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ABSTRACT As the grid coverage rises, foreign objects invade more and more frequently, causing grid
failures to rise every year. To address this issue, this paper proposes a deep learning-based transmission
line unmanned inspection of foreign objects recognition algorithm. The algorithm is based on YOLOv7
(You Only Look Once) algorithm, combining with hyperparameter optimization based on genetic algorithm
(GA) and space-to-depth (SPD) convolution to complete the foreign object recognition of transmission
line Unmanned Aerial Vehicle (UAV) images. The proposed method can promptly determine and locate
these targets’ presence in aerial images. Finally, this paper compares the improved YOLOv7 algorithm with
other YOLO series algorithms (Faster-rcnn, Centernet, and other target detection models). The comparison
results show that the method has the highest Mean Average Precision (mAP) of 92.2% and the Frames Per
Second (FPS) of 19 is second only to Centernet. Compared with the unimproved YOLOvV7, the average
accuracy in the recognition of tower cranes has increased by 11.9%, which is the most obvious improvement
in accuracy compared with other detection targets. Meanwhile, the hyperparameter optimization based on
genetic algorithm speeds up the convergence of the model.

INDEX TERMS Transmission line, foreign objects, YOLOv7, SPD convolution.

I. INTRODUCTION
In order to meet the increasing electricity demand, most

robotics [4], transient analysis [5], and deep learning [6]
have been applied to the maintenance of electrical equipment.

countries are vigorously promoting the construction of
high-voltage transmission lines. So, more and more trans-
mission lines are passing through densely populated towns
and harsh mountainous areas, which increases the probability
of damage to transmission lines while achieving freedom
of electricity for residents. To ensure the stability of the
power supply, the relevant departments will conduct man-
ual inspections to check whether the grid accessories are
replaced [1] and whether there is potential external damage
caused by foreign intrusion [2]. With the increase of grid cov-
erage, manual inspection has become a costly and inefficient
problem. To solve the above problems, 5G technology [3],
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In this paper, an unmanned inspection method of transmission
lines based on deep learning has been proposed. The key to
this method is the training and deploying of target detection
models. In recent years, many scholars have found that the
deep learning-based transmission line patrol method has the
characteristics of low cost and high accuracy, which is better
than the traditional manual patrol method.

The commonly used target detection algorithms in the
unmanned inspection of transmission lines based on deep
learning are YOLO [7] and Convolutional Neural Networks
(CNN) [8]. Literature [9] proposes a Cascade RCNN model
for detecting the presence of defects in seismic hammers,
which is designed using a deep feature extraction network
instead of Resnet and a bi-directional feature fusion network
instead of Feature Pyramid Networks (FPN) to improve the
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model’s feature extraction and feature fusion capabilities.
A YOLOVS model for insulator defect detection is proposed
in the literature [10]. The model is designed with a dynamic
weight assignment idea combined with the characteristics
of the sample data set to improve the learning ability for
complex samples. Literature [11] proposes a multi-task con-
volutional neural network for detecting transmission line
fittings for aerial images with background complexity and
variability. The model combines a Region Proposal Network
(RPN) with a multi-scale training strategy to improve the
mAP on the test dataset. A YOLOV3 dense network model for
insulator identification is proposed in the literature [12], and
the detection accuracy of the model in a complex background
environment is improved by incorporating a multi-feature
fusion module and a multi-feature mapping module. Liter-
ature [13] proposes a YOLOv3 detection model combined
with FPN networks, which reduces the insulator leakage rate
while preventing overfitting through improved information
utilization and model pruning. Literature [14] proposes an
improved Faster-rcnn algorithm for defect detection in trans-
mission line fittings, in which the model recognition accuracy
and inference speed are improved by adjusting the convolu-
tional kernel size of CNN and data expansion. Inspired by
the human visual system, a Dual-Domain Network (DDnet)
model incorporating an Receptive Field Block (RFB) module
is proposed in literature [15], which improves the model’s
perceptual field and small target recognition accuracy by
introducing an attention mechanism, and its performance is
better than the traditional RetinaNet model. In the above
work, primarily deep learning is used for defect detection of
transmission line accessories, in addition to transmission line
prevention of external damage is also an essential work of
unmanned patrol.

Most external damage to transmission lines is caused by
foreign object intrusion. An improved YOLOX algorithm
is proposed in literature [16] for identifying foreign objects
on transmission line corridors. The algorithm first uses a
pyramid pooling structure to implement a multi-scale learn-
ing approach while introducing an attention mechanism to
achieve focused learning of the target. Finally adjusts the loss
function and introduces Generalized Intersection over Union
(GIOU) loss to make the improved YOLOX outperform Sin-
gle Shot MultiBox Detector (SSD), Faster R-CNN, YOLOVS,
and other algorithms. Literature [17] proposes a transmission
line foreign object detection method by combining convo-
lutional neural networks with random forests. The method
uses a convolutional neural network to extract target features
and a random forest algorithm for target classification. The
above changes prove that the approach outperforms individ-
ual network model structures such as GooglLeNet, Residual
Networks (ResNet), and AlexNet. Literature [18] proposes
an Overhead Transmission Line (OTL) classifier that first
classifies whether an image is a foreign object using a binary
classifier and then uses Faster-rcnn for specific identification
of the foreign object. Literature [19] presents an improved
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bird’s nest recognition algorithm for YOLOv3, centered on
improving feature fusion. A fusion of high-level semantic
features with low-level semantic features is achieved by
adding an attentional feature fusion network, which makes
the improved YOLOV3 superior to the traditional YOLOV3.
Literature [20] focuses on deploying the YOLOVS algorithm
and applying YOLOv5-s to the DJI M300 RTK UAV to
solve the problems of poor real-time and low accuracy of
the current UAV patrol. Literature [21] applies Faster-rcnn
to an unmanned inspection of bird nests on transmission
lines, in which k-mean clustering is used to obtain anchor
frames with the inclusion of focal loss functions, etc. so that
the model achieves high recognition accuracy. In addition
to detecting objects such as bird’s nests, kites, and plastics,
foreign object detection on transmission lines also requires
identifying the presence of large engineering vehicles around
transmission lines because engineering vehicles can touch
and touch the lines during construction. Hence, the literature
focuses on the recognition model of YOLOV3 on engineering
vehicles [22]. Firstly, Darknet-53 is replaced by Mobilenetv2,
and depth-separable convolution is substituted for standard
convolution, which reduces the model learning parameters
without degrading the model performance and introduces the
idea of Fully Convolutional One-Stage (FCOS) to reduce the
complexity of the network. The improved YOLOv3 simpli-
fies the network and has a faster inference speed without
any loss of accuracy. Target localization is usually used to
determine the location of targets in unmanned patrol work.
However, the literature has also achieved remarkable results
using the semantic segmentation algorithm Mask-rcnn for
identifying foreign objects on transmission lines [23].

Many scholars have shown strong interest in deep learning
in recent years, and more deep learning algorithms have
been proposed, so the target detection algorithms are updated
rapidly. A more mature seventh version of the YOLO series
has emerged, and the literature has applied YOLOV7 to the
farming industry for animal population counting [24]. Liter-
ature [25] improves YOLOvV7 by adding an attention mecha-
nism to its backbone or head to extract critical features. The
algorithm can effectively identify driver behavior and reduce
traffic accidents. Literature [26] incorporates the Convolu-
tional Block Attention Module (CBAM) attention mechanism
in YOLOvV7 and successfully applies it to citrus recognition
for an automated picking technique. Literature [27] has sig-
nificantly improved YOLOV7 by first adding the coordinate
attention mechanism module to the backbone network, then
using SCYLLA-IoU (SIOU) with the focal loss function to
accelerate the model convergence, and finally improving the
Non Maximum Suppression (NMS) with the clustered anchor
frames to train the dataset.

According to previous studies, the unmanned inspection
of transmission lines has attracted the attention of a large
number of scholars. And foreign object invasion is also an
essential factor in the occurrence of grid failure. In addition,
there is a significant gap in the detection of foreign object
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intrusion with the target detection algorithm being updated
so rapidly. Therefore, this paper proposes a YOLOvV7 trans-
mission line foreign objects recognition model incorporating
SPD convolution and the idea of using genetic algorithm to
optimize the model hyperparameters. Where SPD convolu-
tion can improve the detection accuracy of the model for
low-resolution images as well as small targets, and ultimately
improve the overall model recognition accuracy. Meanwhile
the use of hyperparameter optimization can accelerate the
convergence of the model and shorten the model training
time.

From the above literature, an unmanned inspection of
transmission lines is mainly based on detecting the presence
of faults in accessories. Moreover, there needs to be more
research on foreign object invasion, especially in the early
warning of large engineering vehicles at present, there needs
to be more research. The YOLO algorithm commonly used in
the unmanned inspection of transmission lines based on deep
learning is mainly based on v3 and v5, and YOLO has now
emerged as a more mature v7. Hence, the research on apply-
ing YOLOvV7 to the unmanned inspection of transmission
lines is currently less. The main contributions are summarized
as follows,

(1) A deep learning-based algorithm for foreign object
recognition on transmission lines is proposed. The algorithm
can realize the judgment of whether there is foreign object
invasion around the transmission line and the real-time mon-
itoring of engineering vehicles by UAV.

(2) An improved YOLOV7 target detection algorithm is
proposed. A new CNN convolution module is added to
YOLOV7 to make YOLOV7 better at the detection of small
targets. Also, during model training, the hyperparameters are
optimized using a GA to speed up the convergence of the
model.

(3) The comparison with similar algorithms shows that the
improved YOLOV7 outperforms the unimproved YOLOV7,
YOLOVS, and Faster-rcnn.

The presented paper is organized as follows. Section II
introduces the principles of YOLOv7 algorithm and SPD
convolution, as well as the composition of the loss function
in YOLOvV7. Section III mainly introduces the production
of data sets, optimization of hyperparameters and evaluation
criteria of model identification results. Section IV focuses on
the experimental results and algorithm comparison. Section V
is the conclusion.

Il. ALGORITHM PRINCIPLE

A. PRINCIPLE OF YOLOv7

YOLOV7 is divided into three parts: Backbone, Neck, and
Head. The images to be detected first enter the Backbone
part and then undergo three standard convolutional processes,
including convolution, batch normalization, and SiLU acti-
vation. The MP module is a two-channel structure that per-
forms maximum pooling and convolution on the input feature
images and adjusts the number of channels in the whole
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network structure. The SPPCSPC module is a spatial pyra-
mid pooling structure that can avoid the image distortion
problem when scaling the input images, reduce the network
structure for repeated extraction of the same features, and
save computational costs. The detection image will enter the
Neck section for feature fusion after the feature extraction
in the Backbone section, which is an FPN network struc-
ture. The feature images of different scales will be fused in
the bottom-up feature fusion to achieve a multi-scale target
detection effect [28]. The entire YOLOV7 network structure
is shown in Figure 1.

YOLOV7 is designed concerning the currently popular
label-matching strategy, combining the positive and nega-
tive sample assignment strategies of YOLOX and YOLOVS.
In YOLOVS, nine different sizes of anchors are used to pre-
dict the positions of ground truth, so a ground truth often
corresponds to multiple anchors in the training session of
the model. In order to better distinguish between positive
and negative samples, YOLOVS calculates the ground truth’s
width and height ratio to each anchor frame. Finally, it records
the anchors with the smallest ratio. If the ratio is smaller
than the set threshold, the anchor box is defined as a positive
sample [29]. YOLOX uses a label-matching strategy called
SimOTA. In the field of target detection, the target and back-
ground can be considered as the supply side, and the predic-
tion frame can be considered as the demand side. So SimOTA,
which solves the optimal transmission problem, can divide
positive and negative samples. First, each prediction point
is traversed, the presence of the target is determined, and
candidate frames are generated. Then the Intersection over
Union (IOU) loss and classification loss between candidate
frames and ground truth are calculated. For the convenience
of calculation, each actual frame is computed with only k can-
didate frames, and then the computed IOUs are sorted from
largest to smallest and rounded cumulatively. The number of
positive samples is determined according to the value after
rounding, and the candidate frames used as positive samples
are determined according to the IOU values [30]. In summary,
YOLOvV7’s label-matching strategy can be summarized as
follows,

(1) Determine the positive samples using YOLOVS5’s posi-
tive and negative sample matching strategy.

(2) Calculate the loss of each positive sample with the
ground truth.

(3) Determine the number of positive samples k to be
assigned.

(4) Determine the minimum k positive samples according
to the loss size.

(5) Remove the case that a sample is matched to more than
one ground truth.

B. PRINCIPLE OF SPD CONVOLUTION

SPD convolution is a convolutional block for learning
low-resolution images with small targets, and the whole
process is shown in Figure 2. The whole process of SPD
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FIGURE 1. YOLOvV7 network structure.

Space to depth on a feature map

FIGURE 2. SPD convolution.

convolution is divided into two steps: pre-processing of the
input image and standard convolution. Figure 2 shows a
three-channel image, and the input image is sliced first. After
slicing, four sets of sub-feature images are obtained.

The number of channels of the sub-feature images is the
same as the input image, and the width and height can be
adjusted by parameters that are usually half of the input. The
obtained sub-feature images are concatenated along the chan-
nel dimension as the input to the standard convolution, which
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is used with a step size of 1 because of better preservation of
all discriminative feature information.

In order to add SPD convolution to YOLOV7, it is decided
to modify the ELAN module of YOLOv7. The ELAN mod-
ule consists of several convolutions, and its structure has
reached a saturation state. It is not easy to make significant
changes [31], so the final output part of the ELAN module
is modified in this paper. At the end of the ELAN module,
there will be an operation to concatenate multiple convolution
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results. Then the concatenated results will be sent to the con-
volution layer for final processing. Therefore, in this paper,
the last standard convolution in the ELAN module is replaced
by the SPD convolution, and the modified ELAN module is
shown in Figure 3(b).

C. LOSS FUNCTION OF YOLOV7

The loss function L of YOLOV7 consists of three parts, which
are Complete Intersection over Union (CIOU) loss function
Lciou, classification loss function L.s and confidence loss

function L¢onf, and the calculation formula can be expressed
as (1).

L = Lcrou + Lets + Leont (D
The specific formula for L¢joy is as follows:

o2
LCLOU=1—IOU+—2+O!~U 2)
m

v
0= — 3)
1—-10U +v
2 (arctan 2 — arctan %) @)
v = — (arctan — — arctan —
w2 h h

where IOU represents the cross-merge ratio, p> represents
the Euclidean distance between the center point of the pre-
dicted box and ground truth, m represents the diagonal dis-
tance of the smallest closure area that contains both the
predicted box and the ground truth. In (4), (w, h) represents
the width and height of ground truth, (w, ) represents the
width and height of predicted box. The CIOU loss consid-
ers the aspect ratio based on the DIOU loss, which allows
the shape of the prediction box to be closer to the ground
truth [32].

The formula for calculating the classification loss is shown
in (5), as shown at the bottom of the next page. s2_ and
B are fixed parameters of 49 and 9, respectively. lf.h] is a
zero-one variable, if the i-th frame falls into the j-th grid,
then lfjb] is 1 otherwise it is 0. ¢ is the classification of the
detected target, p;(c) is the true classification of the target,
pi(c) is the predict classification of the target. The formula for
calculating the confidence loss is shown in (6), as shown at
the bottom of the next page. Acoord is usually taken as 5, (x;, y;,
r;) are the center coordinates and radius of the true bounding
circle, (%;, yi, Z;) are the center coordinates and radius of the
predicted bounding circle [33].

Ill. IDENTIFYING METHOD

A. DATA SETS

In order to better apply the model to the inspection of UAVs,
this paper mainly uses UAV aerial images as the dataset of the
target detection model. The targets in the dataset that need
to be learned by the model are divided into two categories:
bird nests and large engineering vehicles. The construction
of engineering vehicles is the leading cause of external dam-
age to transmission lines, and bird’s nests are the leading
representatives of foreign object invasion on transmission
lines. Engineering vehicles can be subdivided into cranes,
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excavators, bulldozers, tower cranes, trucks, and bird nests
for detecting six targets. Due to the lack of publicly available
transmission line aerial photography datasets, the data images
involved in this paper are obtained from the UAV aerial image
database. Some of the aerial images in the dataset are shown
in Figure 4.

As Fig. 4, illustrates the aerial photography dataset has
the problems of a complex environment and severe target
occlusion, which requires the high performance of the tar-
get detection model to enable it to accurately identify tar-
gets in the complex environment. In this paper, the web-
site Make Sense is used to complete the annotation of the
dataset and get the coco format tags of the aerial pho-
tography dataset. Also, the dataset is divided according to
the ratio of 9:1, with 7923 images in the training set and
880 images in the test set. Due to the large size of the
tower crane and its more severe obscuration in the aerial
photography dataset, the number of training samples for the
tower crane was increased in the production of the dataset.
Furthermore, the number of samples for each target is shown
in Table 1.

B. HYPERPARAMETER OPTIMIZATION
Large models often require pre-set hyperparameters during
training, and the setting of hyperparameters often affects the
convergence speed and overall performance of the model.
There are 9 hyperparameters in the YOLO algorithm, such
as learning rate, weight decay coefficient, and momentum,
which often need to be obtained by optimization. Therefore,
in this paper, the hyperparameters are set as the independent
variables, the minimization model loss is set as the objec-
tive function, and the genetic algorithm is selected to find
the optimization of the hyperparameters. The final optimal
hyperparameters are presented in Table 2. LrO represents
the initial learning rate, and this hyperparameter is used for
the update of the model parameters. Irf represents the cyclic
learning rate, and this hyperparameter allows the learning
rate to increase or decrease regularly within an interval. This
parameter can be set to avoid skipping the optimum due to too
large learning rate and falling into local optimum due to too
small learning rate. Momentum can make the optimization
search process moderate and jump out of the local opti-
mum. weight_decay represents the weight decay coefficient,
which serves to prevent over-fitting of the model. In the
early stage of model training, i.e., the pre-learning stage,
the model parameters are more random, thus larger hyper-
parameters can lead to instability of the model. So, a specific
set of hyperparameters is needed in the pre-learning phase.
warmup_epochs represents the number of preheat learning,
warmup_momentum represents preheat learning momentum,
and warmup_bias_Ir represents the preheat initial learning
rate. iou_t represents the threshold of IoU and anchor_t rep-
resents the aspect ratio of anchor.

In order to determine the optimal hyperparameters, the
genetic algorithm (GA) is chosen here to complete the
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FIGURE 4. UAV aerial photography dataset.

optimization of the hyperparameters. The specific optimiza-
tion results are shown in Table 2 [34].

C. EVALUATION INDICATORS

Common evaluation metrics used in target detection are pre-
cision, recall, and mAP. It can be seen from the definition
that precision is inversely proportional to recall so each data
set can determine a precision-recall curve based on different

10U thresholds [35]. Taking Figure 5 as an example, the area
enclosed by this PR curve and the coordinate axis is the mAP.
For a more rigorous representation of the mAP values, the
mAP @ 0.5 is usually used to represent the mAP at an IOU
threshold of 0.5 [36].

In addition to the accuracy of the model, the recognition
speed of the model is also an important indicator. The recog-
nition speed of a model can be expressed as FPS (frames per

2 B )
=331

Z [—pi(c)logpi(c) — (1 — pi(c)) log(1 — pi(c))] Q)
i=0 j=0 ceclasses
s B s B
Leont = Acoord Z Z lgb][(xi - 5&i)2 + i — 5’i)2] + Acoord z Z lg‘b](ri - ?i)z (6)
i=0 j=0 i=0 j=0
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second), which is the number of images that the model can
process per second [37]. FPS can be computed as follows:

Num

FPS = (7)

Time
where Num represents the number of frames and Time repre-
sents the time, which is usually taken as 1 second. This exper-
iment calculates the FPS by recording the time consumed in
model recognition [38].

D. EXPERIMENTAL ENVIRONMENT

In order to verify the validity of the model proposed in this
paper, this section conducted experiments with the follow-
ing computer configurations and hyperparameters (shown in
Table 3).

E. EXPERIMENTAL PROCESS

First, this paper collects transmission line UAV aerial images
and make a dataset, then split the dataset into training and test
sets by 9:1. In the second step, the improved YOLOv7 model
is used for training, and the training results and weight files
are saved after the training. The third step uses the obtained
weight files to recognize the aerial images of UAVs obtained
in the field. The fourth step compares the recognition results
with the unimproved YOLOv7 to determine whether the
improved approach is practical. The fifth step compares the
improved YOLOV7 algorithm with YOLOVS5, Faster-rcnn,
and Centernet to determine the best transmission line foreign
object recognition algorithm model based on the recognition
results [39]. The experimental process is shown in Figure 6.

IV. RESULTS AND COMPARISON

The transmission line aerial photography dataset is put into
the improved YOLOv7 (with SPD convolution added) model
for training and the loss curves at the end of training are
shown in Figure 7. The total loss function in YOLOv7
consists of CIOU loss, classification loss and confidence loss,
so the loss curve in Figure 7 is essentially a superposition of
three curves with different properties. The CIOU loss reflect

VOLUME 11, 2023

‘ Create and annotate the dataset }4—

‘ Division of the data set ‘

v

’ Hyperparameter optimization ‘

v

‘ Training with the improved YOLOv7 ‘

N

Whether it is better than
the original YOLOvV7

‘ Compare with other algorithms ‘

v

The improved YOLOV7 is taken
as the best algorithm.

End

FIGURE 6. Experimental process flow chart.

0.035r

default hyperparameters

0.03 optimized hyperparameters

0.0251

0.02}

Loss

0.015¢

0.01f

0.0051

0 20 40 60 80 100
Number of iterations

FIGURE 7. Loss function curve.

the error between the predicted and actual boxes. Classifica-
tion loss is a cross-entropy loss, which reflects the degree of
false detection of the network [40]. Confidence loss reflect
the probability of whether a target exists in the region of
interest to the network.

Figure 7 shows the loss function curves before and after
hyperparameter optimization. As can be seen from the fig-
ure, the two curves basically overlap after 70 iterations, i.e.,
converge to the same loss value. The loss values reflect the
recognition accuracy of the model, so the optimization of
hyperparameters does not improve the model recognition per-
formance significantly. However, after hyperparameter opti-
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TABLE 1. Number of samples.

Categories Crane Excavator Truck Bulldozer Tower crane Nest
Quantity 1127 1503 990 1728 2346 1109
100
S
& -
<
g
All Crane Excavator Truck Bulldozer Tower crane Nest

(I YOLOV7+SPDConv [N YOLOV7 |

FIGURE 8. Comparison of mAP.

TABLE 2. Hyperparameters after genetic algorithm optimization.

Hyperparameters Default Optimization
Lr0 0.01 0.00341
Irf 0.1 0.17006
Momentum 0.937 0.74451
weight_decay 0.0005 0.00018
warmup_epochs 3 3
warmup_momentum 0.8 0.65951
warmup_bias_Ir 0.1 0.18819
iou_t 0.2 0.2
anchor t 4.0 2.7858

mization, the model reaches convergence in about 20 iter-
ations, and the unoptimized model reaches convergence in
about 40 iterations. Therefore, optimization of hyperparam-
eters can improve the convergence speed of the model and
speed up the training.

YOLOV7 will calculate mAP on the validation set near the
end of training. The mAP corresponding to each of the foreign
objects detected in this paper is shown in Figure 8. The
addition of SPD convolution has improved the correct rate
of target detection, as can be seen in Figure 8. The average
accuracy of the tower crane improved from 85.4% to 97.3%,
a total improvement of 11.9%. The average accuracy of the
next truck and bulldozer also improved slightly. The average
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TABLE 3. Experimental environment configuration.

Parameter Configuration
CPU AMD Ryzen 7 5800 8-Core Processor
GPU NVIDIA GeForce RTX 3070 Ti
CUDA 11.3
Pytorch 1.10
Epochs 100
Workers 2
Batch size 4
Img-size [640, 640]
Optimizer Adam

accuracy of the crane, excavator, and bird’s nest changed
very little and did not improve significantly. Overall, the
average accuracy of the improved YOLOvV7 is about 3.19%
higher than that of the unmodified one, which proves the
effectiveness of the improvement idea in this paper.

Figure 9 compares the recognition effect between the
improved YOLOV7 and the original YOLOv7. From (a)(b) of
Fig. 9, it can be seen that all the trucks in the immediate area
are recognized correctly. However, the improved YOLOv7
recognizes the cranes in the outlying area, indicating that the
algorithm has improved the recognition effect of the cranes.
From (c)(d) of Fig. 9, it can be seen that the improved
YOLOV7 identifies the bird’s nest with the truck that only
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FIGURE 9. Comparison of recognition results.
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TABLE 4. Comparison of the MAP AND FPS of different algorithms.

Algorithms mAP FPS
YOLOv7+SPDConv 92.20% 19
YOLOv7+CBAM+SPPFCSPC 91.10% 15
YOLOvV5+BiFPN 84.60% 16
YOLOv4+Densenet 82.47% 14
Faster-rcnn+Resnet 84.67% 6
Centernet 83.92% 29

appears partially in the picture, indicating that the algorithm
has improved the recognition of the heavily obscured target.
From (e)(f) of Fig. 9, it can be seen that the unimproved
YOLOvV7 shows the missed detection phenomenon, which
indicates that the algorithm improvement reduces the missed
detection rate. As seen in (g)(h) of Fig. 9, excavators and
bulldozers are correctly identified in the near distance, but the
improved YOLOV7 can identify more heavily obscured tower
cranes. From the above, YOLOv7, with the addition of SPD
convolution, has better recognition results than the original
YOLOV7.

To further demonstrate the effectiveness of the algo-
rithm proposed in this paper, the improved YOLOv7 algo-
rithm is compared with YOLOv7+CBAM+SPPFCSPC [41],
YOLOvV5+CA [42], YOLOv5+BiFPN [43], YOLOv4+
Densenet [44], Faster-rcnn+Resnet [45], and Centernet [46]
in this paper. The average accuracy of each algorithm and
the recognition speed are shown in Table 4. From the table,
it can be seen that the average accuracy of the proposed
algorithm is higher than other target detection algorithms in
terms of recognition accuracy. In terms of recognition speed,
Centernet is much faster than other algorithms with 29 frames
per second, Faster-rcnnt lags behind other algorithms with
6 frames per second, and the algorithms of YOLO series do
not differ much in terms of recognition speed, all of them
are around 15 frames per second. The algorithm proposed
in this paper can reach 19 frames per second in recognition
speed, which is slightly better than other YOLO algorithms.
Combining the recognition accuracy and recognition speed
can be concluded that the algorithm proposed in this paper
is better than other types of algorithms, thus verifying the
feasibility of the method in this paper.

Literature [47] proposes a Faster-rcnn based transmission
line bird nest identification method, which can identify fewer
transmission line foreign objects compared to this paper.
Literature [48] proposes a YOLOv5 method for transmission
line component detection, while this paper applies the latest
YOLO version to the identification of transmission line haz-
ards, which is equivalent to supplementing and improving this
literature. While literature [49] applies FCOS to transmission
line inspection, this paper’s YOLOvV7 draws on the idea of
FCOS to improve the model recognition accuracy by means
of multi-scale target detection. In this paper, SPD convolu-
tion is added to YOLOvV7, while the hyperparameters are
optimized using a genetic algorithm. Overall, the proposed
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method achieves good results in the identification of foreign
objects in transmission lines.

V. CONCLUSION

It is essential to carry out unmanned inspections of trans-
mission lines to prevent external damage and foreign object
invasion. In this paper, a transmission line foreign object
recognition algorithm is proposed and that can identify large
engineering vehicles and bird nests around transmission lines.
In order to improve the recognition effect of this model,
the ELAN module in YOLOV7 is improved and the model
hyperparameters are optimized in this paper. The general con-
volution is replaced by SPD convolution while retaining the
stability of its module performance to improve the model’s
recognition of low-resolution targets and small targets. And
the optimization of the model hyperparameters using genetic
algorithms improves the convergence of the model and accel-
erates the model training. Based on the experimental results,
this paper draws the following conclusions.

(1) The YOLOvV7 model with SPD convolution added is
3.19% higher than the unmodified YOLOv7 model in recog-
nition accuracy. In the recognition accuracy of the tower
crane, the improved YOLOV7 is 11.9% higher than the orig-
inal YOLOvV7, and the improvement effect is most apparent
compared with other targets. The recognition results indicate
that YOLOvV7 improves the recognition accuracy of obscured
and overlapping objects through the improvement of the
module, especially in the recognition of tower cranes. For
targets other than tower cranes, the improved YOLOV7 is
slightly higher in accuracy than the unmodified YOLOvV7.
The model with default hyperparameters converges in about
40 iterations, and the model converges in about 20 iterations
after hyperparameter optimization. The convergence speed of
YOLOvV7 with hyperparameter optimization is significantly
improved.

(2) The algorithm proposed in this paper is compared with
YOLOvV7, which adds an attention mechanism, YOLOVS,
which replaces the feature fusion network, YOLOv4, which
combines with Densenet, Fast-rcnn, which uses Resnet as a
feature extraction network; and Centernet, which is based on
anchor free detection. The results show that the mean average
precision of this paper’s algorithm is 92.20%, which is higher
than the other five algorithms. In terms of recognition speed,
this paper’s algorithm has an FPS of 19, which is second only
to Centernet.

The presented paper has achieved specific results in the
unmanned inspection of transmission lines based on deep
learning, but the research is not perfect and need further
explore. For example, it is difficult to achieve real-time
inspection work of the whole line just by relying on UAV. The
range of the UAV is also considered when this target detection
method is combined with the UAV. If the range is not stable,
real-time monitoring will not be possible. In future research,
the YOLOvV7 model structure will be better optimized, and
better results will be achieved in transmission line unmanned
patrol.
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