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ABSTRACT The importance of unlicensed spectrum is highlighted in terms of the flexibility of network
deployment for various services envisioned in 5G and beyond. Since listen before talk is mandatory for
channel access in unlicensed spectrum and it causes an unavoidable waste of resources due to collisions,
an efficient random backoff mechanism is required. In the existing backoff schemes that impose waiting
penalties on collided packets, a degraded fairness performance is observed. In this work, we analyze how
prioritizing collided packets can improve performance compared to existing schemes. To this end, we devise
a random backoff scheme called the Collision Priority Backoff (CPB) under the concept of giving priority to
collided packets. We apply Bayesian optimization to carefully determine channel access parameters of the
CPB to maximize network throughput. Since the optimized access parameters require the number of stations
in the network, we also devise an adaptive version of the CPB called the Adaptive CPB (ACPB). We deal
with an environment where the number of stations changes as a switching bandit problem, and employ a
variant of upper confidence bound policy in the ACPB. Various simulation results validate that the proposed
backoff scheme shows high throughput and fairness performance.

INDEX TERMS Random access, backoff, Bayesian optimization, switching bandit, fairness, throughput.

I. INTRODUCTION
5G and beyond envision the expansion of services to various
industries along with advances in mobile broadband [1]. For
industrial applications, it is essential to design a network that
meets the requirements such as low latency, high reliability
and security in critical communication scenarios [2]. Typi-
cally, these networks are deployed with specific sensors [3]
or Internet of Things devices [4], [5]. Since mobile broad-
band service-oriented licensed spectrum limits the flexibil-
ity of network deployment for these various services, the
unlicensed spectrum is expected to play a crucial role [6].
A prominent challenge of operating in the unlicensed spec-
trum is harmonious coexistence with prevalent networks such
as Wi-Fi [7]. Listen Before Talk (LBT) is mandatory for
channel access in unlicensed spectrum [8]. Unfortunately,
LBT causes waste of resources due to inevitable collisions
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occurring in contention for channel access. Since the degrada-
tion of service quality due to such issues becomes exacerbated
as the number of devices increases, the need for an efficient
backoff mechanism is emerging [9].

A fundamental random backoff scheme applied in IEEE
802.11-based Wi-Fi system is the Binary Exponential Back-
off (BEB). In the BEB, the size of the Contention Window
(CW) within which a backoff counter value is randomly
selected is doubled with every collision. Unlicensed LTE has
adopted a very similar LBT scheme to that used in the IEEE
802.11, and this scheme is also considered as a baseline for
unlicensed 5G operation [8]. In this scheme, the CW size dou-
bles when the number of negative feedbacks of hybrid auto-
matic repeat request process exceeds a threshold [10]. The
IEEE 802.11ax amendment adopts anOrthogonal Frequency-
Division Multiple Access (OFDMA) approach to improve
throughput [11]. Unlike LTE or 5G, OFDMA operates on top
of the legacy LBT scheme and is coordinated by Access Point
(AP). In uplink, IEEE 802.11ax allows for random access
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through a procedure called OFDMABackoff (OBO), in addi-
tion to scheduled access. The OBO procedure also adopts the
approach of doubling the CW size after a transmission failure.

In a seminal paper [12], a widely accepted analytical model
for the throughput performance of the BEB was provided,
showing that high throughput can be achieved with an appro-
priate size of the initial CW. On the other hand, in terms of
fairness, it has been pointed out that a drastic change in the
size of CW in the BEB can lead to performance degrada-
tion [13], [14]. This unfairness issue arises from the fact that
stations that fail to transmit take, on average, several times
longer to successfully transmit compared to stations that
succeed at once. Therefore, access technologies in unlicensed
spectrum using such backoff schemes are inherently suscep-
tible to unfairness issues, and the same applies to 802.11ax
in the contention with legacy stations for triggering OFDMA
transmissions or in the uplink access through OBO. In this
regard, mitigating the long-wait penalty imposed on collided
packets can be a natural approach to improving fairness.
In [15], a backoff scheme called the Renewal Access Protocol
(RAP) was proposed. In the RAP, each station selects a
new backoff counter value according to a particular selec-
tion distribution, regardless of the packet transmission result.
It was shown in [15] that the RAP using a Poisson selec-
tion distribution achieves high throughput and fairness if
the distribution has an expectation value appropriate for the
number of stations in the network. Collided packets in the
RAP are not subject to the doubling penalty as in the BEB,
but they still require at least twice the average time to succeed
compared to packets that are successfully transmitted at once.
So, it can be argued that performance can be further improved
by prioritizing retransmission of collided packets.

In this work, we investigate how the performance is
improved through a random backoff scheme that prioritizes
collided packets. To this end, we devise a random backoff
scheme called the Collision Priority Backoff (CPB). The CPB
grants priority in a similar manner to the quality of service
provisioning in IEEE 802.11e. An IEEE 802.11e station has
parallel backoff entities, each of which corresponds to a
specific access category (AC), and an ACwith higher priority
uses backoff parameters, such as small CW sizes, that enable
relatively quick access [16]. A CPB station uses different
channel access probabilities after a successful transmission
and after a collision. Specifically, after a collision, a backoff
counter value is selected to increase the access probability to
induce fast and successful retransmission, thereby improving
fairness.

A key element in designing the CPB is determining the
channel access probabilities for high performance. Since the
structure of the CPB itself is designed to enhance fairness
by giving priority to collided packets, we focus on maximiz-
ing throughput. As mentioned in Section III, for the CPB,
it is hard to obtain a tractable formula for throughput as
in [12] and [15]. As an alternative way, we use the Bayesian
optimization technique to find the throughput maximizing

access probabilities. The optimal access probabilities depend
on the network parameters and the number of stations in the
network. We derive simple functions for optimal access prob-
abilities using smoothing methods on Bayesian optimization
results for various combinations of network parameter and
the number of stations. We validate through simulation that
the CPB operatingwith the access probabilities obtained from
these functions shows the desired high performance.

As noted in [12], the network parameters that pertain to the
function for the optimal access probabilities are determined
within a physical layer. Therefore, we can consider the opti-
mal access probabilities as functions of the number of stations
in the network. In the literature, there have been extensive
research works on optimizing throughput when the number
of stations in the network is known in various random access
schemes such as the RAP [15], p-persistent IEEE 802.11 [17],
and the Idle Sense [18], including the BEB [12]. These works
have necessarily been followed by studies estimating the
number of stations that changes over time. The number of
stations (or the throughput maximizing access parameters)
can be estimated by observing network status such as the
probability of transmission success or collision and the num-
ber of idle slots. Some works take advantage of accurately
derived analytical formulas for estimation based on network
state observations [17], [18], [19]. However, for high perfor-
mance, these methods require that all stations agree to use
the same tuned access parameters. The Access Mechanism
with Optimal Contention Window (AMOCW) given in [20]
is an improved version of the Idle Sense and is different
from the above schemes. Each station using the AMOCW
operates with different access parameters based on its own
estimate, and still achieves good network performance. The
adaptive version of the RAP called the A-RAP given in [21] is
advantageous in complexity over the above techniques in that
each station adjusts its access parameters with only its own
transmission result. This adjustment method is similar to the
BEB, the Quadratic Backoff (QB) [22], or the Exponential
Increase and Exponential Decrease (EIED) [23]. The A-RAP
estimates the number of stations as well as network state
observation-based methods and shows performance compa-
rable to the optimized RAP.

In this work, we also devise an adaptive version of the CPB,
called the Adaptive CPB (ACPB). In the ACPB, as in [24],
each station continuously estimates the range to which the
number of stations belongs, and operates with access proba-
bilities suitable for the estimated range. As observed in [24],
this approach can lead to a reduction in estimate variability at
the expense of some precision. The range estimation is based
on the network status information collected by each station
as in [20]. Reinforcement learning can be utilized in tasks
that involve observing the time-varying network environment
and adaptively determining appropriate actions based on
it [25], [26]. We treat the range prediction procedure in
the ACPB as a multi-armed bandit problem. Selecting a
range and operating with the appropriate access probabilities
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corresponds to selecting and playing an arm. The reward for
the selected arm is designed to indicate whether the actual
number of stations is included in the selected range. Further,
we deal with a network environment where the number of
stations varies over time as a switching bandit problem in
which the reward distribution of each arm is non-stationary.
The ACPB adopts some variants of Upper Confidence Bound
(UCB) strategy against this time-varying environment. Sim-
ulation studies validate our proposed ACPB shows good
performance comparable to the CPB with known number of
stations in a time-varying network.

The main contributions of this work can be summarized as
follows:

• We devise a random backoff scheme that prioritizes
collided packets, called the CPB, and define key access
parameters (Section II).

• We obtain the channel access probability values that
maximize network throughput with the CPB through
Bayesian optimization, and derive simple functions of
the network parameters and the number of stations
that represent these probabilities by applying smooth-
ing. Furthermore, the performance improvement com-
pared to the BEB scheme is verified through numerical
analysis (Section III).

• We devise a practical form of the CPB by relaxing
the assumption of an ideal situation envisioned by the
concept of the CPB (Section IV).

• Leveraging the switching bandit learning theory, we pro-
pose an adaptive from of the CPB called the ACPB that
operates adaptively in a network environment where the
number of stations changes over time (Section V).

II. DESCRIPTION OF THE CPB
In this section, we describe the CPB scheme. In this work,
we consider a fully connected network consisting of homo-
geneous stations, all of which can sense the transmissions
from other stations. All stations are assumed to be saturated,
i.e., they always have packets to send, and an ideal channel
condition is also assumed as in [12] and [15]. Throughout this
work, various forms of the CPB scheme are presented, each
with different assumptions, but one assumption applies in all
cases. The assumption, called the busy distinction, is that all
stations can distinguish whether the busy state of the network
is due to a transmission success or a collision.1

A. CONCEPT OF THE CPB
Here, we describe the concept of the CPB. With the CPB,
the network alternates between two phases: ordinary and spe-
cial. In an ordinary phase, all stations decrease their backoff
counter values in idle slots as in legacy 802.11. However,
when a collision occurs in an ordinary phase, the phase
is altered to a special phase. In a special phase, only the

1This distinction can be made using the detection of an ACK signal as
in [27] or the duration of the network busy state in the case of adopting
RTS/CTS mechanism.

FIGURE 1. An example of the operation of the CPB in a network
consisting of three stations.

collided stations can access the channel, and other stations not
involved in the collision freeze their backoff counter values.
In other words, the special phase guarantees contention only
of the collided stations. The collided stations choose their
new backoff counter values from a different distribution than
in an ordinary phase to contend in the special phase. If the
backoff counter selection distribution in the ordinary phase is
set appropriately so that collisions rarely occur, the number
of stations participating in a collision can be expected to
be small. Therefore, in the special phase, designing a small
CW size is advantageous in terms of throughput, and can
improve fairness by allowing collided packets to be quickly
retransmitted. If one of the colliding stations succeeds in
retransmission, this station selects a new backoff counter
value according to the backoff counter selection distribution
for an ordinary phase and then freezes it until the remaining
collided stations complete their successful retransmissions.
When the last station among the collided stations has suc-
cessfully retransmitted, the network enters an ordinary phase
again. An example of the operation of the CPB is depicted
in Fig. 1.

B. CHANNEL ACCESS PARAMETERS
Here, we formally define channel access parameters.
As described above, we need to specify two kinds of backoff
counter selection distributions: after a successful transmis-
sion and after a collision. The CPB takes advantage of the
RAP [15], [21] in that a backoff counter value is chosen
from a Poisson selection distribution. A Poisson selection
distribution has a single parameter, the mean. Specifically,
if the mean of a Poisson selection distribution is µ, then
the backoff counter value selected from it is given by Pois
(µ − 1) + 1 where Pois(µ − 1) is a typical Poisson ran-
dom variable having the probability mass of (µ − 1)k exp
(−µ + 1)/k! for k ≥ 0.
As in [12], [15], and [28], we consider the backoff process

to evolve over slots, where a slot is a standardized time inter-
val (e.g., 9 µs in IEEE 802.11ac). In this system, the access
probability of a station is defined by the average attempt
rate. If the access probability is τ and the mean of the back-
off selection distribution is µ, then we have the relation of
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τ = 1/µ [21], [28]. Now let the access probabilities after
a success and a collision be τs and τc, respectively. In the
following we describe how to find the optimal parameters
(τs, τc) for our goal.

III. DETERMINATION OF OPERATION PARAMETERS
In this section, we find the optimal access probabilities
defined above. The CPB structure itself is expected to
improve fairness in the form of conceding the opportunity
of stations that have already succeeded to collided stations,
so we focus on maximizing throughput. Thus, our objective
is to optimize the access parameters (τs, τc) for the maximum
network throughput.

In the literature, the decoupling approximation has
been widely used in throughput analysis [12], [15], [28].
As addressed in [28] and [29], it can be expected that the
decoupling approximationworkswhen the number of stations
accessing the channel is sufficiently large. In an ordinary
phase, the decoupling approximation can be applied because
all stations are contending for channel access, but in the
special phase the situation is somewhat different. A special
phase begins with a collision, which usually involves a small
number of stations. Also, this number of colliding stations
varies randomly. Therefore, network behavior in a special
phase requires case-by-case analysis, and it is difficult to
derive an exact formula for throughput performance. As an
alternative way, we optimize the parameters based on sim-
ulation. However, naive approaches such as grid search are
not suitable because it is expensive to obtain values through
simulation. To tackle this issue, we use Bayesian optimization
technique, which is a powerful tool for finding the maximum
of an objective function that is difficult to evaluate [30].

A. OBJECTIVE
Here we examine how to evaluate throughput performance in
simulations and derive an objective function to optimize with
access parameters.

For given parameters (τs, τc), each station selects a new
backoff counter value Pois(1/τs − 1) + 1 after a successful
transmission, and selects Pois(1/τc−1)+1 after a collision as
described in Section II. In one simulation run, letMe,Ms, and
Mc be the number of idle slots, successful transmissions, and
collisions observed in the network, respectively. According
to the normalized network throughput defined as the fraction
of time the channel is used to successfully transmit payload
bits as given in [31], the throughput can be computed by∑Ms

i=1 T
(i)
p

Me +
∑Mc

j=1 T
(j)
c +

∑Ms
k=1 T

(k)
s

, (1)

where T (i)
P is the time length in slots to transmit the payload

of a packet, and T (j)
C and T (k)

S are time lengths in slots of
busy periods for a collided packet transmission and a success-
ful packet transmission, respectively. Since the stations are
homogeneous, we can assume that each duration is indepen-
dent and identically distributed. Typically, a simulation run

observes a sufficiently large number of packet transmissions,
we can approximate the throughput as∑Ms

i=1 T
(i)
P

Me +
∑Mc

j=1 T
(j)
c +

∑Ms
k=1 T

(k)
s

≈
MsE[Tp]

Me +McE[Tc] +MsE[Ts]

= E[Tp]
1

Me+McE[Tc]
Ms

+ E[Ts]
, (2)

where E[Tp], E[Tc], and E[Ts] are average time lengths for the
transmissions of the payload of a packet, a collided packet
transmission, and a successful packet transmission, respec-
tively. As given in the literature [12], [15], E[Tc] and E[Ts]
depend on E[Tp], the time lengths for transmitting headers or
ACK frames, and other protocol parameters such as SIFS and
DIFS.

Let the number of stations N be given. Also, E[Tp], E[Ts],
and E[Tc] are determined by network parameters for the
simulation. Then, in view of (2), maximizing throughput is
equivalent to maximizing

Ms

Me +McE[Tc]
,

which depends only on N and E[Tc]. In sum, given network
parameters containing {N ,E[Tc]}, a simulation run with the
pair of access probabilities (τs, τc) ∈ (0, 1)2 yields a realiza-
tion of the objective function

f (τs, τc) =
Ms

Me +McE[Tc]
. (3)

Then the optimization problem is to find(
τ ∗
s
(
N ,E[Tc]

)
, τ ∗

c
(
N ,E[Tc]

))
= argmax

(τs,τc)∈(0,1)2
f (τs, τc).

B. REVIEW OF BAYESIAN OPTIMIZATION
Here, we briefly review the Bayesian optimization approach
with the notations in this work. The definitions and results
given here follow [30]. We use a subscript s : t for inte-
gers s ≤ t to denote a sequence of data, for e.g., y1:t =

{y1, . . . , yt }.
Let τ = (τs, τc). We are interested in finding τ ∗

=

argmaxτ f (τ ). The objective f is expensive to evaluate
in that an evaluation takes a considerable amount time
(e.g., due to running simulations). Bayesian optimization can
be utilized in such a restricted environment. The Bayesian
model effectively utilizes informative priors to describe prop-
erties of an objective function, such as the most probable
locations of a maximum. Let P(f ) be a prior distribution
representing the space of possible objective functions. As we
accumulate observations D1:t = {τ 1:t , f1:t } where fi is the
evaluation of the objective at a point τ i, the prior is combined
with the likelihood function P(D1:t |f ). Then we obtain the
posterior distribution:

P(f |D1:t ) ∝ P(D1:t |f )P(f ).
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This posterior distribution is exploited to construct an easy-
to-evaluate acquisition function, and the point that maximizes
it is determined as the next evaluation location τ t+1.
Although various models can be used for prior, Gaussian

Process (GP) priors have been widely used and shown to be
well-suited to the task. The GP is defined by the property that
any finite combination of points induces a multivariate Gaus-
sian distribution. As a Gaussian distribution is completely
specified by its mean and covariance, a GP is completely
specified by the mean function m and covariance function k:

f (τ ) ∼ GP
(
m(τ ), k(τ , τ ′)

)
.

Then, for any finite points {τ 1, τ 2, . . . , τ n}, we have
f (τ 1)
f (τ 2)

...

f (τ n)

 ∼ N



m(τ 1)
m(τ 2)

...

m(τ n)

 ,


k(τ 1, τ 1) · · · k(τ 1, τ n)
k(τ 2, τ 1) · · · k(τ 2, τ n)

...
. . .

...

k(τ n, τ 1) · · · k(τ n, τ n)


 ,

where N (µ, 6) denotes the multivariate Gaussian distribu-
tion with the mean vector µ and the covariance matrix 6.
Usually, the mean function m(τ ) is chosen to be zero or a
constant, but the covariance function is treated more techni-
cally. In this work, we also assume a zero mean function,
i.e., m(τ ) = 0. In fact, the power of GP to express a
rich distribution on functions rests solely on the covariance
function. In this work, we apply the Squared Exponential
(SE) covariance function, which is probably the most widely
used [32]. The SE covariance function is given by

k(τ , τ ′
; θ ) = θ21 exp

(
−

∥τ − τ ′
∥
2

2θ22

)
,

with nonnegative hyperparameters θ = (θ1, θ2).
In Bayesian optimization, one can set the hyperparameter

values of the covariance function bymaximizing the marginal
likelihood. For given observations D1:t = {τ 1:t , f1:t }, the GP
model gives

f ∼ N (0,K(θ )),

where f = [f1 · · · ft ]⊤ and

K(θ ) =


k(τ 1, τ 1; θ ) · · · k(τ 1, τ t ; θ )
k(τ 2, τ 1; θ ) · · · k(τ 2, τ t ; θ )

...
. . .

...

k(τ t , τ 1; θ ) · · · k(τ t , τ t ; θ)

 . (4)

And, we have the log of the marginal likelihood as

log p(f1:t |τ 1:t ; θ ) = −
1
2
f⊤K(θ )−1f

−
1
2
log(det(K(θ))) −

t
2
log 2π.

Then, as a maximum likelihood estimate, we set θ to the value
that maximizes the log-likelihood

θ̂ = argmax
θ

log p(f1:t |τ 1:t ; θ ). (5)

TABLE 1. A pseudo-code for Bayesian optimization.

Now we derive the posterior. Let a sequence of observa-
tions D1:t = {τ 1:t , f1:t } be given. Also, suppose that the
covariance function k is specified, i.e., k(τ , τ ′) = k(τ , τ ′

; θ̂ )
with θ̂ in (5). For an arbitrary point τ̃ , the GP prior model
gives a joint Gaussian distribution of f and f̃ = f (τ̃ ) as[

f
f̃

]
∼ N

(
0,
[
Kt kt
k⊤
t k (τ̃ , τ̃ )

])
,

where Kt = K
(
θ̂
)
from (4) and kt =

[
k (τ 1, τ̃ ) · · ·

k (τ t , τ̃ )
]⊤. Then the posterior distribution is given by

f̃ |D1:t , τ̃ ∼ N
(
µt (τ̃ ) , σ 2

t (τ̃ )
)
where

µt (τ̃ ) = k⊤
t K

−1
t f,

σ 2
t (τ̃ ) = k (τ̃ , τ̃ ) − k⊤

t K
−1
t kt . (6)

Recall that the posterior distribution is used to construct
the acquisition function for determining the next evaluation
point. The acquisition function is defined such that a high
acquisition corresponds to a potentially high value of the
objective function due to high predicted value, high uncer-
tainty, or both. In this work, we apply a UCB-based acqui-
sition function. With the expressions in (6), the acquisition
function has the form of

A(τ ;Dt ) = µt (τ ) + κσt (τ ),

with a tunable κ > 0 to balance exploitation against explo-
ration. Once the acquisition function is set, the next location
τ t+1 to sample is determined as follows:

τ t+1 = argmax
τ

A(τ ;Dt ).

When the budget for a given T function evaluations is
exhausted, we can get a final posterior mean function µT (τ ).
Then, the value that maximizes this posterior mean is pro-
posed as an estimate for τ ∗. The series of Bayesian optimiza-
tion procedures mentioned here are summarized in Table 1.

C. OPTIMIZATION RESULTS
Here we present the access probabilities obtained by applying
the Bayesian optimization technique discussed above.We use
the ‘gaussian_process’ module in Python’s scikit-learn to per-
form the optimization. In the optimization process, we set the
UCB acquisition parameter κ to 1 and the function evaluation
budget T to 20. In order to derive the optimal access proba-
bilities τ ∗

= (τ ∗
s , τ ∗

c ) for a wide range of cases, we apply
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FIGURE 2. Optimal access probabilities from Bayesian optimization.

the optimization process to each (N ,E[Tc]) combination for
N ∈ {3, 6, 9, . . . , 48} and E[Tc] ∈ {0.5, 1.0, 1.5, . . . , 49.5}.
For a combination (N ,E[Tc]), each function evaluation at
a pair of access probabilities τ = (τs, τc) is obtained by
calculating (3) withMs,Mc, andMe observed in a simulation
run over 105 slots. We set the first observation point τ 1 to
(0.1, 0.1). In maximizing the acquisition function and finding
the largest posterior mean at the last step, we simply apply a
grid search method.

The optimization results are shown in Fig. 2. As can be
seen in the figure, the optimal access probabilities tend to
decrease as N or E[Tc] increases. However, since the results
are wiggly and unstable, we fit them with smooth monotonic
curves. The results obtained via Bayesian optimization for
each (N ,E[Tc]) are denoted as τ̃s(N ,E[Tc]) and τ̃c(N ,E[Tc])
to distinguish them from the optimal access probabilities to
be used in practice.

At first, we consider the optimal access probabilities for
given E[Tc] as functions of N . In [12], [28], and [33], it is
shown that the optimal access probability for LBT with
random backoff approximately inversely proportional to the
number of stations N . Using this fact, we consider a one-term

FIGURE 3. Estimated parameter v2 when the optimal probability value
from Bayesian optimization is fitted by V . The dotted line indicates the
mean of estimated values for v2.

FIGURE 4. Estimated parameter v1 when the optimal probability value
from Bayesian optimization is fitted by V .

power series model V as given by

V (N ; v1, v2) = v1N−v2 , (7)

where v1, v2 > 0. The parameters v1 and v2 are esti-
mated to minimize the residual sum of squares. Note from
Fig. 2 that the higher the probability value, the greater
the variability. To mitigate the expected heteroscedasticity,
residual sum of squares minimization is applied after log
transformation. Specifically, for a given E[Tc] and a phase
ph ∈ {s, c}, the values of v1 and v2 are chosen to minimize∑16

n=1{log(τ̃ph(3n,E[Tc])) − log(v1) + v2 log(3n)}2. Fig. 3
shows the estimated values of parameter v2 in (7). It can
be observed that the estimated values are randomly spread
around the mean with no discernible trend with respect to
E[Tc]. Thus, we assume that the parameter v2 is indepen-
dent of the values of E[Tc]. Meanwhile, Fig. 4 shows the
estimated values of the parameter v1 in (7). In the figure,
we can observe that the estimated values for v1 show convex
decreasing trends with respect to E[Tc]. Here we consider
a two-term power series model to fit v1 as a function of
E[Tc]. Taking these together, we fit the optimal probability
values from Bayesian optimization with a surface U given
by U (N ,E[Tc]; u1, u2, u3, u4) = u4N−u1

(
E[Tc]−u2 + u3

)
with non-negative parameters u1, u2, u3, and u4. As above,
the parameter values are estimated to minimize the sum
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FIGURE 5. Residual plot for fitting the log of the optimal probabilities
from Bayesian optimization.

TABLE 2. Estimated parameters of fitting surfaces for optimal access
probabilities.

of squares of the residuals after log transformation. Fig. 5
shows the residual plot for this surface fitting for the log of
the optimal probability values from Bayesian optimization.
In the figure, we can check the validity of the smoothing
surface by observing that most of residuals form roughly a
horizontal band and bounce randomly around the zero line.
The estimated values for the parameters u1, u2, u3, and u4 are
given in Table 2.
In sum, the value we propose as the optimal access proba-

bility for each phase is given by the following function:

τ ∗
ph(N ,E[Tc]) = u4N−u1 (E[Tc]−u2 + u3), (8)

where ph ∈ {s, c} and the parameters u1, u2, u3, and u4 are
given in Table 2.

D. NUMERICAL ANALYSIS
Now we numerically evaluate the throughput and fairness
performances of the network to which the CPB with the
optimal access probabilities of (8) is applied. Performance
evaluations are done through simulation. We use Python to
simulate a network with network parameters given in Table 3.
For each numerical result, we take the average of 20 runs
where each run observes network behavior for 106 slots.
In [15], it is shown that the RAP with a Poisson selec-
tion distribution having an optimized mean value maximizes
throughput given the number of stations N . Also, in terms
of fairness, the RAP is shown to outperform not only the
legacy IEEE 802.11 but also access methods such as the Idle
Sense [18] proposed in the literature to improve it. In this
regard, we use the RAP’s performance optimized for the
number of stations as a benchmark for performance compar-
ison. To examine the performance improvement of the CPB
compared to the BEB, a recently proposed BEB scheme [34],

TABLE 3. Network parameters.

TABLE 4. Network throughput performance.

which is optimized for a known number of stations, is also
considered for comparison. For this scheme, we assume that
all packets belong to the highest priority AC.

The throughput results are given in Table 4. For a simu-
lation run, the throughput performance is computed by the
formula in (1). As shown in [15] and [28], the through-
put performance of the contention-based backoff scheme
depends on the expectations of the backoff counter selec-
tion distributions. Furthermore, the maximized throughput
performance is not dependent on the number of stations in
the network. Table 4 shows the results of using the backoff
counter selection distribution with optimized expectation in
each scheme, so similar performance is obtained in all cases,
as mentioned above. In the case of the CPB, it can be observed
that the special phase only for collided packets, which is
different from the other two schemes, has a slight advantage
on throughput.

As in [15] and [35], we use Jain’s fairness index [36] to
measure fairness performance. In addition, the sliding win-
dow method [37] is used to assess the fairness over time.
In this method, a window of size w packets is slid across a
sequence of successful transmissions. In a window, let sn for
1 ≤ n ≤ N be the number of packets successfully transmitted
by station n within this window. Then Jain’s fairness index
within this window is computed as(∑N

n=1 sn
)2

N
∑N

n=1 s
2
n

.

After sliding the window through the whole sequence, aver-
aging the fairness indices of all windows provides the
fairness metric. For a fair comparison of networks with
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different number of stations, we use a normalized window
size as in [35]. When a network consists of N stations,
the normalized window W means that one sliding window
monitorsWN successful transmissions. Fig. 6 shows fairness
performances. In fairness, the differences between the back-
off schemes are clearly manifested. As expected, the BEB-
based scheme in [34] that imposes the largest waiting penalty
on collided packets exhibits degraded performance. In the
case of the RAP, moderate penalties for collided packets lead
to moderate level of fairness performance. Meanwhile, the
CPB, which grants priority to collided packets for prompt
retransmission, demonstrates the highest performance. Even
in terms of short-term fairness, which corresponds to small
window sizes W = 1 or 2, the CPB achieves a quite high
fairness.

IV. PRAGMATIC IMPLEMENTATION OF THE CPB
In this section, we provide a practical version of the CPB
called the Pragmatic CPB (PCPB) by relaxing one of the
impractical assumptions on which the CPB is based. Recall
that a network adopting the CPB alternates ordinary and
special phases. When the network is in an ordinary phase, all
stations are able to detect collisions under the busy distinction
assumption, so they can recognize the transition to a special
phase. However, it is difficult to know how many stations are
involved in a collision, and it is even harder to determinewhen
the special phase ends. In this regard, the PCPB removes the
assumption that all stations can be aware of the end of the
special phase.

As noted in Section III, the decoupling approximation can
be applied in the ordinary phase. As in [12] and [15], the
number Nc of collided packets involved in a collision can be
modeled to follow the probability distribution P[Nc = v] =(N
v

)
(τ ∗
s )
v(1 − τ ∗

s )
N−v/{1 − (1 − τ ∗

s )
N

− Nτ ∗
s (1 − τ ∗

s )
N−1

}

for 2 ≤ v ≤ N . As shown in [12], a collision takes at least
the DIFS interval, and DIFS duration is calculated by SIFS+

(2× Slot time) [38], so we have E[Tc] ≥ 2. In Fig. 7, we can
see that two packets are most likely to cause a collision, and
three or fewer packets cause most collisions. This becomes
clearer as the value of E[Tc] increases. From this observation,
we assume that collisions are only caused by three or fewer
packets, and the probability values for Nc are modified as

P(Nc = 2) =

(N
2

)
(τ ∗
s )

2(1 − τ ∗
s )
N−2

1 − (1 − τ ∗
s )N − Nτ ∗

s (1 − τ ∗
s )N−1 ,

P(Nc = 3) =

∑N
v=3

(N
v

)
(τ ∗
s )
v(1 − τ ∗

s )
N−v

1 − (1 − τ ∗
s )N − Nτ ∗

s (1 − τ ∗
s )N−1 . (9)

In the PCPB, every station considers the network to enter a
special phase whenever a collision is detected. After entering
the special phase, all stations consider this phase to con-
tinue until at least two consecutive successful transmissions
have been made in the network. Stations not involved in the
collision defer decrementing their backoff counters during
this period, and the station involved in the collision that
successfully retransmitted first also freezes its new backoff

FIGURE 6. Fairness performances of the CPB, RAP, BEB-based scheme
in [34], and the PCPB with pe = 0.1.

counter until the next successful transmission. If the special
phase is due to a collision of three packets, this phase should
continue after two consecutive successful transmissions until
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FIGURE 7. Probability values for the number of packets involved in a
collision.

the last colliding packet is successfully retransmitted. Addi-
tional freezing after two consecutive successful transmissions
is performed according to a certain criterion described below.

In the PCPB, each station is given an indicator is of whether
the current network is considered to be in a special phase,
and its value is set to 1 whenever a collision is detected.
Also, each packet is given an indicator ic of whether it has
suffered a collision. Stations involved in the collision set the
ic values of the corresponding packets to 1. As mentioned
in III-A, the collided packets contend for retransmission with
backoff counter values selected from a distribution of Pois
(1/τ ∗

c − 1) + 1. Let B(u)v be the uth largest of the v backoff
counter values independently selected in the special phase for
1 ≤ u ≤ v, v = 2, 3. When two consecutive successful trans-
missions are observed after a collision, it can be confirmed
that there are no ties among the selected backoff counter
values, i.e., B(1)2 < B(2)2 or B(1)3 < B(2)3 < B(3)3 . Also, at this
time, the special phase is terminated if the number of packets
causing the collision is 2, but otherwise, it should be contin-
ued for B(3)3 − B(2)3 idle slots. In the PCPB, after observing
two consecutive successful transmissions, stations with no
packets to retransmit further freeze their backoff counter for a
number of slots determined by a specific criterion. Let ns and
ds be the numbers of consecutive successful transmissions
in the network and elapsed idle slots, respectively, after a
collision. Also, we let Na be the number of packets involved
in the last collision. When two consecutive successful trans-
missions is observed (ns = 2) at ds = l, with a given
threshold pe ∈ (0, 1), the number va(l) of slots for additional
observation is set as follows:

va(l) = max{v ≥ 1 :

P(Na = 3,B(3)3 ≥ l + v|ns = 2, ds = l) > pe}, (10)

with the convention that max∅ = 0. Then, stations with
no packets to retransmit freeze the backoff counter up to
va(l) slots. If the network remains idle for va(l) slots, then
the network is considered to have entered an ordinary phase.
On the other hand, if a successful transmission is observed
before va(l) slots, it is immediately determined that the spe-
cial phase ends at this point. Therefore, the larger pe is, the
more aggressively stations contend for transmission.

For stations to operate using the PCPB, probability values
in (10) are required. The probability in (10) can be written as

P
(
Na = 3,B(3)3 ≥ l + v|ns = 2, ds = l

)
=
P(ns = 2, ds = l,Na = 3,B(3)3 ≥ l + v)

P(ns = 2, ds = l)
. (11)

Note that the denominator and numerator in (11) are further
written as

P(ns = 2, ds = l) = P
(
B(2)2 = l|Na = 2

)
P(Na = 2)

+ P
(
B(2)3 = l|Na = 3

)
P(Na = 3),

(12)

and

P(ns = 2, ds = l,Na = 3,B(3)3 ≥ l + v)

= P
(
B(2)3 = l,B(3)3 ≥ l + v|Na = 3

)
P(Na = 3), (13)

respectively. Let λ = 1/τ ∗
c − 1. Then, we have

P
(
B(2)2 = l|Na = 2

)
= 2

(
l−2∑
i=0

λie−λ

i!

)
λl−1e−λ

(l − 1)!
, (14)

P
(
B(2)3 = l|Na = 3

)
= 3!

(
l−2∑
i=0

λie−λ

i!

)
λl−1e−λ

(l − 1)!

 ∞∑
j=l

λje−λ

j!

 , (15)

P
(
B(2)3 = l,B(3)3 ≥ l + v|Na = 3

)
= 3!

(
l−2∑
i=0

λie−λ

i!

)
λl−1e−λ

(l − 1)!

 ∞∑
j=l+v−1

λje−λ

j!

 .

(16)

Substituting (14)-(16) into (12) and (13), and substituting
these into (11), we have

P
(
Na = 3,B(3)3 ≥ l + v

∣∣ns = 2, ds = l
)

=

3
∑

∞

j=l+v−1
λje−λ

j!
P(Na=2)
P(Na=3) + 3

∑
∞

j=l
λje−λ

j!

. (17)

In (17), we need to specify the probabilities P(Na = 2)
and P(Na = 3). We consider two cases of collision occur-
rence, one within an ordinary phase and one within a special
phase. For the first case, the probabilities P(Na = 2) and
P(Na = 3) are equal to P(Nc = 2) and P(Nc = 3)
given in (9), respectively. As can be seen in (17), we only need
the ratio of P(Na = 2) to P(Na = 3) to derive va(l), which is
calculated as

P(Na = 2)
P(Na = 3)

=
P(Nc = 2)
P(Nc = 3)

=

(N
2

)
(τ ∗
s )

2(1 − τ ∗
s )
N−2∑N

v=3
(N
v

)
(τ ∗
s )v(1 − τ ∗

s )N−v
.

(18)

For the second case, the ratio of P(Na = 2) to P(Na = 3) is
calculated as (30), and the derivation for this is presented in
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TABLE 5. Backoff mechanism of a station with the PCPB.

Appendix A. An indicator ip can be introduced to distinguish
between these two cases during the operation. The overall
operation process of the PCPB is described in Table 5.

The throughput and fairness performances of the PCPB are
also shown in Table. 4 and Fig. 6, respectively. In terms of
throughput, the PCPB shows slightly lower performance than
the CPB. In addition, it can be seen that the PCPB shows
higher throughput when pe is larger, that is, when stations
aggressively compete with more weight on the possibility of
collision by two packets rather than three or more. In what
follows, we adopt the case of pe = 0.1 as the operation of the
PCPB. As shown in Fig. 6, the PCPB shows similar fairness
performance to the CPB, exceeding those of the optimized
RAP and the BEB-based scheme in [34].

The approach of giving priority to collided packets also
works favorably from a delay perspective. The detailed anal-
ysis on this is provided in Appendix B.

V. ADAPTIVE OPERATION OF THE PCPB
Typically, it is hard for every station to know exactly how
many stations are in the network, and even the number
changes over time. In this section, we devise a version of
the PCPB called the ACPB that adaptively operates in an
environment where the number of stations in the network is
time-varying. For a given E[Tc], we first quantize the optimal
access probabilities, which are regarded as functions of N ,
by step functions having L levels. Then each component of

the step function represents a range of N and the level each
station utilizes as an access probability in that range. After
the quantization, each station estimates a range in which the
number of stations in the network is included among the L
ranges, and operates with access probabilities which are valid
in that range. For the range estimation procedure, we regard it
as amulti-armed bandit problem. Each range is regarded as an
arm, and when a station operates with the access probabilities
corresponding to the selected range, it obtains a reward value
from RTS frames received during the operation. This reward
is designed to indicate whether the currently selected range
includes the actual number of stations in the network.

A. QUANTIZATION OF OPTIMAL ACCESS PROBABILITIES
Here we provide the quantization procedure. Let the value of
E[Tc] be given since it can be determined independently ofN .
We first quantize the optimal access probability τ ∗

s (N ), as a
function of N , of the ordinary phase. Here, we consider the
domain to be continuous and denote the function as τ ∗

s (z).
We rewrite τ ∗

s (z) in (8) by τ ∗
s (z) = ηz−u1 where η =

u4(E[Tc]−u2 +u3), and u1, u2, u3, and u4 are given in Table 2
for τs. The goal of quantization is to find a step function s(z)
having L levels, s(z) =

∑L−1
l=1 αl1[nl−1,nl )(z)+αL1[nL−1,nL ](z)

where 1A is an indication function of setA, that minimizes the
distance from τ ∗

s (z) with respect to the L
2 norm ∥ · ∥2. We set

the range of values, [n0, nL], that N can take by considering
practical possibilities. When a station selects the lth range,
it accesses the channel with probability αl in an ordinary
phase. Since a backoff counter value corresponding to the
probability αl has the mean of 1/αl , this station observes 1/αl
idle slots on average until the first transmission. As will be
described later, a reward for the selected range is determined
from the information analyzed in the RTS frames received
while operating with the access probability corresponding to
this range. Since different access probabilities cause different
numbers of RTS frames to be analyzed on average, an imbal-
ance may occur in the information necessary for reward
calculation. To handle this, we consider a specific form for
the levels {αl}1≤l≤L of the step function. We set αl = α/2l−1

with some α > 0 for 1 ≤ l ≤ L. Then, if a station selecting
the lth range analyzes the received RTS frames until 2L−l

successful transmissions, the similar amount of information
can be gathered at all arms. Now, the quantization task is to
find α and partition n1 < n2 < · · · < nL−1 that minimize the
following distance between τ ∗

s (z) and s(z),

∥τ ∗
s −s∥22 =

∫ nL

n0
(τ ∗
s (z) − s(z))2dz

=

∫ nL

n0

(
ηz−u1 −

L−1∑
l=1

α

2l−11[nl−1,nl )(z)

−
α

2L−11[nL−1,nL ](z)
)2
dz

=

L∑
l=1

∫ nl

nl−1

(
ηz−u1 −

α

2l−1

)2
dz. (19)
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TABLE 6. Quantization of the optimal access probability τ∗
s in an ordinary

phase.

To find the values for s(z), we adopt the method given in [39].
We begin with an initial value for α. Since τ ∗

s (z) is monotone
decreasing, α should satisfy α ≤ τ ∗

s (n0) and α/2L−1
≥

τ ∗
s (nL). So, n0, nL , and L should be carefully set so that

n−u1
0 > 2L−1n−u1

L (20)

is satisfied. With n0, nL , and L satisfying the condition (20),
we set the initial value to {τ ∗

s (n0) + 2L−1τ ∗
s (nL)}/2. In this

case with fixed monotone levels, α1 > α2 > · · · > αL , for
a monotone target, τ ∗

s (z), it is shown in [39] that an optimal
partition n1 < n2 < · · · < nL−1 is given implicitly by

τ ∗
s (nl) =

αl + αl+1

2
,

for 1 ≤ l ≤ L − 1. With α for the levels, we have

τ ∗
s (nl) =

yl + yl+1

2

⇔ ηn−u1
l =

3α
2l+1

⇔ nl =

(
3α

η2l+1

)−1/u1
.

Thus, the optimal partition is given by

nl =

(
3α0

η2l+1

)−1/u1
, 1 ≤ l ≤ L − 1.

Now, with the fixed partition, the next candidate value for
α can be easily obtained by minimizing (19) because it is
a quadratic function of α. We repeat these two steps until
the successive difference in α does not exceed a certain
threshold to find the optimal partition and levels. Since each
step is applied in the way of decreasing the distance (19),
convergence is guaranteed. These procedures are described
in Table 6.

In the case of quantizing the optimal access probability
τ ∗
c (N ) for the special phase, we use the partition n1 < n2 <

· · · < nL−1 obtained from quantization on τ ∗
s (N ). Let a step

function for this case be

c(z) =

L−1∑
l=1

βl1[nl−1,nl )(z) + βL1[nL−1,nL ](z).

Similarly to above, we assume a continuous domain and
denote the target as τ ∗

c (z). By abuse of notation, we use u1 and
η in the same way as above with different values for τ ∗

c given
in Table. 2. When a partition n1 < n2 < · · · < nL−1 is
given, it is shown in [39] that the optimal levels {βl}1≤l≤L are
given by

βl =
1

nl − nl−1

∫ nl

nl−1

τ ∗
c (z)dz, 1 ≤ l ≤ L.

More specifically, we have

βl =
1

nl − nl−1

∫ nl

nl−1

ηz−u1dz

=
η

nl − nl−1
·

1
−u1 + 1

(
n−u1+1
l − n−u1+1

l−1

)
,

for 1 ≤ l ≤ L.

B. RANGE ESTIMATION THROUGH BANDIT PROBLEM
As mentioned above, we consider the operation of a station
repeatedly select one of the L ranges as an L-armed bandit
problem. When a station selects a range and operates with
the associated levels as the access probabilities, a reward
value indicating whether the actual number of stations in the
network is within this range should be given.

In RTS/CTS mechanism, a station that has a packet to send
transmits an RTS frame before sending it. Since an RTS frame
contains the transmitter address, as utilized in [20], each
station can distinguish different stations in the network from
the received RTS frames. Consider a station contending for
channel access by selecting the lth range. This station oper-
ates with access probabilities α/2l−1 and βl for the ordinary
and special phases, respectively. The reward for choosing
this range is calculated from RTS frames received until it
successfully transmits 2L−l packets. Such a setting allows a
similar number of received RTS frames to be utilized in all
ranges when calculating the reward. Let NR be the number of
different stations analyzed from the RTS frames, including
this station. If NR falls within the selected range, a reward of
1 is given; otherwise, a reward of 0 is given. Furthermore,
NR takes on the role of N in the calculation of (18) during
the operation of PCPB for the selected arm. This process can
be easily performed compared to the scheme in [20], which
requires recording the number of successful transmissions for
each detected station.

Under the condition that the reward distributions of the
arms are stationary, the goal is to maximize the expected
total reward over a certain time period. In this stationary
bandit problems, it is known that UCB strategy [40] achieves
optimal performance. Let At be the chosen arm and Rt (l) be
the reward for arm l, 1 ≤ l ≤ L at time step t . From a
station’s perspective, the unit of one time step depends on the
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TABLE 7. UCB algorithm.

arm selected at that time. If At = l, the reward Rt (l) is given
when the station completes its 2L−l successful transmissions.
At each time step t , the UCB strategy computes the average
reward as

Qt (l) =
1

Ht (l)

t−1∑
s=1

Rs(l)1{At=l}, (21)

where Ht (l) =
∑t−1

s=1 1{At=l}, and the exploration bonus,
which is the size of the one-sided confidence interval for
exploration, as

ct (l) = ρU

√
log t
Ht (l)

, (22)

for some parameter ρU > 0. Then the index of this strategy
for arm l is configured byQt (l)+ct (l). Using these notations,
the algorithm for UCB strategy to play arms is given in
Table 7.

When the number of stations in the network changes over
time, the reward distribution of each arm is not stationary. The
switching bandit problem takes this form of non-stationarity
into account by allowing the distributions of rewards to
change at unknown time instants. Noting that the UCB strat-
egy achieves optimal performance in the stationary bandit
problems, some adaptations of UCB to the switching bandit
problems have been proposed in the literature. Discounted
UCB (DUCB) [41] relies on a discount factor δ ∈ (0, 1).
At each time step t , this policy computes the discounted
average reward as

Qt (δ, l) =
1

Ht (δ, l)

t−1∑
s=1

δt−1−sRs(l)1{At=l}, (23)

where Ht (δ, l) =
∑t−1

s=1 δt−1−s
1{At=l}, and the exploration

bonus as

ct (δ, l) = ρD

√
log ht (δ)
Ht (δ, l)

,

where ht (δ) =
∑L

l=1Ht (δ, l), for some parameter ρD > 0.
Then the index of this strategy for arm l is configured by
Qt (δ, l) + ct (δ, l). The algorithm for playing arms in dis-
counted UCB is the same as in the UCB strategy given in
Table 7, except that Qt (l) and ct (l) are replaced with Qt (δ, l)
and ct (δ, l), respectively.

Another variant of UCB is sliding-window UCB
(SWUCB) [42]. This strategy only considers recent play
results over a fixed-time horizon ω for arm selection. At each

time step t , it computes the local average reward as

Qt (ω, l) =
1

Ht (ω, l)

t−1∑
s=t−ω

Rt (l)1{At=l}, (24)

where Ht (ω, l) =
∑t−1

s=t−ω 1{At=l}, and the exploration
bonus as

ct (ω, l) = ρS

√
logmin(t, ω)
Ht (ω, l)

for some parameter ρS > 0. As above, the index for arm l is
constructed by Qt (ω, l) + ct (ω, l), and the algorithm for this
strategy is obtained by replacingQt (l) and ct (l) withQt (ω, l)
and ct (ω, l), respectively, in Table 7.

C. NUMERICAL RESULTS
Here, we numerically evaluate the performances of the ACPB
developed in this section. As in Section III-D, we perform
simulation with network parameters in Table 3. For the
simulation, we set the number of ranges for the quantization
to L = 4. Also, the range of the number of stations N is set
to [5, 70], i.e., n0 = 5 and nL = 70. The threshold for the
quantization is set to 10−7.
Note that the ACPB requires no information on the number

of stations in the network and operates in a fully distributed
manner. So we compare the performance of the ACPB with
three backoff schemes, the A-RAP+ [21], the AMOCW [20],
and the Probability-based Opportunity Dynamic Adaptation
(PODA) [43], which operate completely distributed. In these
schemes, each station estimates the number of stations in the
network and adjusts the backoff parameters based on this.
In the A-RAP+, each station uses only its own transmission
results, and it is shown in [21] that the A-RAP+ achieves
superior performance than other schemes, such as the BEB,
the QB, and the EIED, of this type. The AMOCW is an
improved version of the Idle Sense technique, and each sta-
tion using it monitors the network status as in the ACPB. The
PODA is an enhanced version of the BEB, where each station
tunes its CW adaptively by estimating the number of stations
from its actual backoff probability.

In the case of the ACPB, the simulation starts with each
station randomly selecting one of the four ranges uniformly.
For the A-RAP+ or AMOCW, at the start of each simulation
run, each station randomly selects an initial estimate of the
number of stations in the network uniformly from [5, 70]. The
simulation for PODA starts with CW of 16 for all stations.
At first, we consider a static environment in which the number
of stations in the network is fixed. In this case, we consider
that the ACPB operates based on UCB, which is suitable
for the static environment, given in Table 7. For the value
of ρU in (22), we examine the performance for each of the
values in {10−3, 10−1, 10}. For each simulation scenario, the
performance result is obtained as the average of those from
20 runs.

The throughput performance is provided in Table 8. The
case where ρU is 10−3 shows the same results as the case
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TABLE 8. Network throughput performance of adaptive schemes.

where ρU is 10−1, and it is omitted from this table. As can be
seen in the table, AMOCW achieves the lowest performance
in all cases, while PODAachieves the second or third best per-
formance among all schemes depending on the case. On the
other hand, the ACPB with ρU = 10−3 or 10−1 achieves
the highest throughput in all cases. Also, the ACPB shows
similar throughput results to the optimized PCPB given in
Table 4 even though it operates without the information on
the number of stations. This verifies the effectiveness of the
proposed range estimation mechanism.

Fig. 8 shows fairness performance of the adaptive schemes
when the ‘Data rate’ is set to 50Mbps. Since the result when
the ‘Data rate’ is 5Mbps is similar to that in Fig. 8, it is
omitted here. As can be seen in the figure, the ACPB with
small ρU (10−3 or 10−1) show higher fairness performance
than other access methods, which is similar to the results
of the PCPB in Fig. 6 with a difference within about 1%.
In the ACPB, the larger the ρU value, the more weight is
placed on the exploration. Thus, in the static environment
currently under consideration, performance degradation is
observed when ρU = 10. The A-RAP+ and AMOCW show
different performance patterns depending on the number of
stations. The ‘phase’ element used in theA-RAP+ is designed
to adjust access probabilities with lower variability than the
AMOCW, resulting in a more stable but slow adaptation.
An abrupt adjustment of AMOCW could be detrimental from
a short-term fairness perspective. Recall that the optimal
access probability is inversely proportional to the number of
stations. Thus, when the number of stations is small, even
small fluctuations in the station number estimation can result
in greater variations in access probability compared to cases
where there are many stations. Fig. 9 shows the ratio of slots
where the channel access probability of a station deviates
from the mean for different levels of deviation during the
total simulation for the A-RAP+, AMOCW, and PODA.
As expected, the A-RAP+ shows a relatively high deviation
rate in the case of a low number of stations. In this case, some
stations operate for a relatively long timewith different access
probabilities, resulting in lower fairness compared to other
schemes from a long-term perspective. On the other hand,
as the number of stations increases, the variability in access
probability decreases, so the A-RAP+ exhibits high fairness.
In the case of the PODA, it can be observed that the unfairness

FIGURE 8. Fairness performances of adaptive schemes when the ‘Data
rate’ is 50Mbps.

caused by the waiting penalty of the BEB-based mechanism
becomes more prominent as the number of stations increases,
and the performance degradation becomes more severe.
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FIGURE 9. Ratio of slots in which the channel access probability of a
station deviates from the mean versus several levels of deviation during
the total simulation.

Now we consider an environment in which the number of
stations in the network changes over time. As discussed in
Section V-B, DUCB and SWUCB based operation can be
applied in response to such an environment. For the simula-
tion, we consider a scenario in which the number of stations
in the network changes in the order of 24, 6, 48, and 12 for
every 2.5 × 105 slots. For δ in (23) and ω in (24), values
belonging to {0.5, 0.7, 0.9} and {10, 30, 50}, respectively, are
considered. For ρD and ρS , we consider values belonging to
{10−3, 10−1, 10} as in ρU . With the network parameters in
Table 3, the number of stations 24, 6, 48, and 12 correspond
to ranges 3, 1, 4, and 2, respectively. Fig. 10 shows, for
each scheme, the change over time of the average of the
argmax of the estimated average rewards ({Qt (l)}l in (21) for
UCB, {Qt (δ, l)}l in (23) for DUCB, and {Qt (ω, l)}l in (24))
for ranges of all stations. In Fig. 10-(a), it can be seen that
the UCB scheme cannot respond promptly to changes in the
number of stations because the estimated average reward is
calculated as the average of all rewards so far. Specifically,
when the number of stations changes from 24 to 6 (from the
first interval to the second interval), the accumulated reward
of the remaining 6 stations tends to remain maximal in range
3, and only responds slowly to the change when the degree
of exploration is high (ρU = 10). For the second change
from range 1 to 4, there are many new stations entering to
the network, and these lead to an increase in the average of
the argmax. In the last interval, the larger the value of ρU , the
faster the response to the change is observed, but it can be
checked that the history in the second and third intervals is
reflected in the average reward of the stations.

On the other hand, DUCB and SWUCB operate in a way
that weights more on recent observations by adjusting the

FIGURE 10. Averages of argmax of the estimated average rewards for
ranges of all stations over time. The thick gray line indicates the range to
which the actual number of stations belongs in each interval. The results
are for the case where the ‘Data rate’ is 50Mbps.

parameters δ and ω, respectively, so a quick response to
abrupt changes in network environment can be expected.
Fig. 10-(b) shows the results for the three cases that achieve
the highest throughput in the DUCB-based ACPB. As can be
seen in the figure, the DUCB-based ACPB responds quickly
to sudden changes in the number of stations in all cases.
Although it is not clearly distinguished in the plot, at the
boundaries between intervals, it can be checked that a rela-
tively slow response to changes in the number of stations is
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TABLE 9. Network throughput performance of adaptive schemes when
the number of stations changes.

FIGURE 11. Averages of fairness performance measured for each interval.

shown when the strategy places greater emphasis on history
(high δ) and less on exploration (low ρD). In 10-(c), as above,
the results for the three cases where the highest throughput
is achieved in the SWUCB-based ACPB. From the figure,
we can see that the SWUCB-based ACPB also responds
quickly and accurately to changes in the number of stations,
as in the case of the DUCB-based ACPB. Note from (24) that
ω means the length of the history used to estimate the average
rewards of the arms. As expected, at the boundaries between
intervals, it can be checked that a faster response to changes
is made when a low ω values is used.
From now on, for the ACPB, we consider only the cases

where DUCB or SWUCB is applied. Table 9 shows the
network throughput achieved over the entire 106 slots for
adaptive backoff schemes under consideration. In the case

of the ACPB, the results are shown for the parameter com-
bination that yields the maximum throughput performance.
As can be seen in the table, the ACPB achieves higher
throughput than other techniques. Furthermore, the ACPB
shows similar performance to the PCPB, given in Table 4,
operating in an environment where the number of stations
is static and known. Regarding fairness, Fig. 11 shows the
average of fairness performance measured for each of the
four intervals. From this figure, we can see that the ACPB
achieves higher fairness performance then other schemes.
The results for other schemes show similar patterns to those
in the static environment given in Fig. 8. The most degraded
performance is observed in the BEB-based PODA where the
waiting penalty imposed on collided packets is the highest.

VI. CONCLUSION
In this paper, we devised a random backoff scheme called
the CPB which is based on the concept of giving priority to
collided packets. In the CPB, two different backoff behaviors
are defined in the ordinary and special phases. The special
phase is designed to induce contention of only collided pack-
ets. We analyzed how much performance improvement can
be achieved by prioritizing collisions through optimizing the
backoff behavior of the CPB compared to existing schemes
such as the BEB,which imposes awaiting penalty. For a given
number of stations and network parameters, optimal values
for the access probabilities were derived through Bayesian
optimization. We also devised a practical form of the CPB
called the PCPB, which operates probabilistically by relaxing
the ideal assumptions inherent in the concept of the CPB.
In a static environment where the number of stations is fixed
and known, it was verified through simulation studies that
the PCPB operating with the optimized access probabilities
outperforms the existing schemes in term of throughput and
fairness. Considering a more realistic environment in which
the number of stations is time-varying, we also devised an
adaptive version of the CPB called the ACPB.We formulated
the operation of the ACPB as a multi-armed bandit prob-
lem through quantization of the optimal access probability.
We applied UCB-based strategies to the ACPB, inspired by
switching bandit learning theory which is suitable for a time-
varying environment. Simulation results verified that our
proposed ACPB not only outperforms the existing adaptive
schemes but also achieves comparable performance to the
optimized PCPB in a static environment.

APPENDIX A
DERIVATION OF THE PROBABILITIES ON THE NUMBER
OF PACKETS INVOLVED IN A COLLISION THAT
OCCURRED WITHIN A SPECIAL PHASE
Here, we derive the probabilities P(Na = 2) and P(Na = 3)
when the collision occurs within a special phase. The special
phase starts when a collision occurs in the ordinary phase.
Therefore, collisions in the special phase occur when some
of the stations trying to retransmit select the same backoff
counter values. LetK (2)

c andK (3)
c be the numbers of collisions
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caused by two and three packets within a special phase,
respectively. Then we approximate the values of P(Na = 2)
and P(Na = 3) as

P(Na = 2) ≈

E
[
K (2)
c

]
E
[
K (2)
c

]
+ E

[
K (3)
c

] ,
P(Na = 3) ≈

E
[
K (3)
c

]
E
[
K (2)
c

]
+ E

[
K (3)
c

] . (25)

Note that

E
[
K (2)
c

]
= P(Nc = 2)E

[
K (2)
c

∣∣∣Nc = 2
]

+ P(Nc = 3)E
[
K (2)
c

∣∣∣Nc = 3
]
,

E
[
K (3)
c

]
= P(Nc = 3)E

[
K (3)
c

∣∣∣Nc = 3
]
. (26)

To derive formulas for the expected values in (26), we define
the following probabilities:

p2 = P(∃ a tie between two independent Pois(λ))

=

∞∑
i=0

(
λie−λ

i!

)2

,

p33 = P(∃ a tie for all three independent Pois(λ))

=

∞∑
i=0

(
λie−λ

i!

)3

,

p32 = P(∃ a tie in two of the three independent Pois(λ))

= 3
l∑
i=0

(
λie−λ

i!

)2 ∞∑
j=l+1

λje−λ

j!

+ 3
l∑
i=0

λie−λ

i!

 ∞∑
j=l+1

(
λje−λ

j!

)2
 .

Nowwe derive conditional expectations in (26). If the special
phase starts with a collision due to two packets, a collision
occurs with probability p2 and the phase ends with probability
1− p2. Thus, K

(2)
c given Nc = 2 is geometrically distributed,

and hence we have

E
[
K (2)
c

∣∣∣Nc = 2
]

=
p2

1 − p2
. (27)

Similarly, K (3)
c given Nc = 3 is also geometrically distributed

with the success probability 1 − p33. Hence we have

E
[
K (3)
c

∣∣∣Nc = 3
]

=
p33

1 − p33
. (28)

For K (2)
c given Nc = 3, with probability p32, it follows the

same distribution as K (2)
c given Nc = 2 after one count, and

with probability p33, it shows a renewed distribution with no
counting. Thus, it follows that

E
[
K (2)
c

∣∣∣Nc = 3
]

= p32
(
1 + E

[
K (2)
c

∣∣∣Nc = 2
])

+ p33E
[
K (2)
c

∣∣∣Nc = 3
]
,

TABLE 10. Average medium access delay (in milliseconds).

and hence we have

E
[
K (2)
c

∣∣∣Nc = 3
]

=
p32

(1 − p2)(1 − p33)
. (29)

As observed in (17), we only need the ratio P(Na =

2)/P(Na = 3) to derive va in (10). From (25), the
ratio is approximated by E[K (2)

c ]/E[K (3)
c ]. Then, substituting

(27)-(29) into (26), the ratio is calculated as

P(Na = 2)
P(Na = 3)

=

P(Nc=2)
P(Nc=3)

p2
1−p2

+
p32

(1−p2)(1−p33)
p33

1−p33

. (30)

APPENDIX B
DELAY ANALYSIS
The total end-to-end packet delay consists of queuing delay
andmedium access delay. Queuing delay refers to the amount
of time that a data packet waits in the system until it begins
contending for channel access. Medium access delay refers
to the amount of time between the initiation of contention
for channel access and the reception of a positive acknowl-
edgment for a transmission. Here, we compare the delay per-
formance of the PCPB, RAP, and BEB-based scheme in [34]
when the number of stations is known. All considered backoff
schemes are assumed to be optimized in terms of throughput.

First, we investigate themedium access delay. Let Z denote
a random variable representing the medium access delay
of a packet. As shown in Fig. 6, all backoff schemes pro-
vide long-term fairness in that their fairness indices con-
verges to 1 as the sliding window size increases. Thus,
one can speculate that the mean of Z is inversely propor-
tional to throughput. Table 10 and 11 show the average
and standard deviation of medium access delay calculated
from 10000 samples of Z for each case in the simulations
performed in Sections III and IV, respectively. The optimized
throughput in Table 4 appears to be similar across all tech-
niques, so the average medium access delay also shows
similar results as speculated. On the other hand, delay jitter
exhibits significant differences between backoff schemes,
as shown in Table 11. Specifically, the higher the waiting
penalty imposed on the collided packets, the higher the delay
variability.

To analyze queuing delay, we tag a station and consider
the worst case for this tagged station where all other stations
are saturated. In [44], leveraging effective bandwidth theory,
it is shown that the queue overflow probability in steady state
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TABLE 11. Standard deviation of medium access delay (in milliseconds).

FIGURE 12. Cumulant generating functions of medium access delay for
the PCPB, RAP, and BEB-based scheme in [34].

decreases as the mean and cumulant generation function of
Z decrease. Since the mean of Z is fixed as throughput is
optimized, we focus on the cumulant generating function.

The cumulant generating function 3Z (ν) of Z is defined by,
for ν ∈ R,

3Z (ν) := log E
[
eνZ

]
.

Fig. 12 shows the results for 3Z (ν) calculated with samples
of Z from the simulation for each backoff scheme as above.
As can be seen in the figure, the PCPB has a much smaller
cumulant generating function than other schemes. In other
words, the PCPB can maintain a more stable system by hav-
ing a lower queue overflow probability than other schemes.

In sum, the PCPB that gives priority to collided packets
rather than waiting penalty achieves good delay performance
in terms of low delay jitter and stable queue management.
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