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ABSTRACT The goal of metagenomic binning is to reconstruct genomes from a mixture of DNA sequences
into genomic bins, which can be considered a clustering task. Multiple methods have been proposed for this
task, such as distance-based metrics, machine learning, and ensemble approaches. We propose BinChill,
a metagenomic ensemble method, based on the generic co-occurrence ensembler method, ACE. BinChill
incorporates domain information in the form of Single-Copy Genes (SCG) with a co-occurrence strategy.
This strategy combines multiple clustering partitions according to how often two items co-occur in the same
cluster. BinChill was able to reconstruct more or equally as many high- and medium quality while having an
equal or faster runtime than other metagenomics-specific methods on a smaller simulated dataset. On larger
datasets, both simulated and real-world, BinChill outperformed other methods in reconstructing high-quality
bins, at the cost of an increased processing time when compared to generic ensemble clustering algorithms.
This is due to the domain-specific steps that our method implements. Our results show that the strengths of
multiple partitions can be combined to generate a partition of higher quality.

INDEX TERMS Genomics, clustering algorithms, bioinformatics, partitioning algorithms.

I. INTRODUCTION
Metagenomics targets the study of genomes of microbial
communities from real-world DNA sequencing datasets.
Within this field, computational methods play an important
role, as the samples are taken from complex environments,
where if human supervision is necessary, the approach can-
not truly be reproducible or scalable. Within metagenomics,
contig binning is the process of reconstructing genomes
from contigs. A contig is a DNA string obtained from a
series of overlapping DNA sequences, that were sequenced
from a mixture of many microbial genomes. The goal of
metagenomic binning is to place contigs that correspond to
the same genome into the same bins. The binned genomes
can then be considered Metagenome-Assembled Genomes
(MAGs), which can be analyzed according to their functions
and processes [1]. The study of contig binning, which can
be considered a clustering problem, is an important subject,
as the quality of the reconstructed MAGs has a great effect
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on the results of metagenomic analysis. Within the fields
of biology, metagenomics is used to deal with the problem
of identifying uncultured bacteria and viruses that can only
be found in microbial communities. Microbial communities
have a direct impact on human health and the environment,
and they are critical to achieving the Sustainable Develop-
ment Goals [2], [3].

Most computational approaches performing metagenomic
binning explore diverse genomics features, such as compo-
sition, abundance, and Single-Copy Genes (SCGs). Compo-
sition and abundance are properties of the DNA sequence
itself, where the contigs composition is the frequency of k-
mers [4], while abundance is the degree of overlapping reads.
SCGs refer to specific genes, that exist in only one copy in a
single genome. Each contig may contain zero or more distinct
SCGs. Thus, an ideal cluster should contain only one copy of
each SCG. Consequently, the presence of multiple copies of
the same SCGwould be considered an error, as it would mean
that that cluster contains contigs of more than one genome.
AMAGwith a complete set of unique SCG can be considered
fully recovered [5].
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To improve the efficiency of clustering methods, these
features are converted to a lower dimensional space. Multiple
methods for generating contig embeddings have been pro-
posed. This includes methods such as Principal Component
Analysis (PCA) and Gaussian Mixture Model (GMM) [4].
Other binners such as VAMB [6] utilize variational autoen-
coders (VAE) to convert composition and abundance into an
embedding vector for clustering.

Despite extensive studies, none of the individual binners
perform best in all situations [7]. Therefore, ensemble meth-
ods have been used in metagenomics to improve the bin-
ning performance [8], [9], [10], [11]. Ensemble methods can
either be performed using multiple different binning strate-
gies or multiple diverse results from a single binner. Another
approach would be to use ensemble methods as a binning
strategy, by first generating and then ensemble diverse par-
titions, such as MetaBinner [8].

An ensembler benefits from combining the strengths of
many individual partitions by finding a consensus, which
provides an improved overall clustering [12]. To accomplish
this, a consensus function is used to specify how to map
the different input partitions into one singular final partition.
Vega-Pons and Ruiz-Shulcloper [13] have reviewed some of
the existing approaches within consensus functions, and have
classified two main approaches:
Themedian partition approach focuses on the optimization

problem of finding a median partition, which treats the con-
sensus function as an optimization problem and usually tries
to find a median partition or maximize similarity according to
some evaluation metric. This approach has been used in the
metagenomic ensemble method DAS-Tool [9].
The object co-occurrence approach focuses on determin-

ing the cluster label associated with each object in the consen-
sus partition. This is done by counting the number of occur-
rences of an object or pairs of objects in the same cluster and
generating a final clustering result through a voting process
and object similarity [13], [14].

Tahani Alqurashi and Wenjia Wang proposed ACE [14],
a generic ensemble method using a consensus function based
on the object co-occurrence approach. They chose this, as it
had been pointed out that the co-occurrence approach was
generally only studied on a theoretical level, and thereby
under-utilized in terms of ensemblers [13] and, by exten-
sion, metagenomic ensemblers. However, they did not take
domain-specific information into account.

Therefore, we present the metagenomic ensembler Bin-
Chill, an ensembler that uses the object co-occurrence
approach based on ACE, while implementing domain infor-
mation into the similaritymeasurement. Furthermore, we also
implement a standalone version of BinChill, where instead of
relying on partitions from other approaches, it generates its
own partitions, so that different techniques can be explored
within our framework.We test this approach onmetagenomic
datasets of several types, according to the metrics taken
into consideration in metagenomic studies. BinChill is freely
available at https://github.com/marc391130/P6-BinChilling.

In this article, we first present the prior work to contextualize
ourmethod (Section II), thenwe describe the BinChill ensem-
ble clustering method (Section III), its implementation details
(Section IV), and the experiments performed (Section V).
Finally, we discuss the limitations and future directions of our
method (Section VI) and our main conclusions (Section VII).

II. PRIOR WORK
Many different strategies for metagenomic binning have
been proposed in recent years. VAMB introduced the use
of variational autoencoders to the field of metagenomic
binning, which has showcased the reconstruction of more
near-complete genomes in both simulated- and real datasets,
than other binning methods [6]. VAMB utilizes composition
and abundance as input features for a deep variational autoen-
coder, which is a type of neural network, trained on encoding
and decoding the feature matrix. The encoded feature matrix,
referred to as the latent representation, is then utilized for
clustering the contigs into bins (binning). The clustering is
done using an iterative medoid clustering algorithm. VAMB
showed improvements in the reconstruction of near-complete
strains over multiple datasets, with a performance increase
of 29% to 98% on simulated datasets and 45% on real
data compared to other state-of-the-art metagenomic binning
methods, such as MetaBAT2, MaxBin2, and Canopy. Other
recent approaches further explore deep learning algorithms
to learn contig embeddings [15], [16].

DAS-Tool is an ensembler that attempts to improve
on metagenomic binning by utilizing multiple binning
results [9]. As input, DAS-Tool takes in multiple binning
partitions, created from the same assembly data. It firstly
predicts all the single-copy genes on each bin and scores the
bins accordingly, after which candidate bin sets are aggre-
gated. DAS-Tool then iteratively selects high-scoring bins
and updates the remaining partial candidate bins until it can
output a non-redundant bin set.

The scoring function used in DAS-Tool utilizes complete-
ness (com), contamination (con), and a megabin penalty
(meg):

Sb = com−b · con−c · meg (1)

These metrics are calculated using the SCGs identified in
each bin, and a set of reference SCGs expected to exist once
in each MAG. Completeness refers to the fraction of refer-
ence SCGs that are in the bin, contamination refers to how
many SCGs exist more than once in a bin, and the megabin
penalty refers to the total number of SCGs in a bin divided
by the number of reference SCGs. Both contamination and
megabin penalty are accompanied by weighting factors b
and c, respectively. Using this scoring function to determine
which bins to have in the final partition, they were able to
recover substantially more near-complete genomes than any
single binning method tested against [9].

MetaBinner is an ensemble algorithm that, like DAS-Tool,
attempts to improve on metagenomic binning through an
ensemble of binning results [8]. MetaBinner is a stand-alone
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FIGURE 1. An overview of the three stages of the BinChill method.

ensembler, which means it generates the partitions itself,
using composition and abundance features. A final partition is
produced by combining the generated partitions, selecting the
ones with the highest completeness and lowest contamination
This means MetaBinner does not rely on binning results from
other binners, but rather generates multiple partitions with
different features and initializations. MetaBinner showed
improved results compared to both single binners, such as
MaxBin, MetaBAT, and VAMB, while also outperforming
other ensemblers, such as DAS-Tool and MetaWrap, in both
simulated- and real datasets.

ACE is a generic clustering ensembler, tested on several
real-world benchmark datasets [14]. ACE introduces a novel
consensus function, which employs two different similarity
measures, namely cluster similarity, and membership simi-
larity. Firstly, it constructs the membership matrix, based on
the input partitions. Secondly, it adaptively merges similar
clusters to reduce the number of clusters and to increase
items’ membership value. Lastly, it enforces hard clustering,
by assigning each item to only one cluster using member-
ship similarity and co-association. On average, ACE outper-
formed other state-of-the-art cluster ensemble methods.

III. BinChill ENSEMBLE METHOD
BinChill, the ensemble method proposed in this paper,
is described using a framework adapted from the cluster
ensembler framework used in ACE [14]. This framework
was extended, as to incorporate metagenomic-related domain
information, with the goal of using it as a binning ensembler.

For a generic ensemble framework, a given dataset denoted
by X = {x1, x2, . . . , xn}, |X | = n with xi being the i’th

contig in the dataset. Let Pm = {cm1 , cm2 , . . . , cmkm}, |Pm| =
km, be a partition of km clusters, where m also denotes the
partition a cluster is a member of. Each cluster cmi consists
of |cmi | = q contigs, and can therefore be defined as cmi =
{x1, x2, . . . , xq}, where

⋂
1≤i≤km c

m
i = ∅ and

⋃
1≤i≤km c

m
i =

X . The set of all clusters can thereby be defined as
←−
C =⋃

1≤i≤k Pi, λ = |
←−
C |. Additionally, ←−c ∈

←−
C denotes a

cluster not originating from an input partition. Given a set of
partitions 0 = {P1,P2, . . . ,Pk}, |0| = k , and a consensus
functionF , a cluster ensemblerφ can be defined asφ(F, 0) =
F(P1,P2, . . . ,Pk ) = F(0), resulting in the final partition P∗.
As to using the generic ensemble framework as a metage-

nomic ensemble framework, the framework was extended,
such that dataset X is the set of contigs, where each contig
contains a set of Single-Copy Genes (SCGs). The function
g(xi) maps a contig to the set of SCGs for that contig, such that
g(xi) ⇒ {g1, g2, . . . , gj} ∪ ∅. The set of all SCGs is denoted
by G.
Having established the variables of the framework, we can

begin to present BinChill. The workflow of the algorithm
goes through three main stages; Relaxation, Bin assignment,
and Bin refinement, as can be seen in Fig. 2, 3 and 4, which
shows the workflow of the algorithm. Figure 1 provides an
overview of full method.

A. STAGE 1: RELAXATION
Having generated 0, the set of k partitions, this stage trans-
forms all clusters in

←−
C into a pairwise similarity matrix

Sc using set correlation as a cluster similarity measurement.
Afterward, the clusters are merged in a manner reminiscent of
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FIGURE 2. An illustrative example of Stage 1 (Relaxation) of the BinChill Method. The pairwise cluster similarity is calculated between
clusters of different partitions and the most similar are merged iteratively.

relaxation (chilling), to form new ensemble clusters. An illus-
tration of this can be found in Fig. 2.

Firstly the similarity between clusters cmjm , cljl is measured
while also taking their sizes into account. The formula used
for calculating the cluster similarity is represented as follows:

Sc(cmi , clj) =
|cmi ∩ c

l
j | −

|cmi ||c
l
j |

n√
|cmi ||c

l
i |(1−

|cmi |
n )(1−

|clj |
n )

(2)

where m and l are two partition sets, m ̸= l and i, j are the
cluster indices in m and l, with n being the number of items
in X .
This results in a cluster similarity matrix that contains

the similarity measure between initial cluster vectors, where
Sc(ci, cj) = Sc(cj, ci), hence why duplicate values are
ignored. Its values are bounded in [−1, 1], where a value of
1 implies that the two clusters are completely identical, and a
value of -1 implies that they are a complement of each other.

Having calculated the cluster similarity matrix, we then
find the most similar cluster pairs, with Sc ≥ α1, and merge
these based on the criterion in equation 3 to produce new
clusters (←−ci ), which are added to

←−
C . After each iteration

through the matrix Sc, the value α1 ⇐ max Sc. This is
done repeatedly, until α1 < α1min . ACE does not have an
implicit method for determining an optimal α1min . This stage
replicates stage 2 of the ACEmethod, which determines α1min
empirically. We conduct an empirical analysis of the optimal
α1min value in Section V-C.

If Sc(cmjm , cljl ) >= α1 ⇒ cmjmand c
l
jl are merged. (3a)

If Sc(cmjm , cljl ) < α1 ⇒ cmjmand c
l
jl are not merged. (3b)

The process of merging continues until no clusters from
Sc satisfy the merging criteria, meaning they are not sim-
ilar enough. If two clusters have identical scores, then the
ordering of the clusters as they appear in the input file is
used as a tiebreak. This results in the set

←−
C consisting of

non-merged clusters as well as several merged clusters, e.g.
←−
C = {ci, cj, . . . } ∪ {

←−cl ,
←−cv , . . . }.

B. STAGE 2: BIN ASSIGNMENT
The aim of stage 2 is to ensure that all contigs only appear
in one cluster, as can be seen in Fig. 3. To do this, the
membership similarity in the new clusters should be calcu-
lated. This stage is inspired by ACE, but expands the certainty
categories to include items with and without SCGs. Firstly,
the membership value of each contig to the initial clusters is
defined as:

δ(xi, cj) =

{
1 if xi ∈ cj, ∀i = 1, . . . , n
0 if xi /∈ cj

(4)

Each cluster can thereby be considered a vector ofmember-
ship values, with n dimensions. Each initial cluster is defined
as cj = [δ(xi, cj) | xi ∈ X ], whereas a merged cluster is
defined as the accumulation of the two previous clusters, such
that ←−cj = cm + cj. This also applies when merging two
merged clusters.

We can then define the membership similarity measure,
which denotes the similarity a contig has with a given cluster
in
←−
C . The membership similarity denoted as Sx , can be

defined as;

Sx(xi,
←−cg ) =

2(xi,
←−cg )∑

cu∈
←−
C

δ(xi, cu)
=

2(xi,
←−cg )

k
(5)

where 2 is a function returning the cumulative membership
value of item xi in cluster

←−cg , given by equation 4, defined as
2(xi,

←−cg ) =
∑

cu∈
←−cg δ(xi, cu) where cu are all clusters used to

construct ←−cg . The membership similarity matrix Sx thereby
gives us the certainty of which cluster an item belongs to,
in the domain [0, 1], where each contig’s certainty sums to 1.
We can then use these certainties throughout the following
steps of this stage.

Throughout this stage, two groups are considered, θ1 and
θ2, which represent assigned and non-assigned contigs,
respectively. These groups have the property that θ1∩θ2 = ∅,
meaning every time an item is added to θ1, it is removed from
θ2. Initially, θ1 = ∅, θ2 = X . The process of this stage is
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FIGURE 3. An illustrative example of Stage 2 (Bin assignment) in the BinChill method. Each item is handled according to its maximum
membership similarity to newly formed clusters.

then run repeatedly, until θ1 = X . After each iteration, the
membership similarity is recalculated between items in θ1 and
θ2 using co-association [17].

1) STEP 2.1: IDENTIFY CONTIG CERTAINTY
Initially, all contigs are categorized into their respective cer-
tainty groups using Sx . For each x ∈ θ2, we find themaximum
membership similarity in relation to all←−c ∈

←−
C . The contig

is assigned to its respective certainty group, based on the
maximum membership similarity measure, with a member-
ship similarity measure of 1 indicating that the contig is
certain and 0 indicating that it is lost. The certainty group can
therefore be defined as follows:

max
←−c ∈
←−
C
Sx(xi,

←−c ) = 1 → certain

0 < max
←−c ∈
←−
C
Sx(xi,

←−c ) < 1 → uncertain

max
←−c ∈
←−
C
Sx(xi,

←−c ) = 0 → lost

2) STEP 2.2: ASSIGN CERTAIN OBJECTS TO A SINGLE
CLUSTER
Contigs that are considered certain, by definition have a
member similarity measure of 1. Therefore, certain contigs
can only belong to that cluster and are thus added to θ1, which
will be used to contain items that need no further calculations
in this stage.

3) STEP 2.3: HANDLE UNCERTAIN ITEMS
Items that are classified as uncertain are handled in one of two
ways. Items where g(xi) ̸= ∅ are handled as defined in Step
2.3.1, whereas items where g(xi) = ∅ are handled in regards
to the methods defined in section Step 2.3.2.

4) STEP 2.3.1: ASSIGN UNCERTAIN CONTIGS WITH SCGs
For uncertain items containing SCGs, we want to know
whether there exists any bin, where the addition of those items
will give a better result in regards to the completeness and
contamination. We want to place these contigs in bins where
they are not only most certain to be placed but also improve
the quality of the bins in regards to the quality measure
defined in Table 3. To accomplish this, we altered the scoring
function described in equation 1, such that:

Sb(
←−c ) = (100 · com)− (100 · con)2 −

√
(100 · meg)

(6)

This alteration also induces the property that only bins with
< 10% contamination will have a positive score, which is
consistent with the high-quality criteria (Table 3). A com-
parison between Sd and Sb can be seen in Table 1. This
table shows that Sb heavily penalizes rises in contamination.
As stage 2 is an iterative approach, it is important that a step
in the wrong direction does not lead to a worse score down
the line. Therefore, a small rise in contamination is heavily
discouraged.

This results in only high-quality clusters and clusters
with the potential to become high-quality clusters (through
merging) having a score > 0. The megabin penalty is
kept, although with a much lower influence, to still deter
megabins.

We then use this scoring function to give a quality score for
each bin. However, the similarity Sx also plays a role when
assigning a contig to a bin. To determine which bin an uncer-
tain contig containing SCGs is placed in, we use equation 7.
This equation finds the bin with the highest positive change,
by calculating the difference of score with and without
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TABLE 1. Comparison between DASTool’s score function Sd and
BinChill’s score function Sb, for different completeness and
contamination values. Megabin penalty is ignored for simplicity, as it is
often related to contamination.

TABLE 2. Example cases of the S1 − S2 score, depending on the relation,
to show how desirable a bin is, with and without a contig.

the contig.

Sbc(xi) = arg max
←−cg∈
←−
C
(Sx(xi,

←−cg ) · (Sb(
←−cg )− Sb(

←−cg − {xi}))

(7)

Table 2 shows several different scenarios and their result-
ing change in score, with S1 = Sb(

←−cg ) and S2 = Sb(
←−cg−{xi}).

Two notable cases are the −1− (−2) = 1 case and 1− 1 =
0 case. The first case has a positive change, even though
both S1 and S2 are negative. However, in this case, it is more
desirable to have a score of S1 than S2, as S2 has a worse score.
The other case with a change of 0 is simpler and means that
the contig does not make an impact.

With respect to the similarity, equation 7 returns the bin in
which the contig has the highest positive influence. It is, how-
ever, not guaranteed that any bin has a positive score under
the inclusion of the contig. In that case, it is determined if the
item should be placed in θ1 or stay in θ2 based on whether
the score of any bin is improved or not. If Sb(

←−cg ∪ {xi}) < 0,
where Sbc(xi) =

←−cg , then the item does not improve the score
of any bins, hence why the item stays in θ2, otherwise, the
item is added to θ1. In the context of Sbc, we utilize Sb as
opposed to Sd to minimize contamination. Specifically, Sb
only assigns positive scores to bins that have the potential to
be high-quality (HQ) bins, as determined by our optimization
function Sbc. This allows Sbc to iteratively construct improved
bins.

5) STEP 2.3.2: ASSIGN UNCERTAIN
CONTIGS WITHOUT SCGs
For uncertain contigs not containing SCGs, we look at the
membership similarity Sx of the contigs. If an item has
max
←−c ∈
←−
C
Sx(xi,

←−c ) > 0.5 we assign the given item to that cluster

and put it in θ1, as it has a higher probability of being in that
cluster than not. If however max

←−c ∈
←−
C
Sx(xi,

←−c ) ≤ 0.5, the item

stays in θ2 for recalculation.

6) STEP 2.4: BIN ISOLATION OF θ2
To guarantee convergence, each iteration is ensured to assign
at least l items to θ1. Arbitrarily, l = ⌈

√
n⌉ was chosen as the

initial value. This is done by isolating the lt longest contigs
in θ2, with lt = l − (|θ t−12 | − |θ

t
2|), where |θ

t
2| is the length of

θ2 in iteration t , since the longer a contig is the more reliable
its features are [8]. A contig is isolated by placing it alone in
a separate cluster, which it is added to

←−
C while the contig is

added to θ1. Initial iterations will typically have many contig
assignments, which results in no more contigs being assigned
through isolation. However, later iterations might have most
or all assignments occur through isolation. To prevent this,
each iteration that isolates contigs also increases l, such that
l = l + lt iff lt > 0.

7) STEP 2.5: RECALCULATION OF CONTIG SIMILARITY IN θ2
In the last step of each iteration, the contigs of θ2 have
their similarity recalculated using co-association [17]. This
calculates the average agreement between partitions in terms
of the percentage of times a given pair of contigs are placed
in the same cluster in each Pm ∈ 0.

CO(xi, xj) =
1
k

k∑
m=1

δm(xi, xj) (8)

Here, xi and xj are contigs, δm(xi, xj) = 1 if xi and xj are in
the same cluster in partition m, and δm(xi, xj) = 0 otherwise.
Before the similarity recalculation is done, each cluster in
←−
C has all the contigs in θ2 removed, such that←−c =←−c −{xa},
∀xa ∈ θ2 and ∀←−c ∈

←−
C . This implies that

⋃
←−c ∈
←−
C

←−c = θ1.

Using co-association between contigs, we can re-determine
the average similarity between contigs in θ2 and contigs in
θ1 as:

ACO(xi,
←−cj ) =

1

|
←−cj |
· (

∑
xa∈(
←−cj −{xi})

CO(xi, xa)) (9)

We can then use ACO(xi, cj) to calculate the average
co-association between ∀xi ∈ θ2 and contigs in clusters from
θ1 using the information from 0. This way we can assign the
contigs from θ2 to clusters according to the contigs they were
associated with the original partitions. Having calculated
ACO(xi, cj) for all contigs in θ2, we then overwrite Sx such
that Sx(xi, cj) = ACO(xi, cj).
When θ1 = X , the stage halts, and the initial final partition

is thereby P∗ =
←−
C , as

⋂
←−c ∈
←−
C

←−c = ∅ and
⋃
←−c ∈
←−
C

←−c = X
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C. STAGE 3: BIN REFINEMENT
The refinement process uses the previously established set
P∗ and refines the bins within. This stage is run repeatedly,
where bins are either split, merged, or left unchanged until
no further actions can be made, as can be seen in Fig. 4. This
stage is used to both increase quality of clusters in P∗ and
to decrease the partition size. This is often necessary as bin
isolation from stage 2 can result in an explosion in partition
size, i.e., a high number of bins. We developed this stage
specifically for BinChill, since it was not part of the ACE or
other generic ensemble clustering algorithms. For every bin,
the set

←−
C (equivalent to P∗ at this state), is searched in order

to find an optimal partner bin to be merged with. This is done
using an average co-association between bins (CCO) and bin
scoring (Sb).
The Common Co-Association (CCO) of two bins is given

by:

CCO(←−ci ,
←−cj ) =

1

|
←−ci ||
←−cj |

∑
xk∈
←−ci

∑
xl∈
←−cj

CO(xk , xl) (10)

When searching for an optimal partner for a bin, one of
two strategies will be used, depending on the type of bins
being compared. If both bins contain SCGs (|g(←−c )| > 0),
then a combination of bin score (Sb, equation 6) and (CCO)
is utilized. However, if either bin contains no SCGs, then the
bins are only compared using CCO. The function utilized
for searching for an optimal pair, denoted Scco, is comprised
of two methods centered around scoring the compatibility
between two bins. If both bins contain SCGs, then the score is
based on both the combined score and CCO. The bins are only
considered compatible if merging them results in a positive
impact, expressed as Sb(

←−ci ∪
←−cj ) > max(Sb(

←−ci ), Sb(
←−cj )).

If the combined score is not greater than the max individual
score, then the two bins are not compatible.

If at least one of the bins does not contain SCGs, then only
CCO is used to determine the compatibility of those two bins.
In this case, we use the CCO score between them to find
the optimal partner, using the constraint that combining the
two bins must result in a higher score. This is also expressed
as CCO(←−ci ,

←−cj ) ≥ max(ICO(←−ci ), ICO(
←−cj )). Internal co-

association (ICO), is a measure of the association between
contigs inside a bin, given by:

ICO(←−c ) =
1

|
←−c |2 − |←−c |

∑
xi∈
←−c

∑
xj∈(
←−c −{xi})

CO(xi, xj) (11)

Applying ICO to a union of two bins (ICO(←−ci ∪
←−cj )) can

be reduced to ICO(←−ci )+CCO(
←−ci ,
←−cj )+ICO(

←−cj )
3 . When considering

finding an optimal partner, only the CCO part of the equation
is required to improve, as the ICO parts are static. This is
also why a greater than or equal sign is used, as two separate
clusters having an equal CCO tomax ICO score still improves
the score of the min ICO score.

The optimal partner←−cj for a given bin
←−ci is then found by

searching set
←−
C for the partner yielding the maximum score,

expressed as ←−cj = arg max
←−c ∈
←−
C
(Scco(

←−ci ,
←−c )). These two can

then be merged and added to set
←−
C , such that

←−
C ←

←−
C −

{
←−ci ,
←−cj } + {

←−ci ∪
←−cj }

Scco(
←−ci ,
←−cj )


sb(
←−ci ∪

←−cj ) · (CCO(
←−ci ,
←−cj )+ 1) if Con1

CCO(←−ci ,
←−cj ) if Con2

−∞ otherwise

Con1 = |g(←−ci )| > 0 & |g(←−cj )| > 0 &

× Sb(
←−ci ∪

←−cj ) > max(Sb(
←−ci ), Sb(

←−cj ))

Con2 = CCO(←−ci ,
←−cj ) ≥ max(ICO(

←−ci ), ICO(
←−cj ))

If a bin does not match the merging criteria with any other
bins, as in Scco(

←−
ci ,←−cj ) = −∞ and Sb(

←−ci ) < 0, the bin is
split into single-object bins. P∗ (

←−
C ) is therefore updated with

←−ci = {x1, x2, . . . , xq} ⇒ {x1}, {x2}, . . . , {xq}.
Bin refinement is continually applied, until no further

changes are possible, meaning a local maximum is reached.
After the bin refinement stage halts, we are left with the final
partition P∗, which completes BinChill, such that φ(F, 0) =
φ(BinChill, 0) = P∗.

IV. IMPLEMENTATION
As Sc is the heaviest matrix in regards to the number of
entries throughout BinChill, an effort was made to limit the
memory usage of this matrix. Therefore, a different sparsing
strategy was chosen compared to the other matrices. In Sc,
values lower than α1min were considered as 0. This change
is made, as Sc(ci, cj) = 0 rarely occurs, meanwhile the only
relevant values are that >= α1min . This also helps improve
performance when searching for entries to merge (values
>= α1), as most entries are sparsed.

A. ANALYSIS OF TIME COMPLEXITY
A large focus of the implementation has been optimizing
stage 1, as this stage initially had a lot of memory and
efficiency issues. This stage has a worst-case time complexity
of O(n · λ · log λ), since calculating each Sc has a time
complexity of O(n), as it utilizes the intersection between
two clusters. This function is invoked λ log λ times when
populating the symmetric matrix, where λ is the total number
of clusters in all input partitions. The worst case is however
seldom reached, as it would require a partition to consist
of a single cluster for the intersection calculation to require
O(n) time. The bigger the clusters are (in terms of number of
contigs), calculations involving these clusters become more
computationally expensive, but also leaves fewer entries to
be calculated.

The time complexity of stage 2, is O(λ · n ·
√
n), assuming

a distinctly worst-case, where l contigs get assigned each
iteration, resulting in l never growing and the maximal pos-
sible iterations being required, namely

√
n. In practice how-

ever, assigning exactly l contigs each iteration is extremely
unlikely, and the amount of contigs which gets assigned each
iteration quickly decreases, thereby increasing l.

VOLUME 11, 2023 49567



O. S. Bak et al.: BinChill: A Metagenomic Binning Ensemble Method

FIGURE 4. An illustrative example of Stage 3 (Bin refinement) of the BinChill method. The bins are either split, merged, or left unchanged,
according to their scores.

FIGURE 5. Quality assessment of bins using different clustering algorithms (Partial seed, K-means++, Agglomerative, and Random) in the
BinChill Binner on Strong100. The X-axis is the number of bins for each partition, while the y-axis is the partition’s quality.

Assuming a worst-case scenario for stage 3, where every
cluster can be split, themaximumnumber of clusters becomes
O(λ) = n. It will never surpass n as refining only improves
the score, a contig will never be involved in a split more
than once. The performance of stage 3 is heavily affected

by the calculation of CCO and ICO. Both of these func-
tions are symmetric, meaning ICO(a, b) = ICO(b, a), which
can help substantially speed up the implementation. Both
functions can be implemented as O(|c1| · |c2|) = O(n2)
and O(|c| log(|c|)) = O(n log n) respectively. Using these
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functions to search the set
←−
C for an optimal partner can also

be done symmetrically, as Scco is also symmetric, meaning
each iteration of the refiner takes O(n2 · n log n). This stage
is iterated at most log n times, resulting in an overall time
complexity of O(n3 · log n · log n). This complexity is greater
than that of the ACE method (O(λ2

· (λ+n)) [14]), which we
adapted for stages 1 and 2. However, it is uncertain whether
it is greater than that of other metagenomic methods, as it
is seldom studied to the same degree as generic ensemble
methods.

Note that this is a very strict upper bound, and the actual
implementation caches ICO and Sb throughout. Likewise,
subroutines can also be run concurrently, utilizing multiple
threads to complete an iteration. For stage 3, searching for
an optimal partner can be done in parallel, as the potential of
partners can be determined concurrently (and memorized as
to skip calculation later), where from the most optimal can be
chosen. Stage 1 also benefits heavily from calculating Sc in
parallel, while stage 2 only benefits from parallelism during
recalculation (step 2.5). Stage 2 does however, benefit from
caching results from subroutines, such as Sb, and Sx and CO.

B. BinChiLL AS A STANDALONE BINNER
Using a similar architecture as MetaBinner [8], we imple-
mented a standalone binner. The binner uses MetaBinner’s
method for estimating the number of bins and generating
partitions, using their Partial Seed method for initializing
a k-means++ clustering on contig feature vectors [8]. For
experimental purposes, the binner also allows for the use of
other partition generation methods instead of the partial seed
method. An overview of the workflow alongside a summary
of the implementation of MetaBinner partition generation
method can be seen in Appendix A.

V. EXPERIMENTS
In this section, we study the influence of different parameters
on BinChill, alongside a comparison of its performance to
standalone binners and other ensemblers. The experiments
were conducted on nine different datasets, namely a smaller
dataset (Strong100), consisting of 1150 contigs [16], a larger
dataset (CAMI2 oral), consisting of 201k contigs [18], and
seven real-world datasets. Only the Strong100 dataset was
used to test the different parameters in Section V-B.

A. EVALUATION CRITERIA
The final partitions obtained with each method have been
evaluated using the criteria seen in Table 3, where each
bin is classified as either High-, Medium-, or Low-quality,
depending on its completeness and contamination. These are
the standards used in the metagenomics community, defined
as the minimum information about metagenome-assembled
genomes [19]. The completeness and contamination are cal-
culated using DAS-Tools’ quality assessment formula [9].
The quality of a partition is determined by the number of
bins that adhere to the different quality groups, whereas the
number of high-quality bins is the most significant.

TABLE 3. Quality measure of a bin using completeness and
contamination.

TABLE 4. Overview of different partition generation methods impact on
final partition quality after running BinChill. AHPQ = Average
High-Quality bins for input partitions.

B. ANALYSIS OF PARTITION QUALITY INFLUENCE
The influence of partitions with different qualities is
examined with the standalone ensembler, where different
clustering algorithms were used to sample the partitions.
The algorithms tested were the Partial Seed method as
described in [8], Agglomerative Clustering 1 with cannot-link
constraints between contigs containing the same SCGs,
k-means++ [20] where contig lengths are used as a weight
when adjusting centroids, and Randomized embedding k-
means clustering.

The MetaBinner approach was used for estimating the
number of clusters [8]. This gave a lower bound estimate of
45 bins and an upper bound estimate of 80 bins. A partition
was then generated for each number of clusters between
45 and 80, and for each clustering method.More details about
this method can be found in Appendix B.

Table 4 contains the ensemble results, where the partitions
generated with different methods were used as input. This
is displayed alongside the average quality of the 36 input
partitions. Each method was run using an α1min of 0.9.

A plot of the different bin qualities from the partitions can
be seen in Fig. 5. The clustering algorithms differ in the
similarity of their partitions measured using ARI (Adjusted
Rand Index) and NMI (Normalized Mutual Information).
A boxplot of all the partition’s ARI and NMI scores, in rela-
tion to other partitions generated from the same method, can
be seen in Fig. 6. Even though bins found through Partial
seed and k-means++ had vastly different qualities, they both
resulted in similar final partition quality. This may be con-
nected to both methods having a considerably higher variety
of partitions compared to the Agglomerative method, mean-
ing that the partitions likely capture different properties of the
dataset. The Agglomerative Clustering algorithm produced
partitions with lower quality while having high similarities
between partitions. It is uncertain whether the lower final
partition quality is a consequence of either the high similarity
or the low partition quality. The randomly generated bins

1We used the scikit learn implementation: https://scikit-learn.org
/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
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FIGURE 6. Distribution of NMI and ARI score between partitions using different clustering
algorithms (Partial seed (PS), K-means++ (KM), Agglomerative (AGG), and Random (RND)) in
the BinChill Binner on Strong100.

TABLE 5. Runtime of the BinChill binner on Strong100 for each clustering
method.

have a slightly lower average quality than Agglomerative
while being on opposite ends of the similarity spectrum.
This resulted in a lower final partition quality while taking
a significantly longer time to complete, as can be seen in
Table 5.

C. INFLUENCE OF EACH STAGE
Stage 1 of BinChill is run until α1 < α1min . The optimal
α1min is therefore influenced heavily by the partitions being
ensembled. As can be seen in Fig. 7, changing the α1min value
changes the resulting quality considerably, even for a small
dataset such as Strong100. Therefore, a good estimate of the
α1min value can be key to obtaining a good result. Further-
more, We observed that during this stage, 86.2% and 79% of
the bins were merged with other bins, for the simulated and
Aale dataset, respectively.

Stage 2, like stage 1, is affected by partition similarity.
This stage calculates the cluster certainty of each item. This
metric influences which strategy is used to assign an item to
a cluster, as can be seen in Fig. 8. Agglomerative had the
highest partition similarity, which correlated to it also having
a larger amount of items being assigned as certain items,
while the remaining methods had close to none assigned
this way. As expected, the randomized partitions had a large
majority of its items assigned through lost items, while a
minority of the items in other methods were lost.

Lastly, stage 3 has the effect of lowering the final number of
bins and increasing the number of high-quality bins. We ran
the experiments from Table 4 without the refiner, to gauge
its impact. The inclusion of the refiner resulted in an average
improvement of 46% more HQ bins. The different results of
each method can be seen in Fig. 9.

D. COMPARISON TO OTHER BINNERS AND ENSEMBLERS
This subsection evaluates the ability of BinChill to recon-
struct genomes, compared to other binners and ensemblers.
The ensemblers were run on five different VAMB partitions.
These partitions were sampled using the same trained model,
however using different seeds for the clustering, to get varied
partitions. The ARI and NMI are calculated on the partitions,
as to ensure that these were dissimilar enough to be used by an
ensembler, as can be seen in Fig. 10. VAMB was chosen, due
to its non-deterministic output and satisfactory performance
relative to other binning methods. The randomization aspect
of VAMBwas also a factor in its selection to generate diverse
partitions.

We compare the results of BinChill to the metagenomic
binners and ensemblers mentioned in Section II, along
with the standalone ensembler, MetaBAT2, and two generic
ensemblers, namely CSPA (Cluster-based Similarity Parti-
tioning Algorithm) [21] and HBGF (Hybrid Bipartite Graph
Formulation) [22], as to give its relative performance to
generic clustering ensemblers, that do not use domain-
specific information. BinChill was run using an α1min score
of 0.9.

All experiments were executed on the same computer,
running on 4 cores, clocked at 2GHz, and 32 GB of memory.
As VAMB’s results varied when using different seeds, the
average performance of the binner is used for evaluation.
Likewise, the runtime of VAMB is the average of all five runs.
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FIGURE 7. Number of high quality bins using different α1min
values and clustering methods (Strong100).

FIGURE 8. Percentage of contigs classified in regards to certainty through stage 2 of the BinChill Ensembler using different clustering
algorithms (Partial seed, K-means++, Agglomerative, and Random) in the BinChill Binner on Strong100.

The results of the experiments, performed on Strong100,
can be seen in Table 6. The results show that BinChill has a
significantly faster runtime than other metagenomic ensem-
blers and binners while producing similar or better results.
Compared to the generic ensemblers (HBGF, CSPA, and
ACE), the runtime was similar, but BinChill outperformed
them in reconstructing high-quality bins.

The results of the experiments, performed on CAMI2 oral,
can be seen in Table 7. Here, BinChill was able to recon-
struct more high- and medium-quality bins than any other
method tested. When compared to the second best method,

MetaBinner, BinChill tookmuch less time and obtained better
results as a standalone ensembler. As an ensembler of VAMB
partitions, it obtained even more high-quality bins, however,
this was at the expense of a longer runtime than Metabinner.
Table 8 provides the runtimes of each stage of BinChill
standalone binner.

We tested BinChill on real-world datasets obtained from
wastewater and soil samples, sequenced with Nanopore tech-
nology [16]. Each of these datasets corresponds to a different
wastewater treatment facility, except for the Soil dataset,
which corresponds to a single soil sample. Soil samples
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FIGURE 9. Different partitions’ ensemble results with(R) and without(N) the refiner on the
final result (Strong100)).

FIGURE 10. Distribution of NMI and ARI score between partitions using
VAMB on Strong100.

TABLE 6. Overview of the results from the experiments performed on
Strong100. S = Single binner, SE = Standalone Ensembler, E = Ensembler.

are known to be more challenging to solve than wastewater
and other metagenomic datasets. We used the AalE dataset
to compare the approaches in terms of high-quality bins
(Table 10), while the results and runtimes of the other
datasets are provided in Table 9). These results show that

TABLE 7. Overview of the results from the experiments, run on
CAMI2 oral. S = Single Binner, SE = Standalone Ensembler, E = Ensembler.

TABLE 8. Overview of the runtime for each step in the BinChill
Standalone Binner (SE) and Ensembler (E) on the CAMI oral dataset.

TABLE 9. Overview of the results of the ensembler on real-world
datasets.

our approach is also effective on real-world data, and scales
reasonably well on larger and more complex datasets.

We computed the similarity of the partitions generated by
each method using the NMI, to observe if there was some
degree of overlap between the clusters of different methods
(Figure 11). We noticed that the Metabinner clusters were
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FIGURE 11. NMI scores of each method against every other method, for the AalE dataset.

TABLE 10. Overview of the results from the experiments, run on the Aale
real-world dataset. S = Single Binner, SE = Standalone Ensembler, E =
Ensembler.

the most different, compared to the other methods, followed
by MetaBAT2. These two methods obtained fewer HQ bins
than our BinChill method, but more than every other method.
The BinChill ensemble method generated a partition that had
more in common with VAMB and the other generic ensemble
methods. This was expected since we used VAMB to generate
partitions, and used a clustering ensemble approach to com-
bine those partitions. Due to the low similarity of our method
with MetaBAT and Metabinner, it is possible that adding
those partitions to our methods would have achieved lower
results, as our experiments show that the input partitions
should be similar.

VI. LIMITATIONS AND FUTURE WORK
Currently, α1min is manually set by the user, which could lead
to suboptimal results, as the results change based on the value.
Therefore, an effort to eliminate α1min as a user parameter,
utilizing domain and cluster information could be explored.
We experimented with taking the average score of all clusters
multiplied by their respective similarity. Whenever the aver-
age score started to decline, the value of α1min would be set.
However, this approach needs further refinement to be fully
utilized.

More domain information could be incorporated into
BinChill, in an attempt to improve the results. This could

be information such as bin size, to get a MAG that closer
resembles the average genome. We tried to implement a
naive scoring function to determine how close a bin is to the
average genome size. However, with this, another problem
arose, as the different kinds of bacteria have different average
genome sizes [23]. This means that a bin could be stuck in
a local maximum, where the score would have difficulties
moving from one peak to another. Therefore, this idea was
put on hold, as it needed more development to be functional.

Currently, the user is required to have the Single-Copy
Genes to run BinChill. This is not an ideal solution, as users
first need to run another program, as to obtain these SCGs,
whereafter they then need to start BinChill. Therefore it could
be beneficial for the workflow to incorporate the retrieving of
SCGs into BinChill. This could be achieved by implementing
CheckM [5] as a subprocess to the workflow.

The method used to evaluate a partition’s quality is using
the formulas for completeness and contamination used in
DAS-Tool [9]. However, this approach only considers the
bins’ quality in terms of SCGs and not according to ground
truth, in the cases where one would be available (simulated
datasets). In those cases, we do not know how close the
final partitions are to the ground truth. We do however still
consider our measurement of completeness and contamina-
tion sufficient, as contigs are only binned together in the
final partition, if they have a relation in the input partitions,
as measured by CO (Equation 8). Moreover, this evaluation
approach is also limited, in the aspect that not all contigs
contain SCGs, meaning only some impact the quality eval-
uations. However, in BinChill, contigs that do not contain
SCGs will still have an impact on the final partition through
its relations with other contigs. Finally, an evaluation based
on SCGs works on both simulated and real-world datasets.

VII. CONCLUSION
The metagenomic ensembler proposed in this paper,
BinChill, provides an object co-occurrence ensemble method
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using domain information, in the form of SCGs to ensemble
and refine bins from multiple partitions. Member similarity
alongside co-association, in combination with a bin scoring
function adapted from the DAS-Tool scoring function, is uti-
lized as a consensus function for the ensembler. Moreover,
the ensembler also contains a standalone binner, exploring
several clustering algorithms.

Both the binner and ensembler produced on par or
better results compared to other binners and ensemblers,
both in terms of quality and performance, on the small
dataset, Strong100. On the CAMI Oral dataset, a large-scale
simulated dataset, we obtained better results than the other
methods, both with the standalone binner and with the ensem-
bler. However, the improvement obtained with the ensembler
approach came at the cost of higher runtimes, showing that
the scalability of themethod could be improved. Furthermore,
the results on real-world datasets show how the method also
outperforms on this type of data, which is in general noisier
than simulated datasets. Generally, the object co-occurrence
approach shows promising results, within the field of metage-
nomic ensemblement, and could possibly show even better
results with further optimizations.

APPENDIX A
IMPLEMENTATION OF MetaBinner’s PARTITION
GENERATION METHOD IN THE
BinChill BINNER
The feature vectors constructed in step 1 of the BinChill
Binner use the normalized composition as an embedding
vector in contrast to METABinner, which uses the composi-
tion, abundance, and combined composition and abundance
as feature vectors. MetaBinner estimates the number of bins,
by first finding the lower bound for a number of bins, k0.
This is done by measuring the number of times each SCG
is present in the contigs. Sorted from least present SCG to
most, the third quartile is chosen as the k0 value. Afterward,
a range of numbers larger than k0 is tried as the k value in
k-means++. The bin count with the highest silhouette score
is chosen as K , which is the upper bound of the bin count.

A partition is then generated using each k in the range k0 to
K , using MetaBinner’s partial seed method for initializing
k-means++. One SCG is chosen, and all contigs containing
that SCG are initialized as centroids. If more centroids are
required, k-means++ is used to initialize the rest. While
adjusting the centroids in the k-means++ method, the contig
lengths are used as weights [8]. Fig. 12 illustrates how the
BinChill Binner is integrated with the ensemble method.

APPENDIX B
EXAMPLE OF BinChill METHOD
We illustrate an example of how the stages of BinChill work
and how they cooperate using a simple example. This will
be done adapting the toy example from the ACE paper [14],
where we have a dataset of X = {x1, x2, . . . , x10}, of which
3 partitions are generated, as seen in Figure 13. Additionally,
we can define the SCGs G = {g1, g2, g3}. We then have

TABLE 11. The result of θ1 after we merge the most similar clusters,
which are←−c 1 = {c1

1 + c3
2 },
←−c 3 = {c1

2 + c3
1 }, and←−c 4 = {c3

3 + c1
3 + c2

1 }.

TABLE 12. Table showcasing the Sbc score for uncertain items with SCGs,
with the best scores being underlined.

the mapping g(x1) = {g1, g2}, g(x2) = {g3}, g(x3) = {g1},
g(x4) = {g2}, g(x7) = G and g(x10) = {g3}.
For stage 1, we take our set of clusters

←−
C , and build the

initial Sc matrix, as seen in table 15. Using α1min = 0.7 and
an initial α1 = 1.0, we merge the clusters with the Sc score
greater than α1, namely c11 and c32 alongside c13 and c21, and
replace them with←−c1 and←−c2 respectively. α1 is then updated
to max(Sc) = 0.802. Since α1 > α1min , another iteration is
required. c12 and c31 are merged to create←−c3 , as can be seen
from the Sc matrix in table 16. Next iteration, as seen in table
17, α1 = Sc = 0.763, which is greater than 0.7, and we
then merge c33 and

←−c2 into←−c4 . Afterwards, max(Sc) < α1min ,
as max(Sc) = 0.356, as can be seen in table 18, which indi-
cates the end of stage 1. This means we endwith the following
soft clustering, each getting renamed to ←−ci to distinguish
from the input clusters. At the end of this stage we have

←−
C =

{{8, 10, 7}, {1, 2, 6, 9}, {6, 7, 8, 9}, {1, 2, 3, 10}, {3, 4, 5}}.
For the second stage, we start by assigning each contig into

one of the four certainty groups. From Table 11, we can
see that x4 and x5 are certain, while the rest are uncertain.
The uncertain category is additionally split into the groups
with or without SCGs. x1, x2, x3, x7 and x10, are uncertain
with SCGs, while x6, x8 and x9 are uncertain without SCGs.
Certain contigs already only belong to a single cluster, and
therefore no further action is required. For the remaining
clusters, we are going to maximize Sx · Sb through Sbc or just
maximize Sx .
For the uncertain contigs with SCGs, we maximise Sx · Sb

through Sbc. Running this iteratively through all items in
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FIGURE 12. An illustrative of BinChill Binner.

FIGURE 13. Example data from the ACE paper [14], which will be used to showcase how the stages of BinChill work.

TABLE 13. Stage 2 uncertain items with no SCGs, with the clusters
achieving the best scores being the cluster the item is assigned to.

this group, we get the results as seen in Table 12. Assign-
ing each contig to the cluster with the maximum positive
score, we end up with the following cluster set:

←−
C =

{{8}, {1, 2, 6, 9}, {6, 8, 9, 7}, {10}, {4, 5, 3}}.
Afterwards, we consider the contigs uncertain group with

no SCGs, we maximize only the Sx score, and only assign

TABLE 14. The CO Matrix of the contigs, compared to each other.

it if Sx > 0.5. The results can be seen in Table 13.
This leaves us with the following cluster set:

←−
C =

{{}, {1, 2}, {7, 6, 8, 9}, {10}, {4, 5, 3}}. Note here, that
←−
C

does not have any clusters with overlapping elements and that
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TABLE 15. The Similarity Matrix Sc , which is the result of measuring the similarity between initial cluster vectors in our examples (Figure 13) using Sc
measure. ‘‘-’’ cells indicate that this similarity is not calculated, as they are placed in the same member.

TABLE 16. The Similarity Matrix Sc , which is the result of measuring the
similarity between cluster vectors after first iteration has concluded using
Sc measure. ‘‘-’’ cells indicate that this similarity is not calculated, as they
are placed in the same member.

TABLE 17. The Similarity Matrix Sc , which is the result of measuring the
similarity between cluster vectors after second iteration has concluded
using Sc measure. ‘‘-’’ cells indicate that this similarity is not calculated,
as they are placed in the same member.

TABLE 18. The Similarity Matrix Sc , which is the result of measuring the
similarity between cluster vectors after third iteration has concluded
using Sc measure. ‘‘-’’ cells indicate that this similarity is not calculated,
as they are placed in the same member.

←−
C has an empty set, which can be removed for clarity. This
concludes stage 2 where P∗ =

←−
C .

During stage 3, we refine P∗ to achieve more optimal
results using the Scco functions until convergence. For this
example, this is rather quick, as it does so after only one
iteration. The CO matrix can be seen in Table 14. For all
←−ci ,
←−cj ∈

←−
C where←−ci ̸=

←−cj , we utilize the Scco function to
score the compatibility between clusters (see Section III-C).
Note that Scco is symmetric, and we therefore do not need to
perform the calculation for any two clusters twice.

Here, ←−c1 and ←−c2 both only have −∞ compatibility
scores, but both have positive Sb scores and are there-
fore left unchanged. The score of ←−c3 and ←−c4 is 100, and
are therefore merged into a new ←−c3 . This leaves

←−
C =

{{1, 2}, {7, 6, 8, 9}, {3, 4, 5, 10}}. After another iteration of
stage 3, we see that all clusters are left unchanged, and stage 3
has therefore converged. Testing the score of the clusters,
we see the following:

Sb(
←−c1 ) = 100

Sb(
←−c2 ) = 100

Sb(
←−c3 ) = 100
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