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ABSTRACT Polynomial chaos (PC) has been proven to be an efficient method for uncertainty quantification,
but its applicability is limited by two strong assumptions: the mutual independence of random variables
and the requirement of exact knowledge about the distribution of the random variables. We describe a new
data-driven method for dealing with correlated multivariate random variables for uncertainty quantification
that requires only observed data of the random variables. It is based on the transformation of correlated
random variables into independent random variables. We use singular value decomposition as a transfor-
mation strategy that does not require information about the probability distribution. For the transformed
random variables, we can construct the PC basis to build a surrogate model. This approach provides an
additional benefit of quantifying high-dimensional uncertainties by combining our method with the analysis-
of-variance (ANOVA) method. We demonstrate in several numerical examples that our proposed approach
leads to accurate solutions with a much smaller number of simulations compared to theMonte Carlo method.

INDEX TERMS Correlated random variables, high dimension, polynomial chaos expansion, uncertainty
quantification.

I. INTRODUCTION
Many science and engineering models are subject to uncer-
tainties from various sources including noisy data or the lack
of information about the parameters in physical systems.
To deal with these uncertainties, we can use regression-based
methods [1], [2], [3] or sample-based methods depending
on the sources of the uncertainties. Traditional sample-based
methods such as Monte Carlo (MC) [4], [5], [6] requires a
large number of model evaluations to investigate the impact
of the uncertainties on the model output. This approach is not
feasible for complex and large-scale models where a single
simulation is computationally expensive. One approach to
efficiently quantify uncertainty in such complex systems is
to develop surrogate models, such as polynomial chaos (PC)
expansions [7], [8], [9], [10], [11], [12], [13]. The PC expan-
sion approximates the stochastic model output as a linear
combination of orthogonal polynomial basis functions (i.e.,
polynomial chaos). The method for computing the coeffi-
cients of basis functions has been mainly studied in solving
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the stochastic differential equation, including the stochastic
Galerkin method [9], [14], [15] and the stochastic collocation
method [11], [16], [17], [18], [19], [20]. The number of sim-
ulations required in the PC method is an order of magnitude
smaller than that required in the MC method for the same
accuracy.

Despite the significant efficiency of the PC method, its
application is limited by two strong assumptions. The first
assumption is that it requires the exact knowledge of the
probability distribution of uncertain parameters, which is
rarely available in applied studies. To overcome this problem,
several works [21], [22], [23], [24] have proposed an arbitrary
PC method. This method requires only a finite number of
moments of the random variables, which can be estimated
from the available data. However, this method still relies on
the second assumption of the PC method, the mutual inde-
pendence of all random variables. This assumption leads to a
straightforward construction of orthogonal polynomial basis
functions, but the assumption may fail in practical problems
where random variables are typically correlated. To account
for correlations between random variables, a number of stud-
ies have been proposed using transformation of the random
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variables [25], [26], [27], [28], dominating measures [29],
[30], and the construction of orthogonal basis functions for
correlated random variables [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40]. However, these methods often require
information about the probability distribution. Although the
algorithms presented in [32], [34], [37] can be extended to
cases where only observed data are available, the construction
of orthogonal basis functions may be ill-conditioned when
dealing with high-dimensional uncertainty. The authors in
[41], [42] propose methods for constructing surrogate models
when both of the above assumptions are absent, but they are
only applicable to the stochastic Galerkin method.

In this paper, we describe a new method to construct a
surrogate model for uncertainty quantification in the absence
of both assumptions of the PC method. The method is based
on the use of an invertible transformation to convert corre-
lated random variables into independent random variables,
followed by the construction of the PC basis for the con-
verted variables. This approach has been used in several
works [25], [26], [27], [28] with the well-known Rosen-
blatt [43] and Nataf [44] transformations, which require the
exact knowledge of the probability density functions (PDFs)
and cumulative distribution functions (CDFs) of the given
random variables. However, closed forms of PDFs and CDFs
are rarely available in practical applications. Therefore we
use singular value decomposition (SVD) as a transformation
strategy to construct a data-driven model. SVD provides a
natural way to assimilate the data for transformation without
requiring any information about the distribution of the ran-
dom variables. The data transformed by SVD are assumed to
represent the samples drawn from some independent random
variables. We construct the PC basis for the transformed
random variables using the arbitrary PC method [21], [22],
[23], [24], which does not require exact knowledge of the
PDFs and CDFs of the random variables. Our numerical
examples demonstrate that the construction of our surrogate
model requires much fewer simulations than those required
by the MC method.

An additional benefit of our method is that it can cope
with high dimensionality. When the stochastic model has
high-dimensional multivariate random variables, the PC
method suffers from the so-called curse of dimensionality
because the number of required simulations grows rapidly as
the dimension increases. There are many modifications of PC
to alleviate this issue, such as the sparse-grid method [16],
[19], [45], [46], [47], [48], [49], sparse PC method [50], [51],
[52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62],
and adaptive analysis-of-variance (ANOVA) method [63],
[64], [65], [66]. Because these methods often rely on the
tensor product structure of the model, they only work to
handle independent random variables. In our framework, the
methods are applicable after correlated random variables are
transformed into independent random variables. In this study,
we combine our proposed method with the adaptive ANOVA
method to quantify the uncertainty in a stochastic model with
high-dimensional correlated random variables.

Our main contributions can be summarized as:

• We propose a new data-driven method to deal with
correlated multivariate random variables for uncertainty
quantification that does not require the exact knowledge
of the probability distribution of the random variables.

• The proposed method allows us to tackle the curse of
dimensionality by combining our method with the adap-
tive ANOVA method.

• We demonstrate that our proposed method provides the
same order of accuracy as theMonte Carlomethodwhile
requiring much fewer simulations.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce the formulation of our stochastic prob-
lems and some extant methods for UQ. Section III is the core
of this study, which explains a data-driven approach to deal
with correlated random variables using proper transformation
of them. In Section IV, we apply our framework to some
examples of stochastic models and examine the efficacy of
our method. We conclude this paper with some closing com-
ments in Section V.

II. PRELIMINARIES
In this section, we present a formulation of the stochastic
model of concern and introduce the existing UQ methods.

A. FORMULATION OF STOCHASTIC MODELS
We formulate a stochastic model based on the boundary value
problem (BVP); however, the procedure is also applicable to
general stochastic problems. Let (�,F ,P) be a probability
space where �,F , and P are the sample space, σ -algebra,
and probability measure, respectively. Consider a stochastic
BVP defined in a physical domain D ⊂ Rn,

L(u(x, ω), x, ω) = 0, in R × D×�

B(u(x, ω), x, ω) = 0, in R × ∂D×� (1)

with the solution u : D × � → R, where L is a differential
operator and B is a boundary operator.
The important step prior to any procedure is to charac-

terize the random input, ω, as finite random variables. The
characterization is straightforward when the uncertainties of
the model come from the finite physical parameters of the
system since the parameters can be treated as finite random
variables. However, this is nontrivial when the uncertainties
include infinite-dimensional random processes. The common
approach for dealing with this case is to employ the truncated
Karhunen-Loève expansion to approximate the random pro-
cess as a linear combination of finite random variables [7],
[8], [14]. After the characterization, we can rewrite the orig-
inal system (1) as

L(u(x, ξξξ ), x, ξξξ ) = 0, in R × D× S

B(u(x, ξξξ ), x, ξξξ ) = 0, in R × ∂D× S (2)

where ξξξ = (ξ1, · · · , ξd ) is the characterized finite random
variables and S ⊂ Rd is a set of possible realizations of ξξξ .
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B. POLYNOMIAL CHAOS EXPANSION
This subsection introduces PC expansion [7], [8], [9], [10],
[11], [12], [13], a popular surrogate model to quantify uncer-
tainty. The MC method has been widely used for UQ due
to the guaranteed convergence and being easy to implement.
However, a crucial disadvantage of theMCmethod is its slow
convergence rate, which requires many simulations to obtain
reliable output statistics. The number of simulations required
to construct PC expansion is usually orders of magnitude
smaller than that required by the MC method for the same
accuracy.

PC expansion approximates the stochastic solution,
u(x, ξξξ ), of (2) as a linear combination of orthogonal polyno-
mials (i.e., PC basis) in the function space L2w with the inner
product and norm

⟨g, h⟩L2w = E[g(ξξξ )h(ξξξ )] =

∫
S
g(z)h(z)w(z)dz,

∥g∥L2w = ⟨g, g⟩1/2
L2w
.

where w : S → R is a joint PDF of ξξξ = (ξ1, · · · , ξd ).
If we assume the mutual independence of ξ1, · · · , ξd , then
the PC basis functions, denoted by 8iii with the multi-index
iii = (i1, · · · , id ), are constructed by the tensor product of
univariate orthogonal polynomials in each dimension, i.e.,

8iii(ξ1, · · · , ξd ) = φ1i1 (ξ1)φ
2
i2 (ξ2) · · ·φ

d
id (ξd ). (3)

Here, each φjij is the ij-th order univariate orthogonal monic
polynomial associated with the random variable ξj, for
j = 1, · · · , d . Univariate monic orthogonal polynomials are
well-known for some distributions [7], [8], [9]. They are also
uniquely constructed for general distributions by the Stieltjes
procedure [67].

The N -th order PC expansion, denoted by uN (x, ξξξ ),
approximates the stochastic solution, u(x, ξξξ ), as

u(x, ξξξ ) ≈ uN (x, ξξξ ) =

∑
|iii|≤N

ûiii(x)8iii(ξξξ ) (4)

where |iii| = i1+· · ·+id . Each PC coefficient, ûiii(x), is defined
as

ûiii(x) =
⟨u(x, ξξξ ),8iii(ξξξ )⟩L2w
⟨8iii(ξξξ ),8iii(ξξξ )⟩L2w

=

∫
S u(x, z)8iii(z)w(z)dz∫

S 8iii(z)2w(z)dz
(5)

for each iii, so that the PC expansion, uN , is the optimal
approximation of u in the sense that

∥u− uN∥L2w
= inf

P∈PN
∥u− P∥L2w

for any x ∈ D, where PN is the subspace of L2w spanned by
{8iii}|iii|≤N . Moreover, it is known that the PC expansion uN
has spectral convergence if the solution u ∈ Lw is smooth
enough [8].

It is possible to compute various quantities of interest effec-
tively using the PC approximation. For example, the mean

and variance of u(x, ξξξ ) are easily approximated by exploiting
the orthogonality of the PC basis functions:

E[u](x, ξξξ ) ≈ E[uN ](x, ξξξ )

=

∑
|iii|≤N

ûiii(x)E[8i(ξξξ )] = û000(x),

Var[u](x, ξξξ ) ≈ Var[uN ](x, ξξξ )

= E
[ ∑

|iii|≤N

ûiii(x)8iii(ξξξ ) − û000(x)
]2

=

∑
iii̸=000,|iii|≤N

ûiii(x)2E[8iii(ξξξ )2]. (6)

Let us now consider the numerical computation of each PC
coefficient, ûiii(x). It is infeasible to use definition (5) because
the solution, u(x, ξξξ ), is unknown. A typical approach to
obtaining PC coefficients is the stochastic Galerkin method.
The basic idea of the method is to find the solution in the PN
so that the residual of the governing equation is orthogonal
to PN . To be concrete, one finds the solution, uN (x, ξξξ ), of the
form (4) that satisfies

E[L(uN (x, ξξξ ), x, ξξξ )8iii(ξξξ )] = 0, in R × D

E[B(uN (x, ξξξ ), x, ξξξ )8iii(ξξξ )] = 0, in R × ∂D

for each iii with |iii| ≤ N . Note that these equations are
deterministic BVPs for ûiii’s. Hence, we can use the existing
numerical methods to solve them.

Another widely used method for computing PC coeffi-
cients is the stochastic collocation method. This method
is based on solving the stochastic equation at some real-
izations of ξξξ , called the collocation points and denoted
by ξξξ (1), · · · , ξξξ (Q). Subsequently, the following deterministic
equations are induced

L(vq(x), x, ξξξ (q)) = 0, in R × D

B(vq(x), x, ξξξ (q)) = 0, in R × ∂D

for q = 1, · · · ,Q, and the solutions, v1, · · · , vq, are obtained
using well-known numerical schemes. A major approach to
computing the PC coefficients in the stochastic collocation
method is a pseudo-spectral approach, which approximates
the integral in (5) using the solutions v1, · · · , vq. In this
approach, the collocation points are usually chosen as the
tensor product of 1D Gaussian quadrature point for each
ξj. Due to the mutual independence of ξ1, · · · , ξd , all the
numerical properties of the univariate integration scheme are
retained in tensor product construction.

C. ADAPTIVE ANOVA METHOD
In this subsection, we introduce an adaptive ANOVA
method [63], [64], [65], [66] to deal with high dimensions.
Note that the PC method suffers from expensive computa-
tional costs in high-dimensional problems. The number of
deterministic equations to be solved is (N + d)!/N !d ! =

O(dN ) and O(Md ) in the stochastic Galerkin and stochastic
collocation method, respectively, where N is the order of PC
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expansion and M is the number of quadrature points in each
dimension. The adaptiveANOVAmethod solves this problem
by representing a high-dimensional stochastic model as a sum
of low-dimensional stochastic models.

ANOVA decomposition [68] is widely used in statistics,
and it allows us to evaluate which set of variables is more
important in the total variance of the function. Considering
a square integrable function f (x) of x = (x1, · · · , xd ) on its
domain S = S1×· · ·×Sd ⊂ Rd , the ANOVA decomposition
of f is

f (x) =

∑
u⊂{1,··· ,d}

fu

= f∅ +

∑
1≤j1≤d

fj1 (xj1 ) +

∑
1≤j1<j2≤d

fj1,j2 (xj1 , xj2 )

+ · · · + f1,··· ,d (x1, · · · , xd )

where each fu only depends on {xj}j∈u, and satisfies

f∅ =

∫
S
f (x)dν(x),

∫
Sj
fu(x)dνj(xj) = 0

for all j ∈ u where ν = ν1 × · · · × νd is a product
probability measure on S. Then, the decomposition satisfies
the orthogonality of its terms:∫

S
fu(x)fv(x)dν(x) = 0

for u ̸= v. The orthogonality induces the property that the
variance of f is the sum of the variances of all the terms in
the decomposition:

Var[f ] =

∑
u⊂{1,··· ,d}

Var[fu].

To compute the ANOVAdecomposition, we first define the
operator Pu for each u ⊂ {1, · · · , d} as

Pj[f ](x) :=

∫
f (x1, · · · , xj, · · · , xd )dνj(xj),

Pu :=

∏
j∈u

Pj.

Subsequently, each fu is computed by the following inductive
methods

fu =

∑
v⊂u

(−1)|u|−|v|P{1,··· ,d}\v[f ],

fu = P{1,··· ,d}\u[f ] −

∑
v⊊u

fv. (7)

For each fu in the decomposition, the size, u, is called the
order of fu. In many physical and engineering problems, it has
been assumed that the effects of the low order terms in the
ANOVA decomposition are dominant [69]. This leads to the
following approximation:

f ≈

∑
u∈{1,··· ,d},|u|≤q

fu

for some cutoff dimension, q. Computing the PC expansion of
this truncated ANOVA decomposition instead of the original
function, f , reduces the computational cost. Note that the
number of terms in the truncated ANOVA decomposition
is O(dq), and each term has an input dimension at most q.
Therefore, the total number of deterministic equations to be
solved is O(dqqN ) and O(dqMq) in the stochastic Galerkin
and stochastic collocation method, which is much smaller
than O(dN ) and O(Md ), respectively.
The truncated ANOVA decomposition has two computa-

tional problems. First, the computation of the terms includes
high-dimensional integrations. To avoid this, the product
probability measure, ν, can be chosen as a point measure at
some anchor, c ∈ Rd [63], [64], [66]. This choice transforms
high-dimensional integration into a one-point evaluation.
Another problem is that the truncatedANOVAdecomposition
still has many terms for a large d . In this case, we further
reduce the terms by ignoring those having small variances.
This is the adaptive ANOVA method, and its algorithm is
summarized in Algorithm 1, proposed in [66].

Algorithm 1 Adaptive ANOVA Decomposition
Input: d-variate function f , threshold s > 0, cutoff dimen-
sion q
1: Compute f∅
2: for all j = 1, · · · , q do
3: Sj = {u ∈ {1, · · · , d} | |u| = j}

4: for all j = 1, · · · , q do
5: for all u ∈ Sj do
6: Compute fu in (7)
7: for all u ∈ Sj do
8: Compute

θu =
Var[fu]∑j

l=1
∑

u∈Sl Var[fu]

9: if θu < s then
10: for all l = j+ 1, · · · , q do
11: Delete v containing u in Sl

D. ARBITRARY POLYNOMIAL CHAOS
This subsection describes the arbitrary PC method [21], [22],
[23], [24] for data-driven construction of the PC basis. To con-
struct the PC basis, the arbitrary PC method only requires the
data of random variables, and does not need the information
about PDF of the random variables. This is based on the rela-
tionship between the statistical moments and the coefficients
of the PC basis. This relationship is directly induced by the
orthogonality of the PC basis. Let ζ be a random variable and
denote the i-th order PC basis for ζ by

ψi(ζ ) =

i∑
k=0

pikζ k .

50608 VOLUME 11, 2023



J. Jung, M. Choi: Data-Driven Method to Quantify Correlated Uncertainties

Note that the N -th order PC basis, ψN , is orthogonal to every
PC basis of degree less than N , and this implies that ψN is
orthogonal to every monomial of degree less than N . This
induces the following N equations:

E
[ N∑
k=0

pNkζ k
]

= 0, E
[ N∑
k=0

pNkζ k+1
]

= 0,

· · · , E
[ N∑
k=0

pNkζ k+N−1
]

= 0.

Because there are N equations of N+1 undetermined values,
we add one more by assuming ψN is a monic polynomial.
That is, we set pNN = 1 to find those values. Using the nota-
tion µk = E[ζ k ], we obtain the following linear equation:

µ0 µ1 · · · µN
µ1 µN · · · µN+1
...

...
...

...

µN−1 µN · · · µ2N−1
0 0 · · · 1


pN0

...

pNN

 =


0
...

0
1

 . (8)

It is proved that the square matrix in (8) is not singular under
mild conditions [21]. Each µk can be directly computed by

µk =
1
M

M∑
m=1

(ζ (m))k

where ζ (1), · · · , ζ (M ) are samples of the ζ .

III. DATA-DRIVEN SURROGATE MODEL OF CORRELATED
RANDOM VARIABLES
In this section, we introduce a method for constructing a
data-driven surrogate model of correlated random variables.
The main idea is to convert the correlated random vari-
ables, ξξξ = (ξ1, · · · , ξd ), into independent random variables,
ζζζ = (ζ1, · · · , ζd ), using an appropriate data-driven invert-
ible transformation, T . If the transformation is available, the
stochastic solution, u(x, ξξξ ), of (2) can be represented as a PC
expansion of ζζζ :

u(x, ξξξ ) = u(x,T−1(ζζζ )) =: v(x, ζζζ ) ≈

∑
|iii|≤N

v̂iii(x)9iii(ζζζ ) (9)

where the PC basis function 9iii(ζζζ ) is constructed using a
tensor product approach as in (3). The coefficient v̂iii can
be obtained by stochastic Galerkin or stochastic collocation
method. By substituting ζζζ with T (ξξξ ), an approximate solution
can be obtained:

u(x, ξξξ ) ≈

∑
|iii|≤N

v̂iii(x)9iii(T (ξξξ )). (10)

We employ SVD to construct an invertible transformation
T in a data-driven manner. Two commonly used transfor-
mations for T are the Rosenblatt and Nataf transformations,
which rely on knowledge of the CDF and PDF of the random
variables ξξξ . However, closed forms of CDFs and PDFs of
the random variables are rarely given in real applications,

which makes the above two transformations less practical.
In contrast, our approach using SVD does not require prior
knowledge of the CDF and PDF of ξξξ . It can even be used
when the random variables have an arbitrary distribution,
such as a discrete probability measure. The only requirement
is the data of the random variables, making our approach
practical and applicable in many real-world scenarios.

Turning our attention to the construction of the transforma-
tion T , suppose we have M data items of random variables,
ξξξ = (ξ1, · · · , ξd ), denoted by 4 = {ξξξ (1), · · · , ξξξ (M )

}. We can
assume that the randomvariables have amean of zero because
if their mean is nonzero, we can make them with zero mean
by shifting. Let A be the M × d matrix, whose m-th row
represents the component of ξξξ (m), and the j-th row represents
the data of ξj. That is,

A =


ξ
(1)
1 ξ

(1)
2 · · · ξ

(1)
d

ξ
(2)
1 ξ

(2)
2 · · · ξ

(2)
d

...
...

...
...

ξ
(M )
1 ξ

(M )
2 · · · ξ

(M )
d

 . (11)

We then consider SVD of the matrix A,

A = U6V T
=

r∑
s=1

σsUsV T
s (12)

where U ∈ RM×M ,V ∈ Rd×d are orthogonal matrices,
6 ∈ RM×d is a rectangular diagonal matrix with diagonal
entries σ1 ≥ · · · ≥ σd ≥ 0, and Us,Vs are the s-th column
vectors of matricesU ,V , respectively. Because we only need
first r columns to represent the SVD, we assume that U , 6,
and V refer to the matrices of size M × r, r × r, d × r ,
respectively, by discarding unnecessary columns. Equation
(12) represents the data of each random variable, ξj, as a
linear combination of the vectors, U1, · · · ,Ur . If we regard
elements inUj as generated samples of some randomvariable,
ζj, for j = 1, · · · , d , then ξξξ and ζζζ = (ζ1, · · · , ζr ) have the
following relationship:

ξξξ =
[
ξ1 · · · ξd

]
=

r∑
s=1

σsζsV T
s

=
[
ζ1 · · · ζr

]
6V T

=: T−1(ζζζ ),

ζζζ =
[
ζ1 · · · ζr

]
=

[
ζ1 · · · ζr

]
6V TV6−1

=
[
ξ1 · · · ξd

]
V6−1

=: T (ξξξ ). (13)

The mean of ζζζ is zero because it is a linear transformation
of ξξξ , whose mean is assumed to be zero. Each covariance
component of ζζζ is

E[(ζj − Eζj)(ζk − Eζk )] = E[ζjζk ]

≈
1
M

M∑
m=1

ζ
(m)
j ζ

(m)
k =

1
M
δjk

where ζ (m)j and ζ (m)k are samples of ζj and ζk , identical to the
entries of orthonormal column vectors Uj and Uk . Therefore,
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Algorithm 2 Surrogate Model of Correlated Random Vari-
ables
Input: Data of random variables ξξξ , simulator of an unknown
stochastic process u(x, ξξξ )
1: Construct the matrix A defined in (11)
2: From SVD A = U6V T , identify the samples of ζζζ and

the invertible transformation T
3: Obtain the PC basis 9iii, for ζζζ by solving (8)
4: if ζζζ is high-dimensional then
5: Use the adaptive ANOVA decomposition to reduce

the basis

6: Compute the PC coefficients v̂iii(x) in (9).
7: Substitute ζζζ with T (ξξξ ) as in (10).

T is an invertible transformation converting correlated vari-
ables into uncorrelated random variables. For convenience,
we assume T denotes

√
MT instead of the definition (13) so

that ζ1, · · · , ζr are uncorrelated random variables with mean
zero and unit variance.We assume these uncorrelated random
variables to be mutually independent. This assumption has
been adopted in some literature [64], [70], [71] for practical
purposes and has been demonstrated to provide considerable
accuracy. Under the assumption of mutual independence of
ζζζ , it is possible to construct the PC basis, 9iii, in (9) using
the tensor product as in (3). To find the univariate PC basis
for each ζj, we use the arbitrary PC method. The overall
procedure is summarized in Algorithm 2.
Remark 1: Our approach allows us to tackle the curse of

dimensionality by combining our method with the adaptive
ANOVA method. If ξξξ is high-dimensional, it may result in
a high-dimensional ζζζ , which makes it inefficient to simply
apply the PC method to ζζζ . To overcome this challenge,
we suggest applying the adaptive ANOVA method to reduce
the number of basis and the cost of computing each PC
coefficient. This approach enables us to effectively man-
age high-dimensional correlated uncertainties, without being
overly burdened by computational demands.

IV. NUMERICAL EXAMPLES
In this section, we present several numerical examples to ver-
ify the effectiveness of the proposed method. First, we inves-
tigate the convergence of our surrogate model. Let u(x, ξξξ ) be
a stochastic process of physical variable, x ∈ D, and char-
acterized random variables, ξξξ = (ξ1, · · · , ξd ), with a joint
PDF, w : S → R. Let uN (x, ξξξ ) be the N -th order data-driven
approximation using the dataset, 4 = {ξξξ (1), · · · , ξξξ (M )

},
including M data. To evaluate our surrogate model, we con-
sider relative errors of uN ,E[uN ],Var[uN ], approximated by

E∥u− uN∥L2(D)

E∥u∥L2(D)

=

(∫
S

∫
D

(
u(x, z) − uN (x, z)

)2dxw(z)dz∫
S

∫
D u(x, z)

2dxw(z)dz

)1/2

≈

(∑MD,MS
l,m=1,1

(
u(x(l), ξξξ (m)) − uN (x(l), ξξξ (m))

)2∑MD,MS
l=1,1 u(x(l), ξξξ (m))2

)1/2

,

∥E[u] − E[uN ]∥L2(D)
∥E[u]∥L2(D)

=

(∫
D

(
E[u](x, ·) − E[uN ](x, ·)

)2dx∫
D E[u](x, ·)2dx

)1/2

≈

(∑MD
l=1

(
Eu(x(l), ·) − E[uN ](x(l), ·)

)2∑MD
l=1 E[u](x(l), ·)2

)1/2

,

∥Var[u] − Var[uN ]∥L2(D)
∥Var[u]∥L2(D)

=

(∫
D

(
Var[u](x, ·) − Var[uN ](x, ·)

)2dx∫
D Var[u](x, ·)2dx

)1/2

≈

(∑MD
l=1

(
Var[u](x(l), ·) − Var[uN ](x(l), ·)

)2∑MD
l=1 Var[u](x

(l), ·)2

)1/2

,

respectively, using MD discretization points on D, denoted
by x(1), · · · , x(MD), and MS = 90,000 reference samples
drawn from ξξξ , denoted by ξξξ (1), · · · , ξξξ (MS ). E[u] and Var[u]
are computed byMC integration using the reference samples,
i.e.,

E[u](x, ·) =
1
MS

MS∑
m=1

u(x, ξξξ (m)),

Var[u](x, ·) =
1
MS

MS∑
m=1

(u(x, ξξξ (m)) − E[u](x, ·))2.

Meanwhile, E[uN ] and Var[uN ] are computed as in (6).
We further investigate the number of required simulations

to construct surrogate models that yield mean and variance
errors similar to those obtained by the MC method. The
results are summarized in Table 1, which shows that our
model requires significantly fewer simulations than the MC
method to obtain errors of the same order. For example, for
the three-dimensional stochastic BVP problem, our model
achieves the same order of mean and variance error as theMC
method of 1,000 simulations with 37 times fewer simulations.
Each example in the table is discussed in more detail in the
following subsections.

A. SMOOTH FUNCTION
We first investigate the convergence properties of our method
by applying it to real-valued smooth functions of random
variables, ξξξ . This example will demonstrate the ability of our
method to construct data-driven surrogate models that quan-
tify correlated uncertainties. In addition, we illustrate how
our approach significantly reduces the number of required
simulations compared to the MC method when computing
mean and variance.
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FIGURE 1. Errors of our surrogate models for oscillatory Genz functions. (Left) Relative errors of uN for Case 1 and 2. The errors show spectral
convergence. (Middle) Relative errors of mean and variance for Case 1. The 4th order PC expansion is required for both errors to reach the dashed line.
(Right) Relative errors of mean and variance for Case 2. The 6th order PC expansion is required for both errors to reach the dashed line. (Dashed lines)
Relative errors of mean and variance obtained by the MC method with 10,000 samples in the dataset, 4. This gives error limits of our data-driven model
arising from 4.

TABLE 1. The number of simulations required using MC and our method
for each numerical example.

To observe the effect of function oscillation on conver-
gence, we consider the oscillatory Genz function [72]:

u(ξξξ ) = cos(2πb+

d∑
i=1

aiξi)

where ai and b are constants, and d = 2. In this case, u
only depends on random variables, and the physical vari-
able is not considered. Note that the Genz function exhibits
more oscillation when the constants, ai, come from a wide
range. We consider two cases of Genz functions where the
ai’s come from the intervals [0,1] and [0,1.5], referred to as
Case 1 and 2, respectively. The value of b, which does not
significantly affect the difficulty of integration, is selected
randomly in the range [0,1].

To create a correlated probability distribution of the ran-
dom variables ξξξ , we define a Gaussian mixture distribution
defined as

2∑
i=1

wiN (µµµi,LLL iLLLTi + III )

where µµµi ∈ Rd , LLL i ∈ Rd×d is a lower triangular matrix,
and III ∈ Rd is an identity matrix. The constants, wi, are
randomly chosen so that their sum is one, and the entries
in µµµi and LLL i are randomly drawn from uniform distributions
on [0, 1], [−1, 1]. It should be noted that we define the PDF
to produce a random sample of ξξξ , and our approach does
not require the exact knowledge of the PDF in practice.
The number of data is set to M = 10,000. We employ
the pseudo-spectral approach to find coefficients of the N -
th order PC model for the transformed variables, ζζζ , for
N = 1, · · · , 6. Collocation points are constructed by the
tensor product of N +1 quadrature points in each dimension,
as obtained by the Golub-Welsch formula [73].

The results of our method are shown in Fig. 1. In the left
graph, the accuracy of the approximation, uN , improves as
PC order increases for both cases of Genz functions. Since
the Genz function in Case 2 has more oscillation than in
Case 1, the approximation in Case 2 requires a higher PC
order for the same error. This shows the spectral convergence
of our surrogate model, which demonstrates that the proposed
method extends the PC method to situations where only data
of correlated random variables are available.

In the middle and right graphs of Fig. 1, the accuracies of
approximate mean and variance, E[uN ] and Var[uN ], respec-
tively, also improve as the PC order increases until they
reach the dashed lines. The dashed lines in the middle and
right graphs signify the relative errors of mean and variance
obtained by the MC method with M = 10, 000 samples in
the dataset,4. Because our data-drivenmodel originates from
the dataset, the dashed lines give the error limits of our data-
driven model. For both mean and variance errors to reach
the dashed lines, the 4th and 6th order PC expansions are
respectively required in Case 1 and 2. Note that (N + 1)d

function evaluations are needed to construct the N -th order
PC expansion. This means that our method needs only 25 and
49 function evaluations to achieve the same accuracy as
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the MC method with 10,000 function evaluations in Case
1 and 2, respectively. This shows the computational efficiency
of our method, which requires significantly fewer simulations
compared to the MC method when computing the mean and
variance.

B. DAMPED PENDULUM
This section aims to highlight the ability of our model to
accurately capture solutions that are highly dependent on the
model parameters. In addition, we investigate the impact of
the number of data in a given dataset, 4, on the convergence
of our model. For this purpose, we consider a nonlinear
stochastic ordinary differential equation (SODE) system of
a damped pendulum described as

dθ
dt

= ω

dω
dt

= −ξ21ω − ξ22 sin θ,
[
θ (0)
ω(0)

]
=

[
0
4

]
, 0 ≤ t ≤ 5.

(14)

The solution of this system exhibits oscillatory behavior;
therefore it is sensitive to changes in parameters. The corre-
lated random parameters ξξξ = (ξ1, ξ2) follow another Gaus-
sian mixture distribution defined as

4∑
i=1

wiN (µµµi,LLL iLLLTi + 0.1III ) (15)

where µµµi ∈ Rd and LLL i ∈ Rd×d are the lower triangular
matrices. Entries inµµµ1,µµµ2, and LLL i are randomly drawn from
uniform distributions on the intervals [0.5, 1.5], [5, 6], and
[−0.2, 0.2], respectively, for i = 1, · · · , 4. Parameters ξ1 and
ξ2 are affected by gravitational acceleration, the length of
the string, and the drag coefficient. We square ξ1 and ξ2 to
constrain the coefficients of ω and sin θ to negative values.
We use the pseudo-spectral approach to determine the PC
coefficients and a time integrator at each collocation point is
the 4th order Runge-Kutta method with a step size of 0.1.

Fig. 2 illustrates the impact of the number of data,M , on the
convergence of our model. The left graph shows the errors
of the surrogate models for M = 1,000 and M = 10,000.
We can observe that the slope of spectral convergence is
steeper for M = 10,000 than for M = 1,000 because both
the basis and coefficients of the PCmodel aremore accurately
computed. On the other hand, in the middle and right graphs,
the errors for the mean and variance of the solution decrease
as the PC order increases until they reach the dashed line.
Since the error of the MC method is lower for M = 10,000
than forM = 1,000, achieving the same order of error as the
MC method forM = 10,000 requires a higher order and thus
more simulations to generate a surrogate model. Therefore,
we can conclude that larger datasets lead tomore accurate sur-
rogate models, but more simulations are necessary to achieve
the same order of accuracy as the MC method.

Next, we demonstrate that our model precisely and com-
putationally efficiently estimates the mean and variance of

the solution. Due to the oscillatory pattern of the solution,
it requires higher order than Section IV-A for the error to
reach the dashed line. To be precise, for both mean and vari-
ance errors to reach the dashed lines, the 7th and 8th order PC
expansions are respectively required forM = 1,000 andM =

10,000. This means that to obtain the same level of accuracy
as the MC method using 1,000 and 10,000 equations, only
(7+1)2 = 64 and (8+1)2 = 81 deterministic equations need
to be solved, respectively. The mean and variance of the 8th
order PC approximate solution trajectories usingM = 10,000
data are depicted in Fig. 3. This shows that our surrogate
model adequately captures the solution’s oscillatory behavior,
despite its strong dependence on random parameters.

C. CHEMICAL REACTION MODEL
In this example, we emphasize the practical applicability of
our method by applying it to a chemical reaction model that
describes competing species absorbing onto a surface from
a gas phase [37], [74]. We also compare our approach to
existing methods that handle correlated random variables,
to demonstrate the superiority of our method. The model
is described by the following ODE system with correlated
random parameters α and β:

du1
dt

= αs− γ u1 − 4u1u2

du2
dt

= 2βs2 − 4u1u2

du3
dt

= λs− ηu3

(16)

where ui represents the fraction of adsorption sites occupied
by species i, and the vacant site fraction is given by s =

1−u1−u2−u3. The correlated random parameters are defined
by α = 2 + 2ξ1/3 and β = 20 + 15ξ2/4 for the proper
scaling, where ξξξ = (ξ1, ξ2) follows the Gaussian mixture
distribution described in (15), but entries in µµµi and LLL i are
randomly drawn from uniform distribution on the interval
[−0.5, 0.5]. The other parameters values used to construct
the example are γ = 0.04, λ = 0.36, and η = 0.016.
We focus on approximating the predictive distribution of the
mass fraction of the second species u2 at time t = 50 where
the initial condition is (u1(0), u2(0), u3(0)) = (0.3, 0.3, 0.3).
We will compare our method to two existing methods

that quantify correlated random uncertainties. To ensure
a fair comparison, we assume that all methods are pro-
vided with the same dataset, 4, including M = 10,000
data. The method proposed in [34] uses the Gram-Schmidt
approach to construct the orthogonal PC basis of the surrogate
model. Pseudo-spectral method is used to compute PC coeffi-
cients and the quadrature points and weights are constructed
by using weighted complete-linkage (WCL) clustering and
block coordinate descent (BCD) solver. Another method
is proposed in [37], which also uses the Gram-Schmidt
approach to construct the PC basis, but PC coefficients are
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FIGURE 2. Errors of approximate solution to the SODE system (14). (Left) Relative error of uN . The slope of spectral convergence is steeper for
M = 10,000 than for M = 1,000 because both the basis and coefficients of the PC model are more accurately computed. (Middle) Relative errors of the
solution mean and variance for M = 1,000. The 7th order PC expansion is required for both errors to reach the dashed line. (Right) Relative errors of the
solution mean and variance for M = 10,000. The 8th order PC expansion is required for both errors to reach the dashed line. (Dashed lines) Relative
errors of mean and variance obtained by MC method using the dataset, 4. This gives error limits of our data-driven model arising from 4.

FIGURE 3. Mean and variance of the reference and the 8th order PC approximate solution trajectories to the SODE
system (14). Our surrogate model adequately captures the oscillatory behavior, despite its strong dependence on
random parameters.

obtained by interpolation approach [8] on the Leja sequence
(LS) generated from the given dataset.

Fig. 4 illustrates the relationship between the number of
required simulations for constructing the surrogate models
and the error of mean and variance of the surrogate models.
Our method outperforms the other two methods by reaching
the dashed line in only 25 simulations. The dashed line repre-
sents the error achieved by the MC method using 10,000 data

in the given dataset. Therefore, our approach achives the same
accuracy as the MCmethod of 10,000 simulations using only
25 simulations, which demonstrates the computational effi-
ciency of our method in practical applications. Although the
combination of WCL and BCD also reaches the dashed line
with much less simulations than the MC method, it requires
42 simulations, which is more than our method. On the other
hand, the error of LS method does not eventually reach the
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FIGURE 4. Errors of our method and the existing methods in the chemical reaction model. (Left) The relationship
between the number of simulations required for each method and the relative error of the mean. (Right) The
relationship between the number of simulations required for each method and the relative error of the variance. Our
method outperforms the other two methods, achieving the same order of error as the MC method with only
25 simulations. (Dashed lines) Relative errors of mean and variance obtained by MC method using the dataset, 4.
This gives error limits of our data-driven model arising from 4.

dashed line. These findings demonstrate the superiority of our
method over the other two methods.

D. STOCHASTIC ELLIPTIC BOUNDARY VALUE PROBLEM
In our final example, we consider a stochastic elliptic BVP
that has various practical applications such as electrical
potential in conductive materials and flow of a fluid in porous
media in oil and gas production. Furthermore, we will show
that our method efficiently quantifies high-dimensional cor-
related uncertainty in a data-driven manner, which is the
unique contribution of our method.

The stochastic elliptic BVP is described as

−∇ · (a(x, y, ω)∇u(x, y, ω)) = f (x, y) in D×�

u(x, y, ω) = 0 on ∂D×� (17)

where D = [−1, 1]2 and the random process a is character-
ized by correlated random variables ξξξ = (ξ1, · · · , ξd ). The
random variables ξξξ are set to follow the Gaussian mixture
distribution defined in (15), but entries in µµµi are randomly
drawn from a uniform distribution on the interval [−0.2, 0.2]
for each i. The random process a has the form of

log a(x, y, ξξξ ) = cosπx cosπy+

d∑
k=1

1
k3
ak (x, y)ξ3k

where ak ’s are Fourier basis onD = [−1, 1]2. The motivation
behind cubing ξk ’s is to enhance the influence of the random
variables on the resulting solution.

We first observe the convergence and computational effi-
ciency of our method in the case of three-dimensional ξξξ .
We use the pseudo-spectral approach to determine the PC
coefficients. The relative error of uN for d = 3 in the left
graph of Fig. 5 decreases as the PC order N increases, which

shows the spectral convergence of our method. In the middle
graph, the errors for the solution mean and variance also
decrease until they reach the dashed lines. For both errors to
reach the dashed lines, the 4th order PC expansion is required.
This means that our method only needs to solve (4 + 1)3 =

125 deterministic equations to achieve the same accuracy as
the MC method using 10,000 equations, showing the com-
putational efficiency of our approach. Fig. 6 shows that the
4th order surrogate model provides a good approximation to
the mean and variance of the reference solution. These result
demonstrate that our model works well in practical problems
described by stochastic elliptic BVPs.

Next, we consider the case having a 45-dimensional
ξξξ to describe the effectiveness of our model for han-
dling high-dimensional correlated uncertainties. We exclude
dimension reduction via SVD itself, which means the trans-
formed variables ζζζ is also 45-dimensional. To deal with the
high dimensionality of ζζζ , we use the pseudo-spectral method
combined with the adaptive ANOVA method described in
Algorithm 1 to deal with high dimensionality. The anchor
point is set to the mean of ζζζ as proposed in [63], which is
zero in our case. The stochastic solution is decomposed into
one constant term, 45 one-dimensional terms, and 120 two-
dimensional terms by the adaptive ANOVA method with a
cutoff dimension q = 2 and a threshold s = 0.003. By obtain-
ing the PC approximation of each term, we significantly
reduce the amount of computation compared to obtaining the
45-dimensional PC approximation of the original stochastic
solution.

The convergence results of our method are shown in Fig. 5.
In the left graph, the accuracy of uN for 45-dimensional ξξξ
improves as PC order increases. The errors for the solution
mean and variance in the right graph also decrease as the
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FIGURE 5. Errors of approximate solution to the BVP (17). (Left) Relative error of uN for d = 3, 45. The errors are reduced as PC order increases and
shows spectral convergence. (Middle) Relative errors of the solution mean and variance for d = 3. The 4th order PC expansion is required for both errors
to reach the dashed line. (Right) Relative errors of the solution mean and variance for d = 45. The 3rd order PC expansion is required for both errors to
reach the dashed line. (Dashed lines) Relative errors of mean and variance obtained by the MC method with 10,000 samples in the dataset, 4. This gives
error limits of our data-driven model arising from 4.

FIGURE 6. Mean and variance of the 4th order approximate solution to the BVP (17) with d = 3 and their absolute errors.

PC order increases until they reach the dashed lines. The 3rd
order approximation is needed for both errors to reach the
dashed lines, and this requires solving 2,101 deterministic
equations using the adaptive ANOVA method. That is, our
method solves only 2,101 equations and achieves the same

accuracy as the MC method using 10,000 equations, which
demonstrates the computational effectiveness of our method
in high-dimensional problems. The results in Fig. 7 indicate
that the mean and variance of the reference solution are
accurately approximated by the 3rd order surrogate model.
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FIGURE 7. Mean and variance of the 3rd order approximate solution to the BVP (17) with d = 45 and their absolute
errors.

This example shows the potential of our method to quantify
high-dimensional correlated uncertainties.

V. CONCLUSION
We propose a new data-driven framework for dealing with
stochastic models with correlated random variables. Our
method is based on a transformation from correlated random
variables to independent random variables. The Rosenblatt
and Nataf transformations are not suitable for constructing a
data-driven model because they require information about the
distribution of random variables. Instead, we use SVD as the
transformation, which provides a natural way to assimilate
the data in building the transformation. We then create an
orthogonal polynomial basis for transformed random vari-
ables using arbitrary PC. Our framework provides an addi-
tional benefit of dealing with high-dimensional correlated
uncertainties by combining constructed PC basis with the
adaptive ANOVA method. Numerical results show that our
methods accurately propagate the moments of the states for
both low and high dimensional stochastic systems with much
smaller number of simulations compared to the MC method.

The theoretical convergence properties of our method are
not covered in this paper. However, we recognize the impor-
tance of studying the theoretical part to improve the under-
standing and applicability of our method. We will study
these theoretical properties in future work. We believe that
these additional studies will contribute to the advancement

of state-of-the-art models in various fields of computational
science and engineering.
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