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ABSTRACT Advances in Unmanned Air Vehicle (UAV) technology have paved a way for numerous
configurations and applications in communication systems. However, UAV dynamics play an important role
in determining its effective use. In this article, while consideringUAVdynamics, we evaluate the performance
of a UAV equipped with aMobile-Edge Computing (MEC) server that provides services to End-user Devices
(EuDs). The EuDs due to their limited energy resources offload a portion of their computational task to
nearby MEC-based UAV. To this end, we jointly optimize the computational cost and 3D UAV placement
along with resource allocation subject to the network, communication, and environment constraints. A Deep
Reinforcement Learning (DRL) technique based on a continuous action space approach, namely Deep
Deterministic Policy Gradient (DDPG) is utilized. By exploiting DDPG, we propose an optimization strategy
to obtain an optimal offloading policy in the presence of UAV dynamics, which is not considered in earlier
studies. The proposed strategy can be classified into three cases namely; training through an ideal scenario,
training through error dynamics, and training through extreme values. We compared the performance of
these individual cases based on cost percentage and concluded that case II (training through error dynamics)
achieves minimum cost i.e., 37.75 %, whereas case I and case III settles at 67.25% and 67.50% respectively.
Numerical simulations are performed, and extensive results are obtained which shows that the advanced
DDPG based algorithm along with error dynamic protocol is able to converge to near optimum. To validate
the efficacy of the proposed algorithm, a comparison with state-of-the-art Deep Q-Network (DQN) is carried
out, which shows that our algorithm has significant improvements.

INDEX TERMS MEC, offloading ratio, resource allocation, trajectory optimization, UAV dynamics.

I. INTRODUCTION
In the era of 5th Generation (5G) and Internet of Things (IoT),
the need to analyze, process, and computation of huge chunks
of data is becoming an interesting topic in the researchers’
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domain [1]. The complexity of executing computational tasks
and data processing is becoming a challenge for End-user
Devices (EuDs) due to their low storage, less computation
power, and limited energy resources [2] and [3]. One solution
to overcome the limitations of on-device local computing
of EuDs is to use Multi-access Edge Computing (MEC)
servers. MEC enables the EuDs to offload tasks to nearby
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edge servers, hence, reducing the extensive computational
burden on EuDs [4]. MEC differs from conventional cloud
computing in the sense that it uses Radio Access Networks
(RANs) which are close to EuDs, resulting in low trans-
mission delays [5]. Although MEC-based systems impose
less burden on EuDs and utilize low communication and
resources, there are several concerns due to which MEC-
based systems are still in researchers’ circle [6].

In earlier stages, MEC-based systems used fixed position
Base Station (BS), and the ultimate goal was to enhance
Quality of Service (QoS) and to reduce the computation
burden on EuDs [7]. In [8], a comprehensive survey of
mobile edge computing is provided, which focuses on service
adoption and provision. The survey includes a detailed
analysis of computational offloading aswell as of deployment
of edge-server and resource allocation. The question of
how to place the edge servers for optimal performance
is addressed in [9], where the placement of edge servers
is formulated as a constrained optimization problem and
Mixed Integer Programming (MIP) is applied to resolve
the constrained problem. The computational offloading and
resource allocation in a collaborative manner is studied
for multi-layer MEC systems and vehicular MEC networks
in [10] and [11] respectively.

Combining MEC networks with Reinforcement Learning
(RL) manifests to be more efficacious because of the capacity
of RL algorithms to work efficiently in highly nonlinear
and dynamic environments, complex datasets, etc. [12].
A detailed survey about computation offloading strategies in
MEC based on RL is presented in [13], where the authors
compared RL strategies with supervised and unsupervised
learning methods. The above survey also unleashed the
open-ended issues and future prospects of integrating RL
techniques in MEC networks. In [14], a DRL approach is
used for joint task offloading and resource allocation, where
cost, computation delay, and energy are minimized. The
presented method is based on State-Action-Reward-State-
Action (SARSA) algorithm to optimize resource manage-
ment. A smart DRL-based resource allocation method is
devised in [15] which allocates communication and compu-
tation resources adaptively by learning the environment and
updating the policy.

A multi-user task offloading scenario is considered in [16],
where offload is minimized and measured by energy con-
sumption. The DDPG algorithm based on continuous action
space is designed for decentralized computation offloading
in [17]. The designed algorithm works without any prior
knowledge of the network, and emphasis is given to a scenario
where tasks arrive non-uniformly.

With the technological advances of UAVs, these devices
are being used in many real-time applications like mon-
itoring, remote sensing, security, surveillance, etc. [18].
A comprehensive survey on data collection in IoT networks
by means of UAV is presented in [19]. Recently, UAVs
are deployed for providing wireless coverage in scenarios
where base stations are overloaded due to heavy traffic,

communication facilities are sparsely distributed, and the
occurrence of inevitable natural disasters or temporary
malfunctions in BS is considered [20]. A recent interesting
survey on advances in UAV-assisted wireless networks
is presented in [21]. The survey is prominent from an
optimization perspective and several optimization objectives
are explored like delay, QoS, energy, coverage area, etc.
In [22], the authors investigated resource allocation and UAV
placement for IRS-assisted UAV-based wireless networks.
The design focuses on maximization of the sum rate achieved
by EuDs through optimizing UAV placement and IRS
phase shift. The UAV placement problem is solved by
leveraging from Successive Convex Approximation (SCA)
method.

An optimization problem for total system delay is devel-
oped and Deep Q Network (DQN) is used to obtain the
best resource allocation scheme [23]. The research study
considered only a single UAV-edge server for providing
auxiliary computation services to ground EuDs. To ensure
the security of information and prevent eavesdropping in
MEC networks, a full-duplex UAV is added to the MEC
system to counter eavesdropping by sending interference
signals [24]. To deal with the unbalanced traffic congestion
on overloaded BS, a UAV network is used which integrates
genetic algorithm and branch and bound method to optimize
UAV position and spectrum efficiency respectively [25].
An artificial intelligence approach is used to elevate the
energy efficiency of a UAV-based wireless network. The
author compared the proposed AI strategy with federated
deep learning (FDL) and multi-agent deep deterministic
policy gradient (MADDPG) method [26].

It is worth mentioning that although literature on achieving
UAV tracking performance is well developed, it is less useful
in context of UAV based MEC network. As in UAV-MEC
network, there are additional performance aspects that require
optimization, such as delay, capacity, Age of Information,
energy and etc. For interested readers’, a summary of
most relevant literature on UAV tracking performance is
given below in the paragraph. An iterative learning control
(ILC) design method was presented to improve tracking
performance through learning from errors over iterations in
repetitively operated systems [27]. A backstepping controller
was introduced to improve tracking accuracy and robustness
of UAVs’ attitude control [28]. Conventional proportional and
derivative lateral control law with some non-linear modifi-
cations were presented to enhance tracking performance for
a UAV in different flight conditions [29]. Rapid transfer of
controllers between UAVs using learning controllers was also
proposed to improve trajectory tracking performance [30].
A comprehensive survey of control algorithms for UAVs was
conducted, which covers many control and navigation tech-
niques [31]. Proportional Integral Derivative (PID) controller,
Linear Quadratic Regulator (LQR), Feedback Linearization
Control (FLC), Linear Quadratic Gaussian (LQG), fuzzy
logic, adaptive control, etc are some examples of UAV
controllers [32].
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TABLE 1. List of abbreviations.

A. RELATED WORK
UAVs-assisted wireless networks offer numerous advantages
in terms of coverage, mobility, cost, reconfiguration, and
flexibility when compared to the deployment and operation
of conventional wireless networks [33]. The UAVs equipped
with wireless interfaces can act as a mobile base station
to transmit (receive) data to (from) the network EuDs.
The position and trajectory of these UAVs determine their
coverage area and are strongly dependent upon the EuDs’
density and traffic requirements [34]. However, a challenging
situation to design an optimal scheme for the allocation
of communication and computational resources along with
the trajectory optimization exists because of UAV’s limited
onboard computation power, energy resources, and flight
time.

In earlier works, the authors in [35] presented RL-based
algorithm for optimal UAV positioning and transmission of
power to drone small cells in order to revamp the outage
performance and energy efficiency of UAVs. In [36], a UAV-
assisted wireless sensor network is considered and authors
developed a distributed RL strategy that permits devices to
collaboratively update RL parameters. The objective was to
minimize the weighted sum of Age of Information (AoI)
cost in real-time and total energy consumption. A multi-
UAV cooperative scenario is considered in [37] and a
novel optimization algorithm for resource allocation and
UAV positioning is proposed which can be split into two
components: a) Deep Q Network approach is used to
determine UAVs’ position, b) Difference Convex Algorithm
(DCA) is designed to work out UAV-EuD association and
UAV beam-forming.

In recent works, a study is carried out on a multi-input
single-output (MISO) UAV-based MEC network, aiming to

optimize UAV’s energy consumption, transmission power,
and trajectory [38]. In [39], joint task assignment and UAV
trajectory optimization problem are solved by using coa-
lescedmulti-population based genetic algorithm and dynamic
programming. For efficient deployment and cost saving,
an Improved Mean Shift (IMS) algorithm is presented in [40]
to jointly optimize the number of UAV servers and their
location. In [41], a Block Coordinate Descent (BCD) method
is proposed to solve a non-convex optimization problem of
reducing the overall energy consumption of EuDs with the
local computing constraint and task completion deadline.
For task scheduling and resource allocation, the branch and
boundmethod is used, while for UAV trajectory optimization,
SCA is employed. An interesting study regarding UAV speed
optimization and path planning is witnessed in [42], where
SCA andGA aremanipulated to solve AoI and energy-aware-
trajectory-optimization problem. A novel UAV-assisted IoT
system is designed for the shortest UAVflight with maximum
data collection from EuDs. A DRL technique is exploited to
ensure maximum data collection with a significant sum rate
while minimizing the flight path and usage of resources [43].
In [44], a cluster-based node mechanism is used which uses
the k-value selection method, and UAV trajectories with
minimum distance and total flight time are proposed. For
an emergency scenario, optimization of UAV placement and
trajectory planning for critical nodes is studied in [45]. Based
on the capacity and Age of Information, two optimization
problems are formulated and the RL technique is used towork
out the optimal UAV placement. A recent resource allocation
and 3D placement of the UAV-MEC network is studied
in [46], where an iterative algorithm tends to jointly optimize
UAV-EuD association, UAV’s trajectory, task split ratio, and
bandwidth allocation. Since the optimization incorporated the
Mixed Integer Non-Linear Programming (MINLP) model,
therefore SCA and BCD methods are applied to figure out
the problem.

B. NOVELTY AND CONTRIBUTION
The existing literature summarized above often assumes
a constant velocity model for the UAV. This leads to
oversimplification, as the dynamics of UAVs are also equally
important in determining the trajectory followed by the UAV.
Even if an independent flight control model is assumed
for trajectory tracking, the associated energy cost of the
flight controller is ignored in the analysis. In addition, the
cost factors are often not normalized [47] and [48], which
simply lead to scale inconsistencies. Therefore, the following
considerations have been covered in this paper:

• We propose a joint optimization approach of delay and
energy, based on DRL for a UAV-MEC network with
EuDs. The uncontrolled dynamics with input saturation
(actions are bounded in a pre-specified region) are
incorporated in DRL based model to efficiently offload
tasks and manage resource allocation to achieve cost
minimization.
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• We propose a limited error feedback mechanism in DRL
so that the error due to uncontrolled dynamics can be
compensated.

• We further propose three schemes namely; training
through an ideal scenario, training through error dynam-
ics, and training through extreme value, and evaluate
these to find the best scheme.

• We compare the performance of the above-mentioned
schemes based on cost percentage, and conclude that
case II (training through error dynamics) achieves
minimum cost.

To authenticate the superiority of the propopsed DDPG based
RL algorithm, simulations are performed and a comparison
with the state-of-the-art DQN algorithm is performed. The
comparison revealed that DDPG algorithm is able to give
much btter optimal results.

The remaining paper is presented in sections as follows.
In section II, a complete system model is defined, and an
optimization problem is formulated. In section III, DDPG-
based dynamic computation offloading and placement of
UAV are discussed in detail. In section IV, simulation results
and comparisons are provided to validate the effectiveness
of the proposed strategy. The conclusion is provided in
section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A multi-user UAV-MEC network is considered as illustrated
in Figure 1. It consists of a UAVwith an onboard MEC server
and several EuDs I = {1, 2, . . . , I }. We consider a scenario
where cellular network coverage becomes unavailable for
EuDs (the EuDs cannot access resources from the base
station). Due to the limited onboard capacity, and to ensure
operation longevity, EuD offloads some portion of the
task to the UAV. In this critical situation, UAV provides
computational services to EUDs and executes a portion of
the task, offloaded by EuD. A discrete-time model is used
where the total time period T is divided into equal time
slots [49] and only one EuD is served in each time slot
t [50]. In subsequent subsections, the network model and
computation model are introduced in detail.

A. NETWORK MODEL
We assume that there are I EuDs placed randomly in a pre-
specified bounded area. A low-speed random mobility model
has been assumed for all EuDs. The 3D location of EuDs is
denoted by xi = (Xi,Yi,Hi). In each time slot, the UAV has
a starting point xj = (Xj,Yj,Hj) and an end point xj+1 =
(Xj+1,Yj+1,Hj+1). The channel gain between UAV and EuD
i can be written as

gi(t) =
c

d2i (t)
, (1)

where di(t) denotes the distance between UAV and EuD
i and c designates the channel gain at reference distance
d = 1m. The uplink data rate between EuD i and

TABLE 2. Summary of notation.

FIGURE 1. Interconnection of EuDs in UAV-MEC Network.

UAV is calculated by

ri(t) = W log2(1+
pugi(t)

σ 2 + bi(t)PNLOS
), (2)

where W is the bandwidth, pu is the transmission power
of EuD, gi(t) is the channel gain, σ 2 is the noise power,
bi(t) = {0, 1}, 1 means blockage between UAV and EuD and
0 indicates no blockage, and PNLOS is the transmission loss.

B. COMPUTATION MODEL
We consider that each EuD has a computational task R to
be completed in time period T . In our scenario, the partial
offloading technique is adopted by EuDs [51], andR = [0, 1]
is the offloading ratio range between 0 and 1. Resultant, 1−R
is the remaining task to be executed locally by EuD i in time
period T .

1) LOCAL COMPUTATION MODEL
When EuD performs a computation task locally, it does not
require any resource from the UAV or MEC server.
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The local execution delay T of EuD i can be expressed as

Tloci (t) =
(1−Ri(t))Di(t)B

fi
, (3)

where fi is the computing capability of EuD,Di(t) denotes the
task size of EuD i and B indicates the required CPU bits/cycle
to process each chunk of data.
The energy consumed by EuD during the local execution of
a task is calculated as

E loci (t) = Kif 3i ∗ T
loc
i (t), (4)

where Ki is the effective hardware switching capacity and fi
is the computational frequency of EuD.

2) OFFLOADING MODEL
When a portion of the EuD’s task is executed by the UAV,
the total delay experienced during the execution is the sum
of uplink transmission delay, onboard execution delay, and
downlink transmission delay. The downlink transmission
delay is not considered here because the required data to be
transmitted is too small [52]. The delay experienced during
the processing of an offloaded task is divided into two parts.
The first is a transmission delay and the second part is a
computational delay. Transmission delay is represented by

Ttri (t) =
Di(t)Ri(t)

ri
, (5)

where ri is the uplink rate between UAV and EuD. The
computational delay experienced by EuD is denoted by

TUAVi (t) =
Di(t)Ri(t)B

fUAV
, (6)

where B is the required CPU bits/cycle and fUAV is the
computational capacity of UAV.
When EuD is associated with UAV for offloading its task,
the energy consumption is calculated depending upon UAV
constraints such as flying, hovering, and execution energy
consumption at time slot t . At the end of each time slot, the
UAV hovers from position xj to the new position xj+1with
speed v(t) ∈ [0,Vmax] and angles θ = [0, 2π ] and φ =

[0, 2π ]. The energy consumption of UAV during this flight
can be expressed as

EUAVfly (t) = pfly||v(t)||2, (7)

where pfly = 0.5Mtfly, M is the mass of the UAV, tfly is the
flight time [52]. According to [53], the power consumption
for task execution delay at time slot t is denoted by

PUAV (t) = KUAV f 3UAV , (8)

where KUAV is the constant CPU cycle of UAV and fUAV is
the computing capacity.
The energy consumption of the UAV-MEC server is

EUAVexe (t) = PUAV (t) ∗ TUAVi (t). (9)

Then, the total energy utilization by the UAV is the sum of
execution energy and flying energy and represented as

EUAV (t) = EUAVexe (t)+ EUAVfly (t). (10)

C. PROBLEM FORMULATION
In this subsection, we formulate the optimization problem of
minimizing the computational cost, which is the normalized
function of processing time delay and energy consumption
of UAV, by jointly optimizing 3D trajectory and resource
allocation, subject to the network and computational model
outlined above. The proposed work considers the UAV
dynamics, which are often ignored in the existing literature.
Newton’s law of motion is followed to observe UAV
dynamics and can be expressed as

dxUAV (t) = vUAV (t)dt. (11)

where vUAV (t) is the speed of UAV at time t . Additionally,
UAV adapt its velocity in accordance with current velocity.
Also, UAV control factor has good effects on the velocity of
UAV. Velocity dynamics of UAV can be expressed as:

dvUAV (t) = (AvUAV (t)+ BuUAV (t))dt, (12)

where B = I , A = 0.1 ∗ B and uUAV is the input control
variable [54]. The proposed aspect has a serious impact
on UAV trajectory optimization and cost, which makes the
optimization problem difficult to converge.

The aim is to minimize the computational cost considering
the actual dynamics of UAV. In our model, we train the
algorithm for 500 intervals. Each interval consists of 40 sets
of time slots t and the computation cost is the mean of total
energy and time delay in each interval of time T . To add
these two factors, we normalize energy and time delay values
to calculate the total computational cost. For the notation,
we say that the optimization variable (i.e., computational
cost) is represented by z.

Mathematically, the optimization problem can be posed as
follows.

min
αi(t),xj+1,Ri(t)

ETt=1αi(t)[( z
loc
i (t)+ zoffi (t))], (13)

where

zloci (t) = Tloci (t)+ Eloci (t),

and

zoffi (t) = Ttri (t)+ Etri (t)+ TUAVi (t)+ EUAVi (t).

When EuD is associated with UAV, α = 1 otherwise
α = 0. The above optimization problem is to be
solved subject to the following network, computation, and
environmental constraints.

C1 : Ri(t) ∈ {0, 1},∀t, i,

C2 :
I∑
I=1

αi(t) = 1,∀t,

C3 : xj(t) = Xmin ≤ xj ≤ Xmax ,

Ymin ≤ yj ≤ Ymax ,

Hmin ≤ hj ≤ Hmax
C4 : bi(t) ∈ [0, 1],∀t, i,
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C5 :
T∑
t=1

I∑
I=1

αi(t)Di(t) ≤ D,

C6 :
T∑
t=1

EUAV (t) ≤ Eb,∀i,

where C1 indicates that offloading ratio ranges between
0 and 1. C2 expresses that UAV serve at a maximum of one
EuD in each time slot. C3 shows that UAV can move only in
the specified area. C4 represents the blockage between UAV
and EuD. C5 ensures that all computing tasks are completed
in a pre-defined time period T .C6means that the total energy
consumed by UAV does not exceed the maximum battery
capacity of UAV.

III. DRL BASED COST OPTIMIZATION AND PLACEMENT
OF UAV WITH DYNAMICS
Deep reinforcement learning (DRL) is a variant of rein-
forcement learning that involves deep neural networks to
approximate the Q-value function or policy function in RL.
This allows for more complex and sophisticated decision-
making by the agent, as the neural network can learn to
represent complex state-actionmappings. This paper involves
complex state action mapping as indicated by the system
Model in subsection III-B.
In general, Deep reinforcement learning has several

benefits over conventional and simple reinforcement learning
methods. Deep RL algorithms can achieve great performance
on complex tasks [55], [56] even without the need for
prior knowledge about the environment [57]. In this paper,
although, the dynamic model of the UAV is known, the
dynamic model of delay and energy for mobile EuDs in terms
of UAV trajectory is not known. The problem in this paper
focuses on the optimization of combined energy and delay by
achieving a better approximation of Q-value function using
deep network, which defines the probability of actions taken
by the UAV. As the model is not completely known, the deep
network develops a policy function approximation based on
Q-value approximation through a neural network that can
provide the maximum reward.

Many DRL approaches are proposed in the literature such
as Deep Q-Network (DQN) [58], Deep Deterministic policy
gradient (DDPG) [59], Deep State Action Reward State
Action (Deep SARSA) [60], [61], and Double DQN [62].
These algorithms are employed in UAV control to achieve
superior performance. However, all these works do not
consider the dynamics of the UAV. In general, the DDPG
approach is more suited to continuous action space, whereas
DQN approaches are more suited for discrete action space.
Deep SARSA is a more simple on policy approach that relies
on DQN based Q-value evaluation. Since, we are assuming
a continuous time dynamic model for the UAV, therefore,
to obtain a better policy function approximation, we consider
a continuous action space and propose a DDPG-based UAV
cost optimization.

DDPG is a modern reinforcement learning system that
approximates the Q-value action function using two neural
networks, a critic network that generates unique actions
using an actor network. The DDPG algorithm is used to
determine the best action for UAV-assisted MEC system’s
user scheduling, UAV mobility, and resource allocation.
We present a Deep Deterministic Policy Gradient (DDPG)
based offloading method, which successfully supports a
continuous action space, and provides flexibility of training
and tuning two neural networks, i.e., actor network and critic
network. Actor network maximizes the Q-value estimated
by the critic network which in turn corresponds to higher
expected rewards.

Our solution includes UAV dynamics and minimizes
the computational cost (i.e., the normalized function of
processing time delay and energy consumption of UAV).
In a practical environment, we observe that the UAV
movement is not proportional to the output generated by the
system. Moreover, if DDPG and DQN are unaware of the
uncontrolled UAV dynamics, the resultant action may not
lead to the desired result. This results in inadequate learning
and requires a dynamic controller.

In order to accommodate the uncontrolled dynamics,
we have also incorporated a mechanismwhich tends the UAV
to learn the error accumulated during the trajectory. When
these learning techniques are applied to a UAV-MEC RL
framework, it learns the computation offloading policy and
selects an action, i.e., EuD to be served, offloading ratio, and
placement of UAV. Now, we explain the state, action, and
reward function of the UAV-MEC system.
Agent:UAV is an independent agent of the RL environment

that learns an optimal policy to maximize its reward in each
time step T . UAV learns policy, executes an action, and
based on that action a reward is generated. UAV is able
to move in a constrained environment composed of EuDs
along with some parametric limitations such as height, flying
time, etc.
EuDs: EuDs are Edge user Devices that connect to UAV

in absence of BS to offload some segment of the task. EuDs
adopt a mobility model that allows them to move in a pre-
specified environment at a very low speed.
States: The state space can be represented as S =

{Eb,D, R, xi, xj, bi}, where Eb is the battery capacity of
UAV, D is the sum task size, R is the task size information
of each EuD, xi and xj are the location of EuDs and
UAV respectively, and bi is the blockage between UAV
and EuDs. It is the set of all possible states for the UAV.
We apply state normalization to reduce the distinction
between the magnitude of different states by taking the
difference between maximum and minimum values of
state and using it as a scaling factor. The states are
determined based on the constraints of EuDs, UAV, and the
environment.
Actions: We define the following actions based on the

current state, environment, UAV dynamics, and system
constraints. UAV can take the following three actions.
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1) EuD association A: UAV selects EuD to be served in
time slot t . UAV offers its services to each EuD but only
one EuD in a unit time slot.

2) Offloading ratio R: UAV sets the portion of the task
to be offloaded by the EuD. Offloading ratio ranges
between 0 and 1. 1 means EuD offloads its full task
to UAV. As the ratio decreases, the percentage of
offloading tasks also reduces.

3) Position L: UAV selects next position by obtaining
distance, φ (longitude) and θ (latitude) value as action.

Action space is denoted by A = {A,R,L}.
Reward: The reward is the objective function represented

as equation (13). When EuD offloads its task to UAV, EuD
experiences some delay in the transmission and execution
of tasks. Moreover, there is a bounded energy constraint on
both EuDs and UAV. Our objective is to minimize the mean
normalized computational cost while maximizing the reward.
The Reward function includes the total computational cost in
executing the task by EuD and can be written as:

R(t) = −ztotal, (14)

where ztotal is the normalized computational cost and equal
to the mean of processing delay and energy consumption in
time period T .

A. MDP MODEL
A Markov decision process (MDP) consists of a
4-tuple < S,A,R,P > where S is the state space, A is the
action space, R is the expected reward and P is the transition
probability from the current state to the next state [63].
In each time slot t , the environment is in state St , UAV
observes the current state and selects action At according
to current policy π . The environment grants the UAV with
reward Rt (normalized cost value) and transits into the
next state St+1 as per transition probability of environment
p(St+1|St ,At ) [17]. MDP goals are to determine the optimal
policy that maximizes the expected collective reward as

Rt =
T∑
l=t

γ l−tR(Sl ,Al ), (15)

where γ ∈ [0, 1] represents the discount factor and R(Sl ,Al )
is the instant reward at t th time slot. Under policy π , the
expected discount return from state St is defined as the state
value function.

V π (St ,At ) = Eπ [Rt |St ]. (16)

The state action function is the expected discounted return
after taking action At in state St under a policy π , i.e.,

Qπ (St ,At ) = Eπ [Rt |St ,At ]. (17)

The basic property of MDP is the Bellmen equation that
represents the iterative relationship between the state-value
function and action-value function as

V π (St ,At ) = Eπ [R(St ,At )+ γV π (St+1)], (18)

Qπ (St ,At ) = Eπ [R(St ,At )+ γQπ (St+1,At+1)]. (19)

B. DDPG
To deal with extensive state and action space issues,
we present DDPG to optimize the normalized computational
cost of UAV. Despite the fact that DQN effectively solved
issues in high-dimensional state spaces but continuous action
spaces are still difficult to handle by DQN [64]. DDPG is
proposed to expand DRL algorithms to continuous action
spaces [65]. As shown in Figure 12, the presented DDPG
model includes two networks, an actor network and a critic
network. Actor network of UAV takes observations St =
{Eb,D, R, xi, xj, bi} and provides action At = {A,R,L}
for the current state. Based on the actions, UAV serves its
resources to EuD. The network state enters into the next state
St+1 and gains some reward for the UAV. Actor-Network
stores tuple (St ,At ,Rt ,St+1) in replay memory buffer. Critic
network takes observation St and corresponding action At
and gives Q value as output in each time slot t . Q value
indicates how beneficial was the action we took and improve
it in the next time slot. Q value is equal to the reward for the
current action plus discounted Q next as

Q = [(R+ γQ(S′,A|θ ′)].

The critic target network determines the target Q-value for
training the critic-main network as

yt = (Rt + γ max
a∈A

Q(S′,A|θ ′)).

The critic target network sends yt to the critic main network
to minimize the loss function.

L(θ )Q = Eµ′ [yt −Q(S,A|θ )2]. (20)

Actor network takes random sample states from memory
(memory has all records of states, actions, and rewards but
we take only states) and determines actions for those states.
These actions may be different from the action we stored in
memory B. Send these actions from the actor network into
the critic network along with the states and get the value for
the critic network. Now, the actor network takes the gradient
of the critic network with respect to the parameter of actor
network. The actor network updates itself according to [66]

▽θµJ = Eµ′ [▽aQ(S,A|θQ)▽θµµ(S|θµ)]. (21)

In each time slot t , a soft update rule is used θQ
′

and θµ′ .
Update those with τ multiply by the value of the online
network and add in the current value of the target actor or
target critic network.

From equations (20) and (21), the actor and critic network
parameters can be updated by θQ

′

← θQ − αQ and
θµ′
← θµ

− αµ.

C. DQN
DQN technology uses a parameterized DNN to approximate
the Q-valuesQ(S,A) [67]. To solve the problem of instability
while using the function approximation in RL, the UAV
initializes a replay memory buffer by executing completely
random actions for a few time steps. Then UAV makes two
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FIGURE 2. Block diagram of DDPG.

cases of DQN network, i.e., the online network and the
target network. UAV adjusts the weights of the target network
identically to the online network. At each time slot t , UAV
uses an epsilon greedy strategy to decide whether to execute
random action or perform the action as per the network.

at =

{
random action At with probability ϵ

argmaxa∈AQ(st , a|t) otherwise
(22)

UAV executes the selected action At to obtain the immediate
reward R and next state St+1 and store this experience
St ,At ,Rt ,St+1 to replay memory buffer B, the UAV then
draws a mini-batch of random samples from the memory
and computes the target Q value using the target network.
UAV computes predicted Q value using an online network.
Loss between the targeted and the predicted Q value is
calculated by UAV to update the weights of the online
network. At regular intervals, UAV makes a copy of the
weights of the online network into the target network.

The target value of UAV is upgraded slowly but the
main Q-value is upgraded frequently. Thus, the correlation
between the target value and Q-value decreases that makes
the algorithm stable. In each time slot, the deep Q-function is
trained by minimizing the loss function L(θ ) which is given
as

L(θ ) = E[(R+ γ max
A∈A

Q(S′,A|θ ′)−Q(S,A|θ )2], (23)

where (R+γ max
A∈A

Q(S′,A|θ ′)) denotes the target value of the

network and Q(S,A|θ ) is the Q-value. Loss function is used

FIGURE 3. Virtual diagram.

to update the network parameter by θ ← θ − α.▽θL(θ ) with
a learning rate α.

D. TRAINING AND TESTING
To realize DDPG based computation offloading strategy,
training and testing phase are the two phases of the DRL
framework. The training process is illustrated in Algorithm 1.
In each time slot t , UAV starts with initial state St,1
and terminates at maximum step T . UAV learns tuple
(St ,At ,Rt ,St+1) and stores in replay memory buffer B.
Meantime, UAV actor and critic network are updated using
mini-batch tuples that are randomly selected from replay
memory buffer B. Thus, after training the maximum length of
episode T , the UAV is able to learn to optimize computation
offloading and UAV placement policy. For the testing phase,
UAV first gets its learned parameter of the actor from the
training phase. Then, UAV initializes an empty data buffer
B and a random environment is considered. Afterward, the
current state is sensed by UAV and the corresponding action
is selected according to the output of the actor network.
We consider three different scenarios in this paper and
compare the results.

1) CASE 1 (IS)
In this case, an Ideal Scenario (IS) of resource allocation
is considered, where the computational cost is observed in
the absence of UAV dynamics. This is equivalent to the
scenario considered in earlier works [47] and [68] and similar
to DDPG. In each time slot t , UAV starts with initial state
St and learns tuple (St ,At ,Rt ,St+1) and store it in buffer
memory B. UAV senses the current state and gives action,
reward, and next state value as output. UAV then executes
the action and trains the critic network by minimizing the
error between Q and y(t) = (R + γQ′). It trains the
actor network by maximizing Q using deterministic policy
gradients. After this, network parameter soft replacement is
updated and performs trajectory. This is an ideal scenario
of resource allocation of UAV for comparison of proposed
work.

2) CASE 2 (UDUT)
In this case, Uncontrolled Dynamics of UAV trajectory
(UDUT) are considered to observe how the dynamics of UAV
affect the value of cost. We include these dynamics in our
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FIGURE 4. Virtual training network.

model because UAV does not follow the trajectory required
by the DDPG and DQN to move in a real environment. The
virtual Diagram for this case is shown in Figure 3.We assume
that the actor and critic are unaware of error dynamics. At the
start of the algorithm, UAV initializes its learning parameter
of actor and critic and considers an empty data buffer B.
Actor Network considers tuples stored in buffer memory and
takes action against states. We pass that action through a
system dynamic equation and observe how actions change
as we add dynamics to our system. Critic observe how good
was the action and trains Q function by minimizing the loss
function. The loss function updates the network parameter
with learning rate α.

3) CASE 3 (CDUT)
In this case, Control trajectory to adjust Dynamics (CDUT)
is performed in presence of UAV dynamics and the model is
trained to reduce the difference between the actual position
and desired position of the UAV. The virtual training network
of this case is shown in Figure 4. We carry out three cases to
minimize error and select the best case for our comparison
with IS and UDUT. Three cases are as follows:

a: CDUT (TRAINING THROUGH IDEAL SCENARIO)
In this sub-case, UAV dynamics are observed and the model
is trained to achieve the target value of the critic network
of an IS. For this purpose, we consider two actor networks
and two critic networks. Each one is for IS and CDUT.
For both environments, UAV set its learning parameter from
the training phase and initializes an empty data buffer.
Afterward, the current state is observed by the UAV and
the corresponding action is selected. Actor takes observation
from memory and provides action. Now, Critic network of
UDUT receives an action value to calculate Q and receives a
target value from IS critic network as

yt = Rt + γ max
A∈A

Q′IS . (24)

Critic network CDUT minimizes the difference between the
ideal case target value yt and achieved main Q value.

b: CDUT (TRAINING THROUGH ERROR DYNAMICS)
In this case, UAV calculates the error between the desired
trajectory and the current trajectory through the following
equation.

(Xd − x(t)/V x
max)+ (Yd − y(t)/V y

max)+ (Hd − h(t)/V h
max)

where {Xd ,Yd ,Hd } is the desired UAV position and
{x(t), y(t), h(t)}, is the current position of UAV. UAV sends
this error value to the critic target network to minimize the
variation between the original position and the target position.
Critic Network adds this error value in the target network as

yt = Rt + γ max
A∈A

Q′ + error, (25)

and train itself to minimize the difference between
Q(St ,At |θ ) main network value and target network yt value.

c: CDUT (TRAINING THROUGH EXTREME VALUE)
In this sub-case, UAV dynamics are observed and trained on
the target value that is the maximum of IS case and UDUT
case. In this case, two actor and critic networks are considered
as in CDUT (Training through IS). Actor network takes action
based on observations and passes that action to the critic
network. Critic network receives action value and takes the
maximum value of the target network of IS case and UDUT
case as its target value.

yt = Rt + γmax{max
A∈A

Q′
IS

,max
A∈A

Q′
UDUT

}. (26)

Then, minimize the difference between the target value yt and
achieve the main Q value. Now, the actor network takes the
gradient of the critic network and updates itself and updates
itself accordingly.

IV. NUMERICAL EXPERIMENT
For the simulation purpose, we make use of Python
v3.7.0 along with TensorFlow library v1.14.0. Also,
we utilized MATLAB ode45 function library to deal with
uncontrollable UAV dynamics. In the subsequent section,
we introduce all the parameters used for the simulation.

A. SIMULATION SETUP
In our UAV-MEC system, there is one independent UAV
equipped with MEC server and a multi-user environment is
considered where four EuDs are deployed. We categorize
these parameters into three types namely; network and RL
parameters, EuDs parameters, and UAV parameters.

1) NETWORK AND RL PARAMETERS
The line-of-sight noise power and non-line-of-sight noise
power are taken as −100dBm [52] and −80dBm [69]
respectively. The reference channel gain at a distance of 1m is
−50dBm [52]. The time period T is 320 seconds and divided
into 40 slots of 8 seconds each. The number of CPU cycles
required to process one data unit is 1000 cycles [52]. The
learning rate of the actor and critic network is 0.001 and
0.002 respectively. Other RL parameters are discount
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Algorithm 1 DDPG Algorithm With UAV Dynamics
1: Initialize the actor network and critic network with

weight θµ and θQ and an empty replay memory
buffer Bt .

2: Set target network parameters θµ
← θµ′ and θQ← θQ

′

3: for episodes = 1, N do
4: Reset Simulation parameters and get initial state s1.
5: for t = 1,2,· · · T do
6: Select action a′.
7: if case = IS then
8: a is equal to a′.
9: execute action a.
10: Observe next state s′ and get reward R.
11: Store (s, a, r, s′) in replay memory buffer.
12: Randomly sample mini batch of transition B.
13: Compute target
14: yt = Rt + γ max

a∈A
Q(s′, a|θ ′).

15: else if case = UDUT then
16: Pass the selected action a′ through ODE45
17: function to consider UAV dynamics.
18: Adopt output value of ODE45 function as
19: final control action a.
20: execute action a.
21: Observe next state s′ and get reward R.
22: Store (s, a, r, s′) in replay memory buffer.
23: Randomly sample mini batch of transition B.
24: Compute target
25: yt = Rt + γ max

a∈A
Q(s′, a|θ ′).

26: else if case = CDUT then
27: Pass the selected action a′ through
28: ODE45 function to compensate dynamics.
29: Adopt output value of ODE45 function.
30: calculate error e between desired trajectory
31: and current trajectory.
32: execute action a.
33: Observe next state s′ and get reward R.
34: Store (s, a, r, s′) in replay memory buffer.
35: Randomly sample mini batch of transition B.
36: Compute target
37: yt = Rt + γ max

a∈A
Q(s′, a|θ ′)+ error .

38: end if
39: Update θQ in critic network by minimizing loss
40: function L(θ )Q = Eµ′ [yt −Q(s, a|θ )2].
41: Update θµ′ critic network by sampled policy
42: gradient
43: ▽θµJ = Eµ′ [▽aQ(s, a|θQ)▽θµµ(s|θµ)].
44: Update target networks by
45: θQ

′

← τθQ + (1− τ )θQ
′

46: θµ′
← θµ

+ (1− τ )θµ′ .
47: end for
48: end for

factor = 0.001, exploration rate = 0.01, and soft update
factor = 0.01.

2) SIMULATION PARAMETERS
The uplink power of EuDs is taken as 0.1W [70]. The limited
Computation frequency of EuD and UAV is 0.6 GHz and

TABLE 3. Simulation parameters.

FIGURE 5. All error cases of DDPG per episode.

1.2 GHz respectively [52]. The task size of EuD varies from
2-2.5Mbits. The constant mass of UAV is 9.65 Kg and battery
of UAV is 500 KJ [71]. The maximum speed at which UAV
can fly is 15 m/s [72]. The time of flight and time of hovering
is 1 sec and 7 sec respectively. The bandwidth is selected
as 1 MHZ [73].

The detailed simulation parameters are listed in Table 3.

B. RESULTS AND DISCUSSION
In this subsection, we illustrate the results obtained by
manipulating the proposed DDPG based algorithm. For this
purpose, we consider three cases; a) ideal scenario (IS) where
UAV dynamics are ignored, b) uncontrolled dynamics of
UAV trajectory (UDUT) which considers UAV dynamics and
c) controlled dynamics of UAV trajectory (CDUT) where
UAV dynamics with addition of compensating factor is used.
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FIGURE 6. All error cases of DDPG per episode.

FIGURE 7. CASE 1 -average cost of DQN and DDPG per episode.

FIGURE 8. CASE 2 -average cost of DQN and DDPG per episode.

We further divide CDUT into three sub-cases i.e., CDUT
(training through Ideal Scenario), CDUT (training through
error dynamics), and CDUT (training through maximum Q
value), and compare the performance of all three sub-cases.
Figure 5 shows that CDUT (training through error dynamics)
achieves minimum cost value, i.e., 1.51.

Figure 6 shows the percentage cost of all three cases. It can
be seen that CDUT (training through error dynamics) has

FIGURE 9. CASE 3 -average cost of DQN and DDPG per episode.

FIGURE 10. Average cost of DDPG per episode.

FIGURE 11. Average cost of DDPG vs different flying time per Episode.

minimum cost value as compared to CDUT (training through
Ideal Scenario) and CDUT (training through maximum Q
value). Therefore, we consider CDUT (training through error
dynamics) in our system model. We observe all three cases
in terms of DDPG and DQN. Figure 7 shows the average
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FIGURE 12. 3D view of UAV trajectory.

FIGURE 13. Close view of UAV trajectory.

FIGURE 14. CDUT offloading ratio per Episode.

cost per episode of DDPG and DQN technique for IS.
Figure 8 shows the average cost per episode of DDPG and
DQN technique for UDUT case. As we can see, the cost is
effected and increased as we added dynamics factor in our
system. To minimize the difference between IS and UDUT,
we added an error factor in our system as shown in Figure 9.

FIGURE 15. UAV trajectory.

FIGURE 16. Optimized cost DDPG.

FIGURE 17. Difference between UDUT to IS and CDUT to IS.

We presented all three cases of DDPG in Figure 10 for more
accurate and clear results. We also worked on flying time
and communication time. Figure 11 shows flying time versus
cost function. When we increase flying time, the the energy
of UAV also increases that rises offload energy but we are
considering normalize energy, as a result, its effect does not
appear in the final normalized cost value.
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Figure 12 shows the 3D trajectory ofUAVof all three cases,
i.e., IS, UDUT, and CDUT. CDUT algorithm minimizes the
difference between IS location andUDUT location. Figure 13
shows the close view ofUAV trajectory. Aswe can see that the
proposed trajectory algorithm i.e., CDUT (training through
error dynamics) follows the IS trajectory with minimum
error value in contrast with UDUT. Figure 14 shows the
average offloading ratio comparison of all three cases of
CDUT technique.We can see that the CDUT(training through
error dynamics) increases in offloading ratio and causes the
total computational cost to be decreased. To demonstrate the
efficacy of our approach we have also included results in
which the EuDs are given random trajectory. Figure 15 shows
the trajectory of the EuDs which is closely followed by the
UAV. In Figure 16, it can be seen that the results are able
to converge to optimal performance. Figure 17 shows the
difference of the distance between trajectories. IS is taken
as the reference. It is obvious that CDUT provides better
accuracy.

V. CONCLUSION
In this paper, DDPG based strategy is employed for
optimal computational cost, resource allocation, and 3DUAV
trajectory optimization in a UAV-assisted MEC network.
The presented approach considers UAV dynamics and error
compensation schemes, which are often ignored in previous
studies. We considered a UAV-MEC network in which each
EuD offloads some portion of the task to the UAV. Based on
the computational cost which is a normalized function of time
delay and energy, UAV offer its services to EuDs in a way that
combined optimization of trajectory and cost achieved. Also,
a feedback mechanism opted in which UAV compensates its
position for the next iteration with respect to the previous
location.

Extensive simulations are performed and a qualitative
comparison between DDPG and DQN is presented for the
same conditions and parameters. The results show that the
proposed DDPG based strategy is superior in compensating
the error factor and cost performance as compared to DQN.
In the future, we will investigate the performance of multi-
UAV in a centralized and decentralized framework and
observe the behavior of UAV-MEC network in the multi-
dimensional objective function.
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