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ABSTRACT This article analyzes exponential synchronization for a class of Cohen-Grossberg neural
networks with time-varying delays. Firstly, according to the concept of synchronization, a controlled
response system is constructed, and the error system is obtained. Secondly, by establishing suitable Lyapunov
functions and using inequality techniques, sufficient conditions for exponential synchronization of the error
system under different controllers are provided, and the exponential convergence rate of the system is given.
Finally, two examples are used to verify the effectiveness of the theoretical results.

INDEX TERMS Cohen-grossberg neural network, time-varying delays, exponential synchronization,
impulsive control.

I. INTRODUCTION
Cohen-Grossberg neural network(CGNN) is a kind of neu-
ral network first proposed by Cohen and Grossberg in [1].
In recent decades, CGNN has attracted much attention due to
its potential and widespread applications in the fields of pat-
tern recognition, model prediction, optimization problems,
signal processing. The realization of neural networks depends
on their dynamic behavior, such as stability, convergence,
oscillation and periodicity, and many research results have
also appeared [2], [3], [4], [5], [6], [7], [8], [9], [10]. Time
delay may result from the onset of non-vanishing oscillations
and may affect the dynamic behavior. In addition, due to the
limited speed of amplifier switching and signal transmission,
time delays are often unavoidable. And the application of
time delay in the system are shown in [11], [12], [13], and
[14]. Therefore, it is meaningful to study time-delays sys-
tems.

It is known that impulsive control, as a discontinuous
control strategy, is activated only at some isolated moments,
and impulse control has a huge impact on the stability of the
system. Especially, some systems are stable without consid-
ering impulse control. Once impulsive control is introduced,
the original system may become unstable, the structure of the
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system has changed. It is worth noting that some practical
systems are inevitably affected by time delay and impulse
disturbance, which may lead to undesirable phenomena such
as oscillation and instability in the system. Therefore, it is
necessary to consider the influence of these two factors on
the system’s stability. In recent years, some results have been
obtained on the asymptotic behavioral properties of impulsive
neural networks [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24]. The exponential convergence of impulsive inertial
neural networks is explored in [17], the exponential stability
of impulsive complex-valued neural networks is discussed
in [18] and [19], the robust passivity and stability of uncertain
complex-valued impulsive neural network is investigated in
[20], and the exponential synchronization of neural networks
is proposed in [21].

Generally speaking, synchronization is an important
dynamic characteristic of the networks. The research on syn-
chronization can further reveal the dynamic characteristics of
networks in the real world and help to understand various
real-world phenomena. It can also be applied to the fields
of network control, information processing, and complex
computing. This kind of research can be widely applied in
multiple sciences and has received attention from researchers
in many fields. The main method to realize network syn-
chronization is to design the appropriate controller, such
as impulsive control, feedback control and pinning control.
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Meanwhile, some scholars have studied different types of
synchronization, such as asymptotic synchronization [25],
[26], [27], [28], finite-time synchronization [29], [30], and
fixed-time synchronization [5], [31].

Based on the above analysis, there are few studies on
CGNN synchronization under the impulse control strategy.
Based on the existing research results, it is meaningful to
further explore the exponential synchronization of CGNN
with impulsive effects. Therefore, this paper mainly designs
two different types of control (including impulsive control) to
explore the exponential synchronization of CGNNwith time-
varying delays. It contains the following three contributions:
(i) The synchronization of CGNN are investigated in [27]
and [30], where the derivative of time-varying delay is less
than one. Theorem 1 studies the exponential synchronization
of CGNN with impulsive effects, and removes the restriction
on time-varying delay derivatives;
(ii) The authors discusses the case of p = 2 in [28], this paper
focuses on the case where p is a positive number, and gives
the exponential convergence rate of the system;
(iii) When the model is simplified to a Hopfield neural net-
work, the results with impulse effect studied in this paper also
improve and extend some existing results.

This article is structured as follows. Section II introduces
the model description, definition and lemma. The exponential
synchronization of the system is studied in Section III. Two
examples are obtained in Section IV. Finally, Section V gives
the conclusion.

For simplicity of description, the following notations are
given: Z is the set of positive integers. ẇ(t) represents
the derivative of w(t) with respect to the time t . N =

{1, 2, · · · , n}.

II. PRELIMINARIES
Consider the CGNN with delays:

ẇj(t) = αj(wj(t))
(

− hj(wj(t)) +

n∑
r=1

ajr fr (wr (t))

+

n∑
r=1

djr fr (wr (t − ρ(t))) + uj(t)
)
, (1)

where j ∈ N , wj(t) denote the system state, αj(·), hj(·),
fj(·) represent amplification function, behave function and
activation function, respectively. ajr , djr are the connection
weights of neurons and uj(t) is the external input, ρ(t) is
the time-varying delay and satisfies 0 ≤ ρ(t) ≤ ρ. The
initial condition is wj(s) = ϕj(s), s ∈ [−ρ, 0] and ϕj(s) is
a continuous bounded function.
Remark 1: The model (1) includes Hopfield neural net-

work, cellular neural network, and BAM neural network as
special cases. The system (1) for αj(wj(t)) = 0 are investi-
gated in [23] and [24], the derivative of the delay is less than
1 at (1) is needed in [7]. Compared with [7], [23], and [24],
the model in this paper is more general.

To study the synchronization of the system, let the system
(1) be the drive system, and the response system is

żj(t) = αj(zj(t))
(

− hj(zj(t)) +

n∑
r=1

ajr fr (zr (t))

+

n∑
r=1

djr fr (zr (t − ρ(t))) + uj(t)
)

+ Ij(t), (2)

where zj(t) is the state of the neuron, the remaining symbols
are the same as system (1), Ij(t) is the control input. zj(s) =

φj(s)(s ∈ [−ρ, 0]) is the initial condition of (2) and φj(s) is a
continuous bounded function.

Let ej(t) = zj(t) − wj(t), the following error system is
obtained by subtracting (1) from (2)

ėj(t) = −
(
αj(zj(t))hj(zj(t)) − αj(wj(t))hj(wj(t))

)
+ αj(zj(t))

( n∑
r=1

ajr fr (er (t))

+

n∑
r=1

djr fr (er (t − ρ(t)))
)

+
(
αj(zj(t)) − αj(wj(t))

)( n∑
r=1

ajr fr (wr (t))

+

n∑
r=1

djr fr (wr (t − ρ(t))) + uj(t)
)

+ Ij(t), (3)

where fr (er (t)) = fr (zr (t)) − fr (wr (t)), fr (er (t − ρ(t))) =

fr (zr (t − ρ(t))) − fr (wr (t − ρ(t))).
The assumptions of this paper are as follows:
Assumption A1: If αj(·)(∀j ∈ N ) is a differentiable func-

tion, and there exist positive constant αj, αj, α̃j such that

0 < αj < αj(·) < αj, |α̇j(·)| < α̃j.

Assumption A2: If gj(·) = αj(·)hj(·) is a differentiable
function and its derivative is bounded, there exist g̃j > 0 and
g
:
j > 0 satisfying the inequality

0 < g
:
j < ġj(·) < g̃j.

Assumption A3: Assume that fj(·) is globally Lipschitz
continuous, that is, for any real number µ, ν, there exist
nonnegative constant lj and f j such that

|fj(µ) − fj(ν)| < lj|µ − ν|, |fj(µ)| < f j.

Assumption A4: If uj(t) is a bounded function, and there
exists uj > 0 such that |uj(t)| ≤ uj.
Definition 1 ( [27]): If there areM > 0 and ε > 0 satisfy

n∑
j=1

|zj(s) − wj(s)|p ≤ M |φz − ϕw|
pe−εt , t ≥ t0,

where |φz −ϕw|
p

= supt0−ρ≤s≤t0

∑n
j=1 |φj(s)−ϕj(s)|p. Then

system (1) and system (2) can reach exponential synchroniza-
tion,
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Lemma 1 ( [32]): Consider the following differential
equations

D+g(t) ≤ −ag(t) + b sup
t−ρ≤s≤t

g(s), t ̸= tk ,

g(tk ) = âkg(t
−

k ) + b̂k sup
tk−ρ≤s≤tk

g(s), k ∈ Z,

where g(t) ≥ 0 is a continuous function, when t = tk , if 0 ≤

b < a and exists δ > 1, for ∀t ∈ [tk − tk+1), such that
tk+1 − tk ≥ δρ, then

g(t) ≤ η1 · · · ηk+1ekγρ sup
t0−ρ≤s≤t0

g(s)e−γ (t−t0),

where ηi = max{1, âi + b̂ieγρ
}(i = 1, 2, · · · , k + 1), γ is

the only positive real root of γ = a − beγρ . In particular,
if ξ = supk=1,2···{1, âi + b̂ieγρ

}, then

g(t) ≤ ξ sup
t0−ρ≤s≤t0

g(s)e
−

(
γ−

ln(ξeγρ )
δρ

)
(t−t0)

, ∀t ≥ t0.

III. EXPONENTIAL SYNCHRONIZATION OF THE SYSTEM
The design control input is Ij(t) = −κjkej(t)δ(t− t−k ), where

δ(t) is the Dirac function, {tk , k ∈ Z} is the impulse sequence,
and tk is the fixed impulse moment satisfy 0 < tk−1 < tk
and limk→∞ tk = ∞. This means that the state of the system
(3) jumps at tk , and κjk represents the impulsive control gain.
At this point, it is necessary to design a suitable control gain
and impulsive sequence so that (1) and (2) are exponentially
synchronized. Based on the control input Ij(t), the system (3)
can be written in the form of

ėj(t) = −
(
αj(zj(t))hj(zj(t)) − αj(wj(t))hj(wj(t))

)
+αj(zj(t))

( n∑
r=1

ajr fr (er (t))

+

n∑
r=1

djr fr (er (t − ρ(t)))
)

+
(
αj(zj(t)) − αj(wj(t))

)( n∑
r=1

ajr fr (wr (t))

+

n∑
r=1

djr fr (wr (t − ρ(t))) + uj(t)
)
,

ej(tk ) = −(κjk − 1)ej(t
−

k ), t = tk .

(4)

Theorem 1: Under the A1−A4, system (1) and system (2)
are exponentially synchronized via impulsive effects, in other
words, system (4) is exponentially synchronized, and the
exponential convergence rate is γ −

ln(ξeγρ )
δρ

, if there exist
positive number aj, bj(∀j ∈ N ), δ > 1 and p is a positive
integer, the following conditions hold
(i) aj = pg

:
j − pα̃juj − αj

∑n
r=1 |arj|lj −

∑n
r=1(|ajr | +

|djr |)(pα̃jf r + (p − 1)αr lr ), bj =
∑n

r=1 αr |drj|lj, where a =

min1≤j≤n{aj} > b = max1≤j≤n{bj};
(ii) There exist scalars γ >

ln(ξeγρ )
δρ

, such that tk − tk−1 ≥

δρ, where ηk = max1≤j≤n | − (κjk − 1)|p and ξ =

max{1,max{ηk}}, γ is the only positive real root of γ =

a− beγρ .
Constructing the following Lyapunov function:

V (t) =

n∑
j=1

|ej(t)|p. (5)

Proof: On account of Lagrange mean value theorem g(z+

△z) − g(z) = ġ(z+ θ△z) · △z(0 < θ < 1), one obtains

αj(zj(t)) − αj(wj(t))

= α̇j
(
wj(t) + θ1(zj(t) − wj(t))

)
ej(t),

gj(zj(t)) − gj(wj(t))

= ġj
(
wj(t) + θ2(zj(t) − wj(t))

)
ej(t) (6)

where 0 < θ1, θ2 < 1.
When t ̸= tk , calculating the derivative of (5) along (4),

and combining (6), one gets

D+V (t) ≤

n∑
j=1

[
pα̃j

( n∑
r=1

(|ajr | + |djr |)f r + uj
)
|ej(t)|p

+ pαj|ej(t)|p−1( n∑
r=1

|ajr |lr |er (t)|

+

n∑
r=1

|djr |lr |er (t − ρ(t))|
)
− pg

:
j|ej(t)|p

]
. (7)

Using pµνp−1
≤ µp

+ (p− 1)νp(µ, ν > 0), yields

p|er (t)||ej(t)|p−1
≤ |er (t)|p + (p− 1)|ej(t)|p,

p|er (t − ρ(t))||ej(t)|p−1
≤ |er (t − ρ(t))|p + (p− 1)|ej(t)|p.

(8)

Combining (7) and (8), one gets

D+V (t) ≤

n∑
j=1

( n∑
r=1

(|ajr | + |djr |)(pα̃jf r + (p− 1)αr lr )

− pg
:
j + pα̃juj + αj

n∑
r=1

|arj|lj
)
|ej(t)|p

+

n∑
j=1

n∑
r=1

αr |drj|lj|er (t − ρ(t))|p

≤ −a
n∑
j=1

|ej(t)|p + b
n∑
j=1

|ej(t − ρ(t))|p

≤ −aV (t) + b sup
t−ρ≤s≤t

V (s). (9)

When t = tk , one has

V (tk ) =

n∑
j=1

| − (κjk − 1)|p|ej(t
−

k )|
p

≤ ηkV (t
−

k ). (10)
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Combining (9)-(10) and Lemma 1, one obtains

V (t) ≤ ξ sup
t0−ρ≤s≤t0

V (s)e−(γ−
ln(ξeγρ )

δρ
)(t−t0), ∀t > t0. (11)

According to Definition 1 and (11), it follows that system
(1) and system (2) are exponentially synchronized under
impulsive control.
Remark 2: Aouiti and Dridi investigate the global expo-

nential stability on impulsive CGNNwith constant time delay
in [15]. Zhang et al. study the exponential synchronization
of CGNN with impulse control in [27], and Peng et al.
investigate finite-time synchronization for CGNNwithmixed
time delays in [30]. However, the derivative of the time delay
in [27] and [30] are required to be no greater than one.
It should be noted that the restricted condition is removed in
Theorem 1 of this paper.
Design feedback control Ij(t) = −κjej(t), where κj > 0 is

the control gain. That is, it is only necessary to design a
suitable control gain κj so that (1) and (2) are exponentially
synchronized.
Theorem 2: Under A1−A4 and ρ̇(t) ≤ ρ̃ < 1, given the

constants κj > 0, ε > 0, qjr (j, r ∈ N ) and p is a positive
integer, the feedback control is Ij(t) = −κjej(t), the following
conditions are satisfied
(i) ε − pg

:
j − pκj + pα̃juj +

∑n
r=1 |arj|ljαr +

∑n
r=1 |qjr | +∑n

r=1(|ajr | + |djr |)(pα̃jf r + (p− 1)lrαj) ≤ 0;

(ii)
∑n

r=1(|drj|ljαr − (1 − ρ̃)|qjr |e−ερ) ≤ 0.

Then system (1) and system (2) can realize exponential syn-
chronization.
Proof: Establishing the following Lyapunov functional

V (t) =

n∑
j=1

(
eεt |ej(t)|p +

n∑
r=1

|qjr |
∫ t

t−ρ(t)
eεs|ej(s)|pds

)
.

(12)

Calculating the derivative of (12) along (3), one gets

D+V (t) ≤

n∑
j=1

[(
ε − pg

:
j − pκj + pα̃juj +

n∑
r=1

|qjr |

+ pα̃j
n∑

r=1

(|ajr | + |djr |)f r
)
eεt |ej(t)|p

+ peεt |ej(t)|p−1αj

( n∑
r=1

|ajr |lr |er (t)|

+

n∑
r=1

|djr |lr |er (t − ρ(t))|
)

− (1 − ρ̇(t))
∑
r=1

|qjr |eε(t−ρ(t))
|ej(t − ρ(t))|p

]
.

(13)

Combining (8) and (13), one has

D+V (t) ≤

n∑
j=1

[(
ε − pg

:
j − pκj + pα̃juj +

n∑
r=1

|arj|ljαr

+

n∑
r=1

|qjr | +

n∑
r=1

(|ajr | + |djr |)(pα̃jf r

+ (p− 1)lrαj)
)
|ej(t)|p

+

n∑
r=1

|djr |lrαj|er (t − ρ(t))|p

− (1 − ρ̃)
n∑

r=1

|qjr |e−ερ
|ej(t − ρ(t))|p

]
eεt

≤ 0. (14)

For ∀t ≥ 0, it can be obtained that

V (0) =

n∑
j=1

(
|ej(0)|p +

n∑
r=1

|qjr |
∫ 0

−ρ(0)
eεs|ej(s)|pds

)
≤ m|φz − ϕw|

p,

where |φz−ϕw|
p

= sup−ρ≤t≤0
∑n

j=1 |φj(t)−ϕj(t)|p,m = 1+

ρ max1≤j≤n
{ ∑n

r=1 |qjr |
}
. Then V (t) is a decreasing function

and
n∑
j=1

eεt |ej(t)|p ≤ V (t) ≤ V (0) ≤ m|φz − ϕw|
p.

Therefore,
n∑
j=1

|ej(t)|p ≤ me−εt
|φz − ϕw|

p. (15)

It can be concluded that system (1) and system
(2) can realize exponential synchronization according to
Definition 1.
Remark 3: Ke and Li [28] consider the exponential syn-

chronization of the error systemwith constant time delay, and
the authors mainly discusses the case of p = 2 in Theorem
1. However, it is noteworthy that p is a positive integer in this
paper, the results of which are more general.
Remark 4: Theorem 1 and Theorem 2 investigate different

control inputs. Theorem 1 focuses on exponential synchro-
nization of the system under impulse control, while Theorem
2 discusses exponential synchronization of the system under
linear feedback control. Therefore, Theorem 1 and Theorem
2 cannot contain each other.
Remark 5: Through the analysis of this paper, djr is a

constant, the complexity of fr (wr (t − ρ(t))) depends on the
number of neurons and the selection of the activation function
fr (·). As far as we know, the activation function in the neu-
ral network is generally selected as sigmoid(.), tanh(.) etc..
Therefore, the algebraic conditions obtained in Theorem 1
and Theorem 2 are simple and easy to implement.
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If αj(·) = αj and hj(·) = hj, αj and hj are normal numbers,
the system (1) becomes a ordinary cellular neural network
with delays

ẇj(t) = −αjhjwj(t) + αj

( n∑
r=1

ajr fr (wr (t))

+

n∑
r=1

djr fr (wr (t − ρ(t))) + uj(t)
)
. (16)

System (16) is the drive system, and the following is the
response system

żj(t) = −αjhjzj(t) + αj

( n∑
r=1

ajr fr (zr (t))

+

n∑
r=1

djr fr (zr (t − ρ(t))) + uj(t)
)

+ Ij(t). (17)

Let ej(t) = zj(t) − wj(t), and the error system is obtained by
subtracting (16) from (17)

ėj(t) = −αjhjej(t) + αj

( n∑
r=1

ajr fr (er (t))

+

n∑
r=1

djr fr (er (t − ρ(t)))
)

+ Ij(t). (18)

Corollary 1: The design feedback control is Ij(t) =

−κjej(t), where kj is positive constant. Under the A1−A4 and
ρ̇(t) ≤ ρ̃ < 1, for given constant ε > 0 and qjr (j, r ∈ N ),
such that
(i) ε − 2g

:
jhj − 2κj +

∑n
r=1(|ajr | + |djr |)αjlr +

∑n
r=1 |qjr | +∑n

r=1 |arj|ljαr ≤ 0;

(ii)
∑n

r=1(|drj|ljαr − (1 − ρ̃)|qjr |e−ερ) ≤ 0.

Then system (16) and system (17) are exponentially synchro-
nized. And the Lyapunov functional is established

V (t) =

n∑
j=1

(
eεt |ej(t)|2 +

n∑
r=1

|qjr |
∫ t

t−ρ(t)
eεs|ej(s)|2ds

)
(19)

Remark 6: When p = 2 in Theorem 2, Corollary 1 is the
general case of Theorem 2, then it can be found that the case
of theorem 2 is more general.

IV. EXAMPLES
Consider the following n-dimensional CGNN

ẇj(t) = αj(wj(t))
(

− hj(wj(t)) +

n∑
r=1

ajr fr (wr (t))

+

n∑
r=1

djr fr (wr (t − ρ(t))) + uj(t)
)
. (20)

The response system is described as

żj(t) = αj(zj(t))
(

− hj(zj(t)) +

n∑
r=1

ajr fr (zr (t))

+

n∑
r=1

djr fr (zr (t − ρ(t))) + uj(t)
)

+ Ij(t). (21)

Example 1: Choosing the 3-dimensional CGNN.
a11 = 0.2, a12 = −0.14, a13 = −0.14, a21 = 0.13, a22 =

−0.25, a23 = 0.1, a31 = −0.11, a32 = −0.1, a33 = 0.19,
d11 = 0.15, d12 = −0.2, d13 = 0.09, d21 = −0.16, d22 =

0.17, d23 = 0.2, d31 = 0.1, d32 = −0.14, d33 = −0.2,
u1(t) = 0.2 sin(t), u2(t) = 0.2 cos(t), u3(t) = 0.3 cos(t),
hj(·) = 1.5(·), αj(·) = 1 +

1
2(1+(·)2)

, fj(·) =
1
2 sin(

·

2 ), Ij(t) =

−κjk (zj(t) − wj(t))δ(t − t−k ), κjk = 1.6, ρ(t) = 1.5 sin2(t),
j = 1, 2, 3. So, one can get

1 ≤ αj(·) ≤ 1.5, |α̇j(·)| ≤ 0.5,

gj(·) =
3
2
(·)

(
1 +

1
2(1 + (·)2)

)
,

3
4

≤ ġj(·) =
3
2(

1 +
1 − (·)2

2(1 + (·)2)2

)
≤

9
4
,

|fj(µ) − fj(ν)| =
1
2

∣∣∣(sin(ξ
2
))′(µ − ν)

∣∣∣ ≤
1
4
|µ − ν|,

where ξ ∈
[
min{µ, ν},max{µ, ν}

]
. Then, lj = 0.25, f j =

0.5, g
:
j = 0.75, g̃j = 2.25, αj = 1, αj = 1, 5, α̃j = 0.5,

u1 = 0.2, u2 = 0.2, u3 = 0.3, ρ = 1.5, j = 1, 2, 3.
When p = 2, it can be calculated that a1 = 0.3300, a2 =

0.2325, a3 = 0.3112, b1 = 0.1537, b2 = 0.1913, b3 =

0.1837, a = 0.2325 > b = 0.1913. Choosing δ = 2 > 1,
tk − tk−1 = 5 > 3, and the initial condition of the system are
ϕ1(s) = 0.2, ϕ2(s) = −0.6, ϕ3(s) = −0.3, φ1(s) = −0.5,
φ2(s) = 0.4, φ3(s) = 0.1, where s ∈ [−1.5, 0].
The state trajectory of system (20) and system (21) are

shown in Fig. 1, and the error curves of (20) and (21) are
shown in Fig, 2(a). According to Theorem 1, (20) and (21)
can reach synchronization under impulsive control, and their
exponential convergence rate is 0.0159. If the error system
is not affected by impulsive control, then system (20) and
system (21) are not synchronized, which is shown in Fig. 2(b).
Example 2: Choosing the 2-dimensional CGNN in Exam-

ple 1 of [30].
a11 = 1.8, a12 = −0.1, a21 = −2, a22 = 0.4, d11 =

−1.7, d12 = −0.6, d21 = 0.5, d22 = −2.5, u1(t) =

u2(t) = 0, h1(·) = 1.4(·), h2(·) = 0.4(·), αj(·) = 0.7+
0.1

1+(·)2
,

fj(·) = 0.4 tanh(·), Ij(t) = −κj(zj(t) − wj(t)), κ1 = 3.68,
κ2 = 2.56, ρ(t) =

et
1+et , j = 1, 2. So, one can obtain

0.7 ≤ αj(·) ≤ 0.8, |α̇j(·)| ≤ 0.1,

0.84 ≤ ġ1(·) = 1.4
(
0.7 + 0.1

1 − (·)2

(1 + (·)2)2

)
≤ 1.12,
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FIGURE 1. (a). Trajectories of w1(t) and z1(t); (b).Trajectories of w2(t) and
z2(t); (c). Trajectories of w3(t) and z3(t).

FIGURE 2. (a). Time responses of error states e1(t), e2(t), e3(t) with the
controller; (b). Time responses of error states e1(t), e2(t), e3(t) without
the controller.

0.24 ≤ ġ2(·) = 0.4
(
0.7 + 0.1

1 − (·)2

(1 + (·)2)2

)
≤ 0.32,

|fj(µ) − fj(ν)| ≤ 0.4|µ − ν|.

Then, lj = 0.4, f j = 0.4, αj = 0.7, αj = 0.8, α̃j = 0.1,
g
:
1 = 0.84, g

:
2 = 0.24, g̃1 = 1.12, g̃2 = 0.32, ρ = 1, ρ̃ =

0.25, j = 1, 2.
Selecting ϕ1(s) = 0.2, ϕ2(s) = −0.1, φ1(s) = −0.1,

φ2(s) = 0.2, where s ∈ [−1, 0] as the initial value of the
system. When p = 1, let q11 = q12 = q21 = q22 = 1 and
ε = 0.1. It can be obtained through simple calculation

ε − g
:
1 − κ1 +

2∑
r=1

|ar1|l1αr +

2∑
r=1

|q1r |

+

2∑
r=1

(|a1r | + |d1r |)̃α1f r = −1.0360,

ε − g
:
2 − κ2 +

2∑
r=1

|ar2|l2αr +

2∑
r=1

|q2r |

+

2∑
r=1

(|a2r | + |d2r |)̃α2f r = −0.3240,

FIGURE 3. (a). Trajectories of w1(t) and z1(t); (b).Trajectories of w2(t) and
z2(t).

FIGURE 4. (a). Time responses of error states e1(t), e2(t) in this paper;
(b). Time responses of error states e1(t), e2(t) in Example 1 of [30].

2∑
r=1

(
|dr1|l1αr − (1 − ρ̃)|q1r |e−ερ

)
= −0.6533,

2∑
r=1

(
|dr2|l2αr − (1 − ρ̃)|q2r |e−ερ

)
= −0.3653.

The synchronization trajectories of (20) and (21) are shown
in Fig. 3, and the error curves are described in Fig. 4(a). Under
the condition of Theorem 2, (20) and (21) are exponentially
synchronized with exponential convergence rate is 0.1.
Remark 7: Peng et al. explore the finite-time synchroniza-

tion of the error system using the feedback controllers in [30].
It is worth noting that in Example 1 of [30], the delay in (H5)
satisfies τ̇ (t) =

et

(1+et )2
≤

1
4 = µ instead of selecting µ = 0.

Based on this, if the activation function is fj(t) = 0.4 tanh(t),
the conditions of Example 1 in [30] is satisfied.
Remark 8: Let fj(t) = 0.4 tanh(t). Fig. 3(b) shows that

Example 1 in [30] can be stabilized in finite time T =

11.5960. As shown in Fig. 3(a), the error system here can
also be stabilized within time 11.5960. Although the stability
time is difficult to calculate, theoretically, the research on
exponential synchronization in this paper is closer to the
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situation that the error system cannot completely converge to
zero in practice.

V. CONCLUSION
Based on the concept of synchronization, this paper con-
structs the controlled response system to obtain the error
system, establishes suitable Lyapunov functions, and uses
the inequality technique to explore the exponential syn-
chronization of CGNN with delays. According to the
restriction of the time delay derivative, two sufficient con-
ditions for the error system to achieve exponential syn-
chronization under different controllers are considered.
Finally, the validity of the theoretical results is given by
examples.

Exponential synchronization is theoretically closer to
the case where the actual error system cannot fully con-
verge to zero, but it is difficult to obtain the convergence
time of exponential synchronization. The existing literature
on finite-time synchronization of nonlinear systems, such
as fixed/prescribed time synchronization, is valuable for
research. Therefore, the study of finite-time synchronization
for nonlinear systems is our future work.
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