
versions were 96.1% (Ls=0.096) and 99.9% (Ls=0.004),
respectively. As the number of epochs grows, the accuracy
of validation and training gradually improves until the learn-
ing graph indicates a high-quality model. Simultaneously,
the loss of the models reduces steadily. It is observed that
validation accuracy is typically less than training accuracy.
In comparison to other models, the features extracted from
RGB or gray-scale using CNN-LSTM and the data augmen-
tation approach performed well in recognizing the PD. It had
a 99.9% classification accuracy for Pr, Re, and Fm, with
a 99.8% of IoU, and excellent learning curve performance
outcomes.

E. CLASSIFICATION MODELS EVALUATIONS
The proposed CNN-LSTM-gray and LSTM-LSTM-RGB
models for PD-type classification have matrix confusion
during the phase of validation as shown in Fig. 7. It was
realized that approximately 114 and 104 images were mis-
classified by the models which did not use the data augmen-
tation as presented in Fig. 7 (a-c). Although, the models that
adapted data augmentation correctly classified the images as

presented in Fig. 7 (b-d). Since the true positive and true
negative have consistent values and there are no all falling
positive or negative, the proposed CNN-LSTM model that
was developed with a data augmentation strategy accom-
plished better results compared to other network models. As a
result, the suggested approach can efficiently classify partial
discharge. It outperforms prior studies in terms of perfor-
mance, making it a viable tool for representing PD patterns.
The outcomes achieved greater accuracy than those of Kim
and Kim K.-I [21], who explained that the suggested CNN
transfer-learning models, which used a little amount of actual
PD data acquired from an online PD detection system, out-
performed benchmark models like CNN and SVM in terms
of PD detection accuracy (97.4Additionally, the developed
model outperformed [22], the light-scale CNN model that
was used in GIS for PD recognition. In this experiment, artifi-
cial defects were produced, and PD faults were acquired using
a UHF sensor. Two convolution layers, two max-pooling
layers, and two fully linked layers were included in the light-
scale model. The model had an overall accuracy of 98.13%.
The overall performance of the proposed hybrid network
shows precise results, especially when compared with [23]
which examined the ensemble technique and LSTM deep
learning for PD classification. The ensemble bagged decision
trees and LSTM deep learning achieved accuracies of 95.5%
and 98.3%, respectively. The upgradedmodels achieved great
classification performance while incurring smaller losses.
Electrical engineers can rely on our methodology, which
demands frequent, fast, easy, and non-destructive detection
of partial discharge at high voltage.
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FIGURE 7. Confusion matrix of proposed CNN-LSTM models for detecting partial discharge in grayscale and
RGB images via: (a, c) non-augmented version and (b, d) augmented version.

V. CONCLUSION
It is difficult to distinguish partial discharge (PD) caused
by numerous insulation flaws in cables with high voltage.
Even for the most seasoned professionals, some PD signals
might be challenging to detect since they have remarkably
similar qualities. To tackle the difficulty, a robust hybrid
approach for identifying PD patterns has been developed
by combining LSTM and CNN. The proposed framework
has been promoted for robust detection of PD type through
some actions including characteristics of features selected
through hybrid deep network training, choosing the most sig-
nificant hyper-parameters, and optimum components of the
deep network architecture. The planned implementation has
been compared to a single deep network for CNN and LTSM.
A high-quality model was then found by analyzing the per-
formance outcomes. Analysis outcomes elucidated that the
supreme combinations for PD pattern identification between
deep networks and the data augmentation methods accord-
ing to the highest performance were CNN-LSTM-RGB and
CNN-LSTM-gray. Their corresponding outputs for precision
(99.9%), recall (99.9%), F-measure (99.9%), and intersection
over union (99.8%) were identical. These models demon-
strated promising outcomes with high accuracy and were

employed to define the pattern of PD. The accurate recog-
nition of PD through hybrid deep-learning network models
can significantly impact various sectors. By recognizing PD
accurately, deep network models can predict faults in power
systems, triggering preventive maintenance and preventing
potential catastrophic failures. This can result in significant
cost savings and improved system reliability. Early detec-
tion and rectification of PD can potentially prolong the life
of the electrical equipment, reducing replacement costs and
downtime. Improved PD recognition can enhance the safety
of power systems by identifying potential faults before they
lead to accidents or power outages. In the context of smart
grids, accurate PD recognition can contribute to effective
asset management and maintenance scheduling, leading to
more efficient and reliable power distribution. Finally, this
study has introduced a tool that offers a swift and simple
approach, potentially enabling power system experts to make
superior real-time decisions. Finally, this tool is a quick and
easy strategy that may help power systems professionals
make excellent real-time judgments. In the future, we advo-
cate expanding the usage of the superlative model to addi-
tional insulating challenges in high-voltage cables in order to
accomplish power system stability.
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