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ABSTRACT Sensors are an essential element in a wide range of applications. As the number of sensors
increases, so does the amount of data collected with them. This raises the challenge of efficiently processing
this data. Spiking Neural Networks (SNNs) represents a promising approach to solve this problem through
event-based, parallelized data processing. For SNNs to be genuinely efficient, some fundamental challenges
arise, like converting analog signals to spike events. An emerging possibility is the use of Resonate-and-
Fire (R&F) neurons, capable of reacting to specific frequency components of input signals. In this work,
we present a possible analog implementation for a R&F neuron and show the practical encoding of analog
signals into a spiking domain using actual measurements. The coding method allows analog sensor signals to
be directly applied to SNNs for efficient data processing. In the future, this approach can potentially enable
the direct integration of analog Spiking Neural Networks into sensors.

INDEX TERMS Sensor, spiking neural networks, neuromorphic hardware, signal encoding.

I. INTRODUCTION
Sensors are an important component of automation and data
collection.With a higher degree of automated driving, various
sensor modalities consume power, limiting the travel range.
The computation performance and power consumption con-
strain the real-time processing of the sensor data. Thus, this
simple question arises: How can we process this data more
efficiently?

One promising approach is the application of data-driven
Neural Networks (NNs) [1]. The 3rd generation networks
model the biological counterpart and promise a significant
energy reduction through event-and parallel processing [2].
In contrast to traditional NN, SNNs use spike events to
transmit information across the network instead of floating
point values, providing two advantages: 1) the event-based
processing, 2) the reduced binary communication [3].

Since the spiking networks use binary events, we must
encode our signals to spatio-temporal spikes [4].
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Different encoding methods can be realized on the digitized
signal or directly on the analog signal. With traditional
networks on digital hardware, there was no motivation to
remove the analog-to-digital conversion. However, the spik-
ing networks on analog hardware promise a high energy
efficiency [5].

The digital world argues the fact that a wide range of
solutions of neural accelerators already exists [6], [7], [8],
[9], [10], [11]. In addition, the general process of converting
the analog signal to the digital signal is a standard procedure
in many application areas today and can thus be easily made
suitable for this purpose. Contrary to this is the fact that a
digital conversion always requires additional energy; it can
lead to quantization errors and translation errors. A compro-
mise between the sampling rate and frequency of the input
signal must always be made [12]. In favor of the analog
approach is the fact that the complete analog to the digital path
can be bypassed, and in principle, the energy consumption
can be reduced. In addition, the analog domain enables real
asynchronous and event-processing while utilizing the local
memories [13]. A review of digital and analog neuromorphic
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FIGURE 1. Conceptual representation of a potential signal processing chain for SNN. The input signal is translated into spikes by the R&F neurons. The
encoded signal is then passed to the subsequent SNN for processing. At last, the evaluation is done by a feasible decoding method. In this work,
we consider the signal to spike translation.

hardware is presented by [14], where the analog implemen-
tations demonstrate a faster processing. The drawback is
insufficient research attention to methods for analog-to-spike
conversion.

Nevertheless, the idea of direct signal processing is very
promising. Therefore, we present, to the best of the author’s
knowledge, for the first time an analog implementation of
the R&F neuron for the direct frequency-dependent analog
to spike conversion. We base our assumptions on the neu-
ron model of the R&F neuron introduced by Izhikevich in
2001 [15]. Unlike other neuron models, it offers the features
of natural frequency selectivity. Simply, a resonant frequency
results in a translation to spikes at the same frequency.
By combining differently tuned R&F neurons, a signal can
thus be split to the different frequency components [16], [17].
Figure 1 shows a schematic of the R&F encoding with the
directly connected input signal and an example subsequent
network. The proposed implementation of an analog circuit
is based on common standard circuits such as a bandpass
filter and a comparator. We implemented the circuit in a
130nm CMOS process. We have added the possibility of
adjusting the resonance frequency and the Q-factor of the
bandpass filter. This adaptability allows using a single circuit
for different resonant frequencies, providing the flexibility
of dynamic resonance frequency adjustment depending on
the application. Additionally, to the simulations, we confirm
the functionality by measuring the direct encoding of analog
signals into spike events.

The paper is organized as follows. First, we describe the
current state of the art in I-A and address the theoretical and
mathematical principles for the R&F neuron and encoding
method used in II. Afterwards, we describe in III the circuit
design for the R&F neuron and demonstrate the functionality
of the circuit with simulative examples. Next, in IV, we use
a fabricated test chip to verify our simulative considerations
by measurements. Finally, we discuss in V advantages of our
work as well as their limitations.

A. STATE OF THE ART
This section first analyzes popular encoding methods for
SNNs. Then, we consider previous implementations of R&F
neurons as analog and digital implementations. For a com-
prehensive overview of encoding schemes, we refer to [18].

There is no single encoding scheme for all data types,
which was also shown by biological experiments [19], [20],
[21], [22]. The current methods can be categorized into the
rate and temporal codes [18], [23]. Rate codes use the spike
frequency as the primary information source, while temporal
codes use mainly the temporal correlation to a global or local
reference. Traditional NNs like CNNs, LSTMs, and more are
an approximation of the rate-based encoding scheme, mean-
ing that these architectures can be converted to SNNs [24].
One big drawback of rate codes is the power consumption
since analog or event-driven hardware only consumes power
during a spike.

Temporal codes like the time-to-first spike (TTFS) utilize
the time between the global reference and the spikes are more
promising because of the lower spike count. An early spike
indicates a high level, while a later spike is less important.
Replacing the reference with an oscillation and defining the
sinusoidal peak as the reference is called phase code [25].
Another temporal encoding is temporal contrast (TC) which
converts a continuous signal into a spike train through signal
intensity changes. Thus, positive and negative spikes repre-
sent the polarity of change. Such an encoding occurs in an
event-based vision sensor with a high dynamic range [26].

We study in this paper a filter-based TC approach called
current injection. In the literature several examples can be
found which use such approach to convert analog signals into
spike domain [27], [28], [29], [30]. The common aspect of
these methods of conversion is that the main information of
the signal is represented by the amplitude. A frequency infor-
mation can be partially conserved if exact knowledge about
the corresponding input signal is known and the subsequent
neuron is appropriately parameterized to this signal, as shown
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in [27]. This loss of information can be compensated by using
R&F neurons. In [16], the authors show that R&F neurons can
be used to study temporal signals in the frequency domain.
The authors use the example of an FFT for this purpose. The
signals are fed through a layer based on R&F neurons. The
neurons act as filter banks and select corresponding frequency
components depending on the parameters of each neuron. The
neuron converts the frequency component into a spike train
with the corresponding frequency.

Important to note is the differentiation of the encoding
schemes for frame-based or continuous data. The research
community defines frame-based as periodical data like
images, and continuous data are analog signals from pixels,
audio signals, or temperature sensors. The requirements for
real-time depend highly on the data. Rate or TTFS coding is
less suitable for continuous data since a representation of the
continuous data requires a representation that defines each
value into a subsequence. Thus, not every encoding applies
to all kinds of data.

Two analog implementations can be found in the literature
for a R&F neuron. The first implementation is based on a
derivation by a Volterra system [31]. This implementation
shows some properties for a R&F neuron. However, the
circuit does not show the desired parameterization of a R&F
neuron, which is necessary for flexible encoding. Addition-
ally, no post-silicon circuit verification is performed, so it pro-
vides limited information about the actual functionality. In the
second realization, an implementation of the R&F neuron is
shown, based on so-called fixed magnetic skyrmions [32].
This implementation provides an energy-efficient implemen-
tation for a R&F neuron. However, the frequency range for
this implementation is limited to a low GHz range. Addi-
tionally, no standard CMOS circuitry is implemented by
this approach, which strongly limits the access for repli-
cations. Furthermore, there is also no post-silicon verifica-
tion. Finally, a digital implementation with the neuromorphic
research processor Loihi 2 can be found in the literature [33].
Since we want to directly encode analog signals into spikes,
this has no further relevance. However, we note that any
software-based neuromorphic processor can implement digi-
tal R&F neurons.

II. THEORETICAL BACKGROUND
In this section, we first describe the mathematical theory
behind the R&F neuron. Then, we address an ideal encoding
scheme with R&F neurons.

A. MATHEMATICAL DESCRIPTION OF THE
RESONATE-AND-FIRE NEURON
The R&F neuron of Izhikevich [15] is a neuron model where
a damped oscillation models the membrane potential. If the
resonate oscillation exceeds the neuron threshold, it emits
a spike due to an amplification of the frequency, meaning
the neuron selects the frequency components that match the
resonance. Accordingly, the membrane potential oscillates
stronger for input frequencies close to the neuron resonance

frequency. The complex neuron is a two-dimensional linear
system defined by Izhikevich as:

ẋ = bx − ωy, (1)

ẏ = ωx − by, (2)

where x is the current-like variable and corresponds to the
real component of the complex oscillation. The y variable
describes the imaginary component, the voltage-like variable.
The angular velocity ω = 2π · f0 defines the resonant fre-
quency of the neuron. Due to the damping factor b, the neuron
can forget the existence of an input frequency by decaying
back to the resting potential. Also, the damping affects the
increase of the neuron’s oscillation amplitude. An equivalent
complex representation can be derived from this:

ż = (b+ iω)z, (3)

where z = x + iy ∈ C describe the complex-valued variables
of the oscillatory behavior of the neuron. A corresponding
output spike δ is generated whenever the voltage-like variable
y exceeds a threshold θ :

δ =

{
1, if y > θ

0, else.
(4)

B. ENCODING WITH RESONATE-AND-FIRE NEURONS
As mentioned in I-A we follow the approach of the current-
injection encoding. We explain shortly the principle on an
example. In case of the R&F encoding, we combine a simul-
taneous time-to-frequency conversion and spike encoding.
Therefore, a population of R&F neurons convert a low dimen-
sional input signal into a spatial-temporal spike representa-
tion, where each neuron response to a different frequency.

Exemplary, we define a superposition ofN sinusoidal input
signals by:

Sin =

N∑
i=1

Aisin(2π · fi), (5)

where A represents the amplitude and f the frequency of
a sinusoidal signal. A single R&F neuron filters the signal
which is the closed to its resonant frequency. While a popu-
lation of R&F neurons react on different frequency compo-
nents.

If there is no neuron with a respective resonance frequency,
the according frequency part will not be considered and there-
fore not encoded. However, this assumes that we consider an
ideal system to describe the principle. This means that the
bandwidth of a resonant frequency is not taken into account.
We assume that only a signal component with the correct
frequency part leads to the excitation of a corresponding
neuron. This results in each neuron spiking at the resonant
frequency, assuming it is excited as previously described.
Accordingly, a translation from the temporal domain to a
spiking domain of each sinusoidal component of the input
signal Sin is performed. Each sinusoidal part is represented
by a corresponding spike train as long as a corresponding
frequency part is present.
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FIGURE 2. R&F circuit implementation. In a), we demonstrate the circuit for the R&F neuron. The circuit comprises a bandpass filter (red) and a
comparator (blue). In b) the focus on the amplifier on a transistor level, used as bandpass and comparator.

III. CIRCUIT DESIGN CONSIDERATIONS
In the following, we first discuss the demands for a circuit
implementation of a R&F neuron. We then describe the key
circuit blocks and the complete circuit of the R&F neuron.
We show complementary simulations of the described circuit
blocks to study their functionality.

A. DEMANDS ON A CIRCUIT IMPLEMENTATION
We identify two basic requirements for a circuit design.
First, we need selective frequency detection, and afterwards,
we have to translate the frequency into a corresponding spike
train with the same frequency.

Different possibilities exist for detecting a corresponding
resonant frequency fres. A logical approach is the realization
of a resonance circuit, which swings when the input signal
contains the circuit’s resonance frequency. From this step,
this can then be translated into a spike train. However, this
intuitive step of a resonant circuit lures into a trap. For an
integrated circuit, the requirement is to be area efficient.
However, a resonant circuit is accompanied by either a large
capacitance or a large inductance if the frequencies are set in
a lowMHz range. There are several possibilities to counteract
this; for example, replacing the inductive part with a capaci-
tive part with a gyrator circuit is possible [34]. This results
in finding a trade-off between capacitor size and desired
frequency.

Nevertheless, there is also another alternative. As men-
tioned at the beginning, an encoding network based on R&F
neurons represents a selective filter bank for different fre-
quency components. From this, the idea can be derived not
to implement the resonance part as an actual resonator but to
replace this with a narrowband bandpass filter. This solves the
frequency selective filtering task according to the designed
resonance frequency. For the implementation of bandpass
filters, there are many ideas and approaches in the litera-
ture [35], [36], [37], [38]. We use a bandpass with single pos-
itive feedback [36]. This has the advantage of a well-known
circuit and does not require inductive circuit components.

Similarly, we have found different approaches for translat-
ing a resonant frequency into a corresponding spike train [39],
[40], [41], [42]. We have chosen to implement a comparator
circuit to enable a flexible threshold selection. When the
oscillation exceeds the threshold, the output level is raised
too high, generating a spike. If the amplitude falls below the
threshold again, the level is lowered to the low level. This
allows a simple translation into a spike train with the same
period when the signal periodically exceeds the threshold,
carrying the additional information of the signal’s amplitude.

In order to implement a circuit concept for the R&F neu-
ron, we combine this two fundamental circuit blocks. First,
the frequency-selective behavior (resonate) uses the concept
of a bandpass. With this circuit, desired frequencies are
filtered out and amplified while unwanted frequencies are
suppressed. Secondly, a comparator generates the spike (fire)
output by comparison of the maximum decoupling of the
resonating signal with a threshold value. Figure 2 shows the
circuit of the neuron.

We have decided to use an efficient realization approach
for a R&F neuron. Bandpass and comparator are, therefore,
basic circuits that are well-known from the literature [36].

B. BANDPASS FILTER
The bandpass filter with single positive feedback, which we
use here, is based on the circuit presented in [36]. In this
case, the internal gain is set to the value of k by the negative
feedback through the voltage divider RQ1(k−1) and RQ2. The
derived transfer function can be used to find the dimensioning
parameters for the circuit. The transfer function is, therefore:

A(P) =
kRf CωrP

1 + Rf Cωr (3 − k)P+ R2f C
2ω2

rP2
. (6)

The resonant frequency of the circuit is directly proportional
to Rf and C , thus the resonant frequency is defined as:

fr =
1

2πRf C
. (7)
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FIGURE 3. Circuit for adjustable resistor network. Both are used in the
bandpass filter for the frequency selectivity and the adjustment of the
Q-factor.

The quality factor Q and the gain Ar are not independent.
In other words, the Q directly affects the gain. Nevertheless,
the resonant frequency is not changed by a modification of
k . In the following equations, the corresponding dimension-
alization possibilities for the Q and gain can be obtained:

Ar =
k

3 − k
(8)

Q =
1

3 − k
(9)

Note, in designing the circuit, that a k ≥ 3 results in an
infinite gain or undamped oscillation.We designed the circuit
to achieve a value of k = 2.96.
For the implementation of the active filter, we use a sim-

ple two-stage amplifier; see Figure 2b. The amplifier is
designed to produce a maximum gain that is as homogeneous
as possible over the desired, switchable resonant frequencies.
In addition, we have added a capacitor in parallel with a
resistor at the output of the amplifier. This allows us to
have a sufficient phase reserve. The bias currents Vbias1 and
Vbias2 are generated and fed via current mirrors. The complete
circuit is driven by a supply voltage of Vdd = 1.5V. In addi-
tion, a virtual ground potential must be introduced to ensure
the circuit’s functionality. We have designed the circuit for
VVSS =

Vdd
2 and the ground signal VSS .

The resistors for the resonant frequency have the same
value ofRf . Only the resistor connected ahead of the amplifier
has a value of 2Rf . For a universal use of the neuron circuit,
we consider the option of adjustability of the resonant fre-
quency and the quality factor. The resistors for the resonance
frequency (2-bit), as well as the quality factor (3-bit), can
be controlled digitally; see Figure 3. For this, the resistors
are connected in series to each other and switched on or off
via transistors. The tunability of the circuit via this method
allows a compact layout. The used capacitors are integrated
area-wise over the resistor network and the transistors.

C. COMPARATOR
After the frequency selectivity, we transform the signal from
the time domain to the spike domain. We have implemented

a comparator circuit based on the same amplifier circuit
from the bandpass, visualized in Figure 2b. The ampli-
fied signal from the bandpass filter is connected with the
non-inverting input of the amplifier. The threshold is applied
to the inverting input. Unlike the bandpass filter, the ref-
erence potential is now VSS again instead of VVSS . This
allows us to provide smoother integration with the subse-
quent circuit systems. However, the reference potential can
be easily changed if necessary. We describe the operation of
the comparator by the definition of the comparator’s output
signal Vout :

Vout =

{
1.5V, if Vbp > Vth
0V, else,

(10)

where Vbp represents the output signal of the bandpass and
Vth defines the threshold. If the bandpass is inactive or the
signal amplitude is below the threshold, the output signal is
at ‘‘low’’ level, meaning Vout = 0V. When the amplitude
is large enough to exceed the threshold, the signal rises to
the ‘‘high’’ level. Thus, the output voltage is set to Vdd such
that Vout = 1.5V is valid. The high level continues until the
value falls below the threshold again. This means the pulse
width directly depends on the selected threshold value and
the oscillation amplitude. The closer the threshold value is to
the maximum peak of the wave, the smaller the pulse width.
In reverse, this results in the fact that if the threshold value is
chosen to be the same for all R&F neurons, the pulse width is
slightly different depending on the frequency chosen since the
threshold is crossed at different times and held for different
durations. [33] named the amplitude-dependent event graded
spike.

D. RESONATE-AND-FIRE NEURON
Combined with the bandpass filter and the comparator,
we arrive at the R&F neuron. Figure 2a depicts the
complete circuit. Overall, the implementation has three
adjustable parameters. 1) Two bits for the resonance fre-
quency, resulting in four different resonances. 2) Three bits
for the Q-factor, resulting in eight different Q-factor set-
tings, and 3) a flexible threshold. The resonance frequen-
cies cover the frequencies of 0.9-1.05MHz, the Q-factor
a range of 1Q = 11 dB and the threshold can be set
from 0-1.5V.

E. CIRCUIT SIMULATIONS
We performed AC simulations to investigate the bandpass
behavior of the circuit. For this, we vary from 10Hz−1GHz.
Figure 4a shows the filter in terms of the different resonant
frequencies. We decided to design the frequency of the filter
in such a way that the four possible resonant frequencies are
at Gf 0 = 905 kHz, Gf 1 = 960 kHz, Gf 2 = 1.015MHz and
Gf 3 = 1.07MHz. The figure shows themaximum gain set for
the respective resonance frequency. Thereby the maximum
gain has a distance of about 55 kHz to each other. It can
be seen that the higher the frequency, the lower the gain.
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FIGURE 4. Simulation of the tuning options of the bandpass filter. In a), the adjustability of the frequencies over four different resonance points is
shown. In contrast, in b), the adjustability of the quality factor in eight different levels is shown in the example of one resonance point.

However, the design of the circuit ensures that the gain is as
homogeneous as possible. The gain of a filter proportionally
influences the settling time.

In addition, we decided to provide the possibility to adjust
the quality factor of the circuit. This results in three signif-
icant advantages. On the one hand, the quality with a value
of k = 2.96 is chosen relatively close to the critical value
for the possible overshoot of the system. Due to possible
tolerance deviations and unwanted parasitic effects in man-
ufacturing, the circuit may exceed the critical k value. The
Q-factor can be reduced to counteract overshoot behavior in
the fabricated chip. A lower Q-factor provides more system
stability in general. On the other hand, a further advantage
is that wider bandwidths are to be examined and/or used
in later systems. The encoding is frequency selective, but
exactly one frequency can never be chosen exclusively in
a real system. Some bandwidth is always selected concern-
ing the threshold, which is considered sufficient. A flexible
bandwidth allows a more reasonably broad sampling of input
frequencies. Finally, the Q-factor and the selected bandwidth
influence the settling time of the circuit. The lower the quality,
the faster the circuit settles to a particular frequency. For
certain application areas, this could be an essential factor to
minimize this time in order to be able to react quickly to
certain frequency inputs. In this case, we have implemented
eight possible settings for the Q-factor. This allows us to
achieve a deviation from the maximum gain to the minimum
gain of 1G = 11 dB in this case. Figure 4b shows the
tuning option for the Q-factor. Note that frequency selectivity
or differentiation of input frequencies at lower bandwidths
reduces resolution since resonant frequencies may be less
distinguishable. Thus, the intersection of filtered frequencies
increases thereby.

In the following, we investigate the R&F neuron by apply-
ing transient simulations. First, we focus on a single neuron.
Subsequently, we demonstrate the previously described prin-
ciple of current-injection encoding using R&F neurons on a
set of four neurons.

In order to analyze a single neuron, the circuit is param-
eterized by choosing the highest Q-factor and the resonant
frequency Gf 3 from Figure 4a. We examine a time window
of t = 30µs in Figure 5a. The input signal Sin is a super-
posed signal of two sinusoidal waves with a frequency of
f1 = 1.01MHz and f2 = 1.07MHz with an amplitude of
VSin = 5mV and an offset to VVSS . We can observe the
filtering of the frequency f2 by the R&F neuron. Initially, the
circuit needs a short settling time. After that, no ideal sine
wave can be seen. We observe a signal with an uneven signal
curve due to the uneven signal response caused by the signal
mixing and define this as a signal leakage. However, this is
not a problem for the neuron as long as the threshold value is
chosen sufficiently. If the threshold is too high, there may be
cases where individual periods are not converted into spikes.
If the threshold is too low, unwanted frequency components
may be translated into spikes. The correct trade-off for the
threshold must be found, either through previously known
signal characteristics or good training of the SNN for the
threshold. In this case, the threshold is chosen so that each
period results in an output spike.

In the second case, we consider a simulated input layer for
a SNN based on four R&F neurons as depicted in Figure 5b.
Each neuron is parameterized to use the highest Q-factor
within the bandpass filter, and each neuron uses one resonant
frequency from Figure 4a. In this case, an input signal
Sin consisting of a superposition of four sinusoidal waves
with the same amplitude and offset as previously injected
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FIGURE 5. Transient simulation of a single R&F neuron as well as a population of four R&F neurons. In (a), we show the transient simulation of the single
R&F neuron. The input signal is a superposition of two sinusoidal waves with a frequency of f1 = 1.01 kHz and f2 = 1.07 kHz. The neuron extracts the
frequency f1 and transforms it into spikes. In (b), we examine a population of four R&F neurons through an input signal, consisting of four sinusoidal
waves with the frequencies f1 = 905 kHz, f2 = 1.05 MHz, f3 = 1.07 MHz and f4 = 1.125 MHz. As expected, the frequency f1,2,3 are converted to spikes,
f4 is not considered due to the wrong resonant frequency of N2.

into the system. We selected an observation time window
of t = 25µs. The sinusoidal signals have a frequency of
f1 = 850 kHz, f2 = 910 kHz, f3 = 1.01MHz, and f4 =

1.07MHz. In each case, we consider only the output signals
of the individual neurons. It can be seen that the neurons N1,
N3, and N4 generate proper spike trains. In contrast, neuron
N2 remains at a low level throughout. This is because the input
signal does not have the necessary frequency component
to trigger this neuron (Gf 1 = 960 kHz). Instead, all other
neurons are triggered. Another effect of signal leakage due
to summing signals up can also be noticed. The neuron is
triggered if the threshold is chosen so that the output signal
exceeds the threshold. However, if the amplitude varies suffi-
ciently to exceed the threshold, the result is that a spike also
varies in pulse width. An invariant spike is only given if the
signal exceeds the threshold with the same amplitude width.
However, this pulse width variation could be seen as a kind
of graded spikes like used in [33].

IV. MEASUREMENTS
After the theory and simulative experiments, we verify
the functionality with post-silicon measurements. Thus,
we present the fabricated chip in a 130 nm BiCMOS process.
Afterwards, we verify our observations from the simulations
by post-silicon measurements.

A. FABRICATED CHIP
We validate our considerations for implementing a R&F neu-
ron by post-silicon measurements. For this purpose, we have

implemented the circuits for the R&F neuron as well as the
bandpass stand-alone in a 130 nm BiCMOS process. How-
ever, as previously described, this is a straight CMOS design
and thus can be transferred and scaled to any other process.
The test chip has a total area consumption of 0.9mm×1mm.
The area consumption of the active region for the bandpass
alone is 34µm×85µm and the entire R&F neuron consumes
an area of 34µm × 100µm. The two circuits share the input
signal pad and have an individual output pad for each circuit
output. In addition to the supply voltages, the respective bits
can be set manually for parameterization, and each bit-pad is
shared between both circuits. The signal Vtest is an internal
signal for checking correct functionality purposes and has
no further significance for verification. Figure 6 shows a
photograph of the manufactured chip.

Figure 6b presents a block diagram showing the measure-
ment setup used for evaluating the test chip. We measure
the circuit directly on wafer level. A frequency generator is
used to generate either a single signal or four signals which
are combined additively. The signal Sin is subsequently split
three times to equal parts. For visualization on an oscilloscope
and each as input signal for the stand-alone bandpass filter
and the R&F neuron. The output signal of the bandpass
filter is evaluated by a spectrum analyzer as well as by
the oscilloscope. The R&F neuron is evaluated in the time
domain via the oscilloscope only. However, both devices are
driven simultaneously, the spectrum of the bandpass filter
can be used directly for monitoring the R&F neuron as
well.
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FIGURE 6. A chip photography of the fabricated chip in a 130 nm process is shown in (a) and in (b) a block diagram of the used measurement setup for
evaluation of the bandpass filter as well as the encoding principle with R&F neurons.

B. POST-SILICON VERIFICATION
We measured our fabricated chip to verify the circuit’s
functionality. First, as shown in Figure 7, we repeated the
AC simulations measuring the stand-alone bandpass. Due to
restrictions in the measurement setup, we limited our analysis
to a studied frequency window of f = 100 kHz − 120MHz.
However, we consider this sufficient since the simulations
show that the gain in higher frequency ranges is low as to be
negligible. Frequencies below 100 kHz cannot be considered
due to the measurement setup, but the gain response curve in
that range should not be relevant either.

Figure 7a shows the measurement for tuning the reso-
nant frequencies. We can recognize that tuning of the res-
onance frequencies is working. However, we observed two
significant differences in the simulations. First, the measured
maximum gain for each resonant frequency is lower than
the simulations. We attribute these losses partly to the mea-
surement setup. On the other hand, to a second noticeable
effect. All four resonance frequencies have a frequency shift
of about 1f = 145 − 190 kHz. As an explanation, we see
here deviations due to tolerances in the manufacturing pro-
cess. Manufacturing data of the present wafer confirm these
assumptions. This is accompanied by the fact that the gain
is designed for lower frequencies and thus there is also a
loss in the maximum gain compared to the simulation. This
results in new resonant frequencies at the following points:
Gf 0 = 1.05MHz, Gf 1 = 1.12MHz, Gf 2 = 1.19MHz
and Gf 3 = 1.26MHz. Therefore, the frequency distance
between each frequency is 1fsep = 70 kHz. However, the
basic principles of the circuit work, and thus the demon-
stration of the encoding principle is still valid. In addition,
the measurements for the tunable resonant frequencies are
carried out with the maximum adjustable Q-factor. Until a

frequency of approx. 35MHz a clear curve profile is visible.
After that frequency a difference to the previous profile of the
curves can be seen. On the one hand, this can be attributed to
the fact that the noise level converges in comparison to the
reference peak. On the other hand, the sampling rate is lower
in these areas.

In Figure 7b, we show the quality factor’s adjustability
principle. We focused on three different settings for clarity
to validate the basic principle. We measured the setting for
the maximum Q-factor, the lowest Q-factor, and a setting in
between. Here, the maximum Q-factor is Gq0 = 11 dB, the
lowest Q-factor is Gq2 = 0.2 dB, resulting in a difference of
1G = 10.8 dB. Thus, the basic principle of the adjustability
of the quality factor of the bandpass filter is also given. The
characteristic of curves for higher frequencies corresponds
to the considerations for the adjustability of the resonance
frequency.

We can confirm the functionality of the bandpass filter by
the measurements. However, a frequency difference occurs
at the resonance frequencies compared to the simulations.
Due to this and the measurement setup, the gain is lower
than expected. In addition, we can show that despite this, the
bandpass filter can be tuned for the resonance frequencies and
the quality factor can be changed as expected.

To study the R&F neuron, we used a frequency generator
to apply different sinusoidal waves with different frequencies
corresponding to the resonance frequencies. As described
before, the effect of the threshold gets relevant if there is
no single wave applied but a combination of several sig-
nals. For this purpose, we first added two sinusoidal signals
using a resistor network and applied them to the neuron.
The functionality corresponds to the simulation, but for clar-
ity, we omit the presentation of these measurements and
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FIGURE 7. Measurements of the tuning options of the bandpass filter. In a), the adjustability of the frequencies over four different resonance points is
shown, while in b), we show the adjustability of the quality factor in three of eight different options on the example of one resonance point.

concentrate on the encoding process. We are combining
four different frequency generators and adding the signals
using resistors. We consider the neuron individually. The
network of four input neurons is recreated by considering
the neuron with one setting over a certain period. At the
same time, a spectrum analyzer is used to match the gain
of the bandpass. By manually switching the resonance fre-
quency, another neuron of the network is emulated. A neuron
will generate a corresponding spike train depending on the
applied input signal and the threshold. In Figure 8, we con-
sider a signal summed up with the following frequencies:
f1 = 1.05MHz, f2 = 1.19MHz, f3 = 1.26MHz, and
f4 = 1.33MHz. Thus, one resonant frequency is omitted
in analogy to the simulation. For clarity, the evolution of
the signal summed up is plotted over a larger time period
than the neuron activity. In addition, we plot a signal with
a scaling of a factor of 10 for illustration. The original signal
appears noisy due to the low amplitude in the time domain
and is therefore not easily recognizable. However, various
test scenarios have shown that the low amplitude noise level
is not a major challenge for the design and due to good
filtering characteristics, these signals are correctly processed
by the R&F neuron. The actual injected signal is correspond-
ingly smaller in amplitude. Additionally, we consider the
grayed-out area in the input signal for the spike trajectory.
As expected, the signal produces a spike activity at neurons
N1, N3, and N4, while neuron N2 is without activity. Thus, the
input signal is divided among the different neurons accord-
ing to its frequency components. The difference in shape
between simulated andmeasured spikes results from parasitic

FIGURE 8. Measured encoding principle with four R&F neurons.

capacitive effects in themeasurement setupwhichwe verified
by simulations.

In addition, signal leakages, as described in the simula-
tions, can also lead to the neuron not recording individual
periods if the threshold value is too high. A too-low threshold
value can lead to the consequence that the neuron consid-
ers frequencies, which can be assigned to another neuron.
However, the measurement results shown that the four R&F
neurons represent three of the four frequencies.
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V. DISCUSSION, LIMITATIONS, AND CONCLUSION
In the next paragraphs, we will discuss our work. Following
this, we will talk about limitations that emerge from our point
of view and finally briefly conclude our work.

A. DISCUSSION
In this work we present one solution of the direct encoding of
analog signals into spikes by converting the temporal domain
into a spike-domain with the conversion into the frequency
components. Therefore, the spike train represents the infor-
mation in spatio-temporal events. The fundamental idea was
first demonstrated by [16] with software simulations and the
comparison with the FFT.

We first introduce the theoretical background of spiking
neurons and the R&F model which acts like a frequency
selective filter. Thus, we can categorize the encoding into the
taxonomy of [18] as temporal coding in the subgroup filter-
based. Important to understand that the rate of the spikes
only appears due to the temporal existence of the signal
and so the rate itself does not carry the information of the
frequency but the spike itself. Additionally, we observed that
the generated spike shape depends highly on the amplitude
the neuron’s threshold, realizing a variant of graded spikes
similar to [33]. In a digital implementation such graded spikes
would increase the communication between neurons heavily
but in analog it is an inherent feature of the technology. How-
ever, there are solutions to generate invariant spike events
with proper synaptic implementations.

Reference [27] demonstrated the current injection encod-
ing with Leaky Integrate-and-Fire (LIF) neurons which inte-
grate the incoming current and generate a spike when the
threshold is exceeded. The main difference between these
two encoding methods is in the inherent properties of the
neuron. The R&F is superior because of its frequency selec-
tivity, enabling the usage in various applications like speech
recognition [43] or radar interference detection [17].

We verified the circuit implementation with simula-
tions and hardware measurements of the fabricated chip.
We demonstrated the successful continuous real-time con-
version of sinusoidal signal to spatio-temporal spikes. In
addition, but not shown in this paper, we have tested the
circuit under extreme temperature conditions. We tested the
functionality at −40 ◦C as well as at 125 ◦C. For both the
cold temperature and the warm temperature, the functionality
of the circuit is obtained. However, the temperature changes
cause a degradation of the output gain of the bandpass filter.
Accordingly, for full functionality of the R&F neuron, the
threshold at the comparator must be adjusted.

Since this is the first R&F encoder in analog hardware there
are still some challenges to solve which we further describe
in the next section.

B. LIMITATIONS
As already mentioned besides the successful verification of
the encoder functionality with analogR&F neurons, there still

some challenges and improvements exist. We observed a few
cases where the input frequencies of the input signal were
either too close to each other or summed up improperly. As a
result, a wrong neuron is also partially or even completely
excited unless the threshold is accurately chosen. An adaptive
threshold could be an approach for this problem. In addition,
with the solution presented here, we can evaluate a relatively
small frequency spectrum. For encoding multiple frequen-
cies, we recommend implementing neurons with fixed res-
onance frequencies with optimized quality factors. Due to
non-linear behavior of different components, a broad yield of
resonance frequencies is challenging. An optimization to sin-
gle frequency points would be the simplest solution. In addi-
tion, themeasurements indicate that fabrication tolerances are
also an important challenge. For a specific circuit that needs
to select a certain spectrum of frequencies, an improvement in
the robustness of manufacturing tolerances is indispensable.
Additionally, challenging is the actual area consumption of
a single neuron. To consider frequencies in the lower mega-
hertz range, we need either large resistors or large capacitors.
Both, however, consume a corresponding amount of area.
An alternative way of implementing appropriate resonance
frequencies would be preferable for integrating such circuits
as encoding stages for SNNs. A possible solution for this
could be the use of so-called pseudo-resistors [44]. These
can be implemented relatively space-saving and with large
resistance values. However, we suspect that this could lead to
new problems regarding the stability of the system.

C. CONCLUSION
SNNs are expected to be a potentially exciting approach to
achieve an energy-efficient and effective solution for data
processing. To enable efficient signal processing with SNNs,
analog signals must be encoded from a temporal domain
into a spiking domain. Various concepts are available for
this purpose. One possibility is the R&F neurons, where a
population acts like a frequency-selective filter bank. The
individual neurons generate an output spike when the input
signal components match the neuron’s resonance frequency.
This work demonstrated this current injection encoding with
a novel circuit for the R&F neuron. We designed the circuit
based on two fundamental circuits, a bandpass filter, and a
comparator. First, we demonstrated the results of the R&F
encoding scheme from a simulative basis and afterwards on
an experimental basis with the fabricated circuit in a 130 nm
BiCMOS technology. We show an approach for a direct
analog to spike conversion with this neuron model, which can
also be used as a hidden neuron in deeper network architec-
tures. Nevertheless, we keep in mind some limitations and
challenges that must be addressed to optimize the stability
and performance of the R&F encoding.
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