
Received 28 April 2023, accepted 11 May 2023, date of publication 18 May 2023, date of current version 31 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3277529

A Generation and Repair Approach to Scheduling
Semiconductor Packaging Facilities Using
Case-Based Reasoning
IN-BEOM PARK 1, JAESEOK HUH 2, AND JONGHUN PARK 3
1Department of Industrial and Management Engineering, Myongji University, Yongin 17058, South Korea
2Department of Business Administration, Tech University of Korea, Siheung-si, Gyeonggi-do 15073, South Korea
3Department of Industrial Engineering, Institute for Industrial Systems Innovation, Seoul National University, Seoul 08826, South Korea

Corresponding author: Jaeseok Huh (jshuh@tukorea.ac.kr)

This work was supported by the 2021 Research Fund of Myongji University.

ABSTRACT As the demand for multi-chip products with high capacity and small size increases, semi-
conductor packaging facilities have been faced with complicated constraints such as re-entrant flows,
sequence dependent setups, and alternative routes, which leads to difficulties in scheduling semiconductor
manufacturing operations. Furthermore, due to the frequent variations in the relative importance between
objectives as well as the variabilities in initial setup status, available machines, and production requirements,
practitioners are obliged to obtain a schedule within a short amount of computation time. In this paper,
we propose a novel two-phase framework that aims to quickly produce a schedule of semiconductor
packaging facilities by using case-based reasoning for minimizing the weighted sum of machine loss time
and waiting time of jobs. Specifically, in the case generation phase, a case database is constructed by solving
case scheduling problems using an existing solver. The case reasoning phase is responsible for repairing
operation type sequences in the cases to produce a schedule for an unseen scheduling problem whose
production requirements, available machines, initial setup status, and weight between performance measures
are different from those of cases. The extensive experimental results demonstrated that the proposed approach
requires a short computation time similar to the rule-based methods while maintaining the quality of the
schedules comparable to that of the existing metaheuristics.

INDEX TERMS Semiconductor packaging facilities, flexible job shop scheduling, case-based reasoning,
sequence dependent setups, schedule repair.

I. INTRODUCTION
As semiconductor industries become automated, scheduling
is one of the key decision-making problems in the semicon-
ductor manufacturing systems [1]. The goal of the scheduling
is to find an operation sequence for each machine to opti-
mize specific objectives. Recently, semiconductor manufac-
turers have been concentrating on producing multi-chip prod-
ucts (MCPs) to satisfy customer demands for high capacity
and small devices [2]. This forces semiconductor packaging
facilities to accompany complicated constraints such as re-

The associate editor coordinating the review of this manuscript and

approving it for publication was Yingxiang Liu .

entrant flows, sequence dependent setups, and alternative
routes, which leads to difficulties in obtaining schedules
while achieving multiple objectives at the same time.

In the contemporary semiconductor packaging facilities,
maximizing machine utilization and minimizing the flow
time jobs are very important objectives [3], [4]. The former
improves the production efficiency and the latter enables
manufacturers to flexibly respond to the fluctuations in
demand of semiconductor markets [5]. Unfortunately, it is
challenging to optimize these two performance measures at
the same time [6], [7]. Specifically, machine utilization can be
maximized by providing a large amount of work-in-process
(WIP). However, this increases thewaiting time for jobs in the

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 50631

https://orcid.org/0000-0002-8890-7381
https://orcid.org/0000-0003-0055-919X
https://orcid.org/0000-0001-7505-110X
https://orcid.org/0000-0001-5684-9159

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

next operations, which leads to the increase in the flow time
of jobs [8]. On the contrary, if there does not exist a sufficient
amount of WIP in order to reduce the flow time, machines in
semiconductor packaging facilities become frequently idle,
which results in the reduction of the machine utilization [2].

Meanwhile, the importance of betweenmachine utilization
and flow time of jobs depends on the policy of enterprises or
the opinion of manufacturing line managers [9]. If the man-
ufacturers want to focus on reducing the depreciation cost of
machines, the preference for increasing machine utilization is
greater than that of decreasing the flow time. In the case of the
enterprise that needs to quickly satisfy the various production
requirements of customers, minimizing the flow time may be
appropriate to achieve the goal of the enterprise. Therefore,
in the real-world semiconductor packaging facilities, it is a
common practice to optimize the weighted sum of the two
objectives according to the given situation [10].

Furthermore, due to the variabilities in initial setup sta-
tus, available machines, and production requirements, adher-
ence to the generated schedule is not possible. For instance,
a machine failure is one of the events that occur frequently
in manufacturing lines, which requires modifying a schedule
to accommodate the changed capacity ofmanufacturing lines.
Therefore, in order to manage such variabilities, semiconduc-
tor manufacturers are responsible for performing scheduling
decisions in a short time, which makes solving a scheduling
problem more challenging than ever [11].

Motivated by the viewpoints above, in this paper, we pro-
pose a generation and repair approach for scheduling the
semiconductor packaging facilities. The proposed framework
is devised to obtain a schedule that aims to minimize the
weighted sum of the loss time of machines and the waiting
time of jobs. The contributions of this paper are three-fold.

• In order to quickly generate schedules, we propose
a novel framework by utilizing case-based reasoning
(CBR) that attempts to solve a new scheduling problem
based on past experience called a case which includes
information related to previous problems and corre-
sponding solutions [12].

• The case repair and machine allocation algorithms
are developed to solve an unseen scheduling problem
whose production requirements, availablemachines, ini-
tial setup status, and weight between performance mea-
sures are different from those of cases. Due to the reuse
of the schedules obtained in advance, case reasoning
phase efficiently fixes retrieved cases to a given schedul-
ing problem by modifying them, making it capable of
being performed in a timely manner.

• To verify the robustness and efficiency of the proposed
framework, experiments were conducted on six datasets
that imitate the real-world semiconductor packaging
lines. The proposed framework was able to obtain a
schedule whose quality is comparable to that of the
considered meta-heuristics while requiring a short com-
putation time.

This paper is organized as follows. In the next section,
we review the related work. Section III presents the problem
definition and the notations that appear in this paper. The pro-
posed framework, including case generation and reasoning
steps, is described in Section IV. Section V reports datasets
used in the experiments and performance comparison results
of the proposed scheduling method. Finally, we conclude this
work in Section VI.

II. RELATED WORK
A. A FLEXIBLE JOB SHOP SCHEDULING PROBLEM WITH
SEQUENCE DEPENDENT SETUPS
The scheduling problem considered in this paper can be
modeled as a flexible job shop problem (FJSP), which has
been proven to be an NP-hard. This implies that there is no
polynomial-time algorithm that can solve the problem effi-
ciently [13]. For solving the scheduling problem while reduc-
ing the computation time and implementation efforts, rule-
basedmethods have been still widely adopted [14], [15], [16].
However, it is difficult to devise a single well-performing rule
whenever new scheduling problems are given.

To overcome this drawback of rule-based methods, the
evolutionary method based on genetic programming (GP)
was proposed to automatically evolve dispatching rules for
FJSP. GP was utilized to generate composite dispatching
rules that outperformed single dispatching rules in terms of
total tardiness [17]. Zhang et al. [18] proposed stochastic
dispatching rules to make a best decision according to the
condition of FJSP. The authors represent decisions using
probability distribution, including multinomial distribution
and the distribution generated by softmax function. Despite
of these efforts, due to the lack of the capability to search
solution space, these methods are not likely to be acceptable
for solving large-scale FJSPs.

In order to obtain schedules through exploring the solution
space enough, the metaheuristics based methods have been
investigated [19], [20]. Chung et al. [21] proposed a genetic
algorithm-based sequence optimizer (GASO) for FJSP with
sequence dependent setup time. Their framework success-
fully maximizes the machine utilization and minimizes the
total setup time at the same time. Defersha and Rooyani [22]
developed a two-stage genetic algorithm (TSGA) where the
first stage is designed to generate good initial solutions in a
short time and the next stage is responsible for improving the
quality of the generated solutions by searching solution space
that might have been excluded from the former stage.

A hybrid metaheuristic algorithm combining GA with
Tabu search (TS) was developed to solve FJSPs that involve
job lag times [23]. In this method, GA is responsible for the
global diversification, and TS conducts an exhaustive local
search. Fan et al. [24] improved GA by employing iterated
local search to minimize total weighted tardiness of FJSPs
considering reconfigurablemanufacturing systems. Although
they obtain a high-quality schedule, the main drawbacks of
these attempts are owing to their large amount of computation

50632 VOLUME 11, 2023

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

time, which results in difficulties in applying them to real time
scheduling environment where the variabilities exist [25].

More recently, there has been considerable interest in
using machine learning-based methods for solving FJSP with
sequence dependent setups [1], [26]. One of the advan-
tages of this line of approach is that it requires a short
amount of computation time to yield a schedule using the
trained model. Especially, reinforcement learning (RL) based
scheduling methods have become at the center of attention
in both academia and industry since an RL is well known to
efficiently find a well-performed policy by exploitation and
exploration of solution space [11], [25], [27], [28]. Specifi-
cally, an agent is trained to conduct actions that can maximize
the expectation of cumulative rewards using state and reward
obtained from an environment.

A Q-learning based scheduler using a shared neural net-
work (NN) was presented to minimize the makespan of semi-
conductor packaging facilities [11]. To address the variation
in the number of machines, an agent is designed to conduct an
action in a decentralized manner while learning a centralized
policy by the shared NN. Park and Park [27] extended the
work in [11] by developing the new action design which
includes four continuous features of a job-machine pair. This
enables the dimensionality of the action space to be kept con-
stant regardless the number of machines, jobs, and operation
types. Although such RL-based approaches successfully find
a high-quality schedule, however, the agent is required to
be re-trained when the design of reward changes due to the
changes in the objective function.

To the best of our knowledge, the existing studies might
be difficult to respond to the variabilities in the initial setup
status, available machines, production requirements, as well
as the objective function. Meanwhile, the goal of this work
focus on quickly generating a schedule in for real-world semi-
conductor packaging facilities while accommodating such
variabilities.

B. CASE-BASED REASONING
CBR is a knowledge reasoning method that utilizes the
past experience of similar problems to solve a current prob-
lem [29]. In CBR, the current problem and the problem
encountered in the past are regarded to as the target and
the historical cases, respectively. The strategy of CBR is to
retrieve the historical cases most related to the target case
and modify retrieved cases into a solution for a given prob-
lem [30]. The bulk of research has been conducted toward the
application of CBR to various domains, including schedul-
ing [31], [32], warehouse system [33], classification [34],
[35], nurse rostering [36], and health care [37].

Huh et al. [33] proposed a CBR-based algorithm for deter-
mining travel routes of large-scale warehouses. They were
successful to yield travel routes with a short travel time
without exhaustively searching for all possible combination
in the whole solution space. A number of research for clas-
sification approach using CBR have been actively examined.

The classification algorithm based on CBR was developed
to cover mixed dataset that contains both categorical and
numerical data [35]. Another line of research presented a
CBR system that aims to detect the faults on the injection
molding machine [34].

There were relatively few studies on solving scheduling
problems in manufacturing systems using CBR compared to
ones that applied CBR to other fields. Chang et al. [38] devel-
oped a two-stage CBR scheduling framework to obtain a solu-
tion for dynamic scheduling of complex steel-making pro-
cess. Chang et al. [39] presented a case-injected GA method
to solve single machine sequencing problems, where GA is
responsible for constructing the initial casebase. For solving
dynamic scheduling problem, another research attempted to
employ CBR as a learning module to automatically select the
parameters of metaheuristics [40].

More pertinently, Lim et al. [32] employed CBR to a
scheduling problem similar to the one that we address in
this paper. The authors defined a schedule as a sequence of
cases each of which includes the states of a manufacturing
line and the decisions conducted at the corresponding states.
Given an input state of a scheduling problem, only feasible
cases are retrieved by filtering process and then the one most
similar to the target case is converted into a solution by an
encoding algorithm. This results in a successful reduction
of the computation time of their method while requiring
little sacrifice in the machine utilization. However, both the
changes in the number of machines and waiting time of jobs
are not considered in their method.

III. PROBLEM DEFINITION
This section introduces a scheduling problem for the semi-
conductor packaging facilities considered in this paper. The
scheduling problem is formulated as FJSP with sequence
dependent setup time, and the mathematical formulations can
be found in [21]. The descriptions of the scheduling problem
with the notations and assumptions are listed as follows.

• There are NJ jobs and NM machines, where the l th job
is denoted as Jl and the k th machine is denoted as Mk .
Each job belongs to one of NJT job types, where the ith

job type is denoted as JTi. For each of the ith job type, Pi
jobs are required to be scheduled, which represents the
production requirements of the ith job type. As a result,
the following equation holds for the total number of jobs
to be scheduled:

NJ =
NJT∑
i=1

Pi. (1)

• The job of type JTi consists of N (Oi) operations that are
required to be performed in a predetermined order. Let
Oi,j be the jth operation type of a job whose job type is
JTi. In addition, the processing time of an operation of
typeOi,j is defined as pi,j. Then, ptot , indicating the total
sum of the processing time in a schedule, is computed as

VOLUME 11, 2023 50633

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

below:

ptot =
NJ∑
i=1

N (Oi)∑
j=1

pi,j (2)

Note that ptot is the same regardless of the scheduling
result. Furthermore, we denote Ak as a set of operations
that can be performed on Mk . To perform an operation
of type Oi,j on Mk , Oi,j must belong to Ak , and Mk
is required to be set up for type Oi,j. We remark that
an operation type also indicates the setup status for a
machine. If the setup type of Mk was Oi′,j′ , the setup
time required for performing an operation of type Oi,j
onMk is σi′,j′,i,j. Moreover, at the start of the scheduling,
eachMk has been set up for setup type Zk , indicating the
initial setup status ofMk .

• In this paper, the following assumptions are introduced.
At the start of the scheduling, jobs and machines are
waiting to be processed and being idle, respectively.
An operation must be performed on only one machine at
a time, and amachine can process only one operation at a
time. Once an operation starts to perform on a machine,
it must be finished without interruption. Finally, the
moving time of each job is not considered.

• The two performance measures considered in this paper
are the average loss time of machines and the average
waiting time of jobs, called ALT and AWT , respectively.
Specifically, ALT is defined as below:

ALT =

∑NM
k=1 fk − ptot

NM
(3)

where fk is the finish time of the last operation on Mk .
We remark that ALT is equivalent to the average sum of
idle and setup time since the fk is computed by summing
the processing, setup, and idle time incurred on Mk .
On the other hand, AWT is defined as below:

AWT =

∑NJ
l=1 τl − ptot − σtot

NJ
(4)

where τl indicates the completion time of Jl , and σtot
is the total sum of setup time incurred in a schedule.
Finally, the objective function of the scheduling prob-
lem, denoted as Fw, is to minimize the weighted sum of
ALT and AWT , which is defined as follows:

Fw = w · ALT + (1− w) · AWT (5)

where w indicates the relative importance between ALT
and AWT , which is determined by practitioners at the
beginning of the scheduling.

IV. PROPOSED METHOD
A. OVERVIEW
In this section, we describe the overall framework of the
proposed scheduling method. The framework consists of two
phases, which are case generation and repair, as depicted in
Fig. 1. In the case generation phase, case scheduling problems

are solved by using the solver to build the case database. After
each case problem has been solved, a case is stored in the
case database. A case c is defined as a quintuple of h, P , SO,
ALT , and AWT , where h, P and SO indicate an index of a
case scheduling problem, the production requirements of a
case scheduling problem, and the operation type sequence of
a schedule, respectively.

At the beginning of the case reasoning phase, dozens of
schedules are retrieved from the case database. The retrieved
schedules cannot be deployed for solving a test scheduling
problem since the production requirements, the number of
machines, the initial setup status, and w are different from
those of the case problems. After the repair algorithm is
executed with the retrieved schedules as inputs, the schedules
are finally obtained by solving test schedule problems.

B. CASE GENERATION
Generally, the case generation phase plays a critical role in
a CBR-based method since the quality of the case database
is related to the performance of a final solution. The case
database C is defined as follows.

C = {ce|e = 1, . . . , |C|} (6)

where ce and |C| indicate the eth case and the number of cases
in C, respectively. Since the case generation is conducted
in an offline manner, it is possible to spend a large enough
amount of time for building the case database. Based on
the remarks above, we adopt TSGA [22] and GASO [21]
to obtain high-quality schedules by solving case scheduling
problems. The reason for choosing these two GAs is that,
unlike other previous studies, they are capable of representing
a solution that distinguishes between job types and jobs.

The production requirements, available machines, the ini-
tial setup status, and w are varied during the case generation
phase in order to cope with their variabilities of an unseen
scheduling problem. Meanwhile, the other configurations of
a scheduling problem such as job types, operation types, and
alternative machines are fixed during the case generation and
reasoning. The assumption behind this is that these config-
urations are rarely changed in the semiconductor packaging
facilities [32].

C. CASE REASONING FOR SCHEDULING
Algorithm 1 presents a case retrieval procedure for selecting
a number of cases each of which belongs to C. In line 1,
h for each case is inserted in H that indicates the set of
case indexes in C. Afterwards, each case in C is sorted from
lowest to highest based on Fw (line 2). Let δ be the difference
between the number of retrieved cases, denoted asNR, and the
size of H (line 3). During lines 4–14, NR cases are retrieved
from C and then stored in R under the condition that the
case indexes of the retrieved ones do not overlap as much
as possible. The rationale behind is that Fw results yielded
by repairing the cases retrieved from the same index are
highly likely to be similar to each other. Lines 10–13 aim to
additionally retrieve a case if δ is larger than 0. We remark

50634 VOLUME 11, 2023

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

FIGURE 1. Proposed scheduling framework.

Algorithm 1 Case Retrieval Procedure
Input: C, NR, and w
Output: R
1: Initialize H from C
2: Sort c ∈ C in ascending order based on Fw
3: δ = NR − |H |
4: for c ∈ C do
5: while |R| < NR do
6: Obtain c = (h, P , AWT , ALT , SO)
7: if h ∈ H then
8: R← R ∪ {c}
9: H ← H \ {h}

10: else if δ > 0 then
11: R← R ∪ {c}
12: δ← δ − 1
13: end if
14: end while
15: end for
16: returnR

that the computation time for conducting the case retrieval
procedure can be reduced since Algorithm 1 can be executed
in an off-line manner for a variety of ws and large enough NR.
After building R, the operation type sequence of a test

scheduling problem, denoted as S ′O is obtained by conduct-
ing the case repair procedure. A case repair procedure is

Algorithm 2 Repair Procedure of SO
Input: P ′ and a case c ∈ R
Output: S ′O
1: Set S ′O to be an empty sequence
2: Obtain SO and P from c
3: Set d(Oi,j) = P′i − Pi,∀i = 1, . . . ,NJT ,∀j =

1, . . . ,N (Oi)
4: for u = 1, . . . ,L do
5: Obtain Oi,j = SO[L − u+ 1]
6: if d(Oi,j) < 0 then
7: d(Oi,j)← d(Oi,j)+ 1
8: else
9: Insert Oi,j into the first position of S ′O
10: while d(Oi,j) > 0 do
11: Insert Oi,j into the first position of S ′O
12: d(Oi,j)← d(Oi,j)− 1
13: end while
14: end if
15: end for
16: return S ′O

described in Algorithm 2 whose inputs are the production
requirements of a test scheduling problem, denoted asP ′, and
a case c retrieved fromR.

VOLUME 11, 2023 50635

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

Algorithm 3Machine Allocation Procedure by Using S ′O
Input: a test scheduling problem and S ′O
Output: Schedule
1: Set Qi,j to be an empty sequence ∀i, j
2: Set fk = 0,∀k
3: for u = 1, . . . ,L ′ do
4: Obtain Oi,j = S ′O[u]
5: Set v∗ =∞
6: for k = 1, . . . ,NM do
7: Obtain Oi′,j′ = σ (Mk)
8: if j = 1 then
9: Compute vk = σi′,j′,i,j + pi,j

10: else
11: Compute vk = σi′,j′,i,j + pi,j + max(fk ,Qi,j[1])
12: end if
13: if v∗ > vk then
14: Set O∗ = Oi,j, M∗ = Mk , and v∗ = vk
15: end if
16: end for
17: Assign an operation of type O∗ to M∗
18: Set fk = v∗
19: if j ̸= 1 then
20: Delete Qi,j[1]
21: end if
22: Append v∗ to Qi,j+1
23: end for
24: return Schedule

Algorithm4Overall Procedure for Solving a Test Scheduling
Problem GivenR
Input: R, NR, w, and a test scheduling problem
Output: Schedule
1: Obtain P ′ from a test scheduling problem
2: for c ∈ R do
3: Obtain S ′O by executing Algorithm 2
4: Generate a schedule using S ′O by executing Algorithm

3
5: end for
6: Obtain a schedule whose Fw is lowest among NR sched-

ules
7: return Schedule

In line 1, S ′O is set to be an empty sequence. After SO
and P are obtained from c in line 2, d(Oi,j) is set to be the
difference of the production requirements between test and
case scheduling problems (line 3). During lines 4–15, S ′O
is built by using SO, d(Oi,j), and SO, where the lengths of
SO and S ′O are denoted as L and L ′, respectively. Note that
L is equivalent to

∑NJT
i=1 Pi × N (Oi). First, the last element

of SO, called Oi,j, is retrieved, where L is the length of SO
(line 5). If P′i is smaller than Pi, d(Oi,j) is increased by the
value of 1 without inserting Oi,j into S ′O (lines 6 and 7).
Otherwise, Oi,j is inserted in front of S ′O (line 9). Moreover,
if d(Oi,j) is greater than 0, Oi,j is additionally inserted while

d(Oi,j) is decreased by the value of 1 (lines 11 and 12).
This continues until d(Oi,j) becomes the value of 0 (line 10).
The computational complexity of Algorithm 2 is equal to
O(dmaxL), where dmax is max

i,j
d(Oi,j).

Algorithm 3 presents a machine allocation procedure for
obtaining a schedule given S ′O, which is motivated by [41].
However, the main parts of Algorithm 3 is newly designed by
modifying the algorithm in [41] since the previous method
can not be employed when obtaining a schedule consisting of
multiple operations with the same operation type.

We denote a sequence that contains the completion time of
an operation of typeOi,j asQi,j. In lines 1 and 2, fk andQi,j are
set to be 0 and an empty sequence, respectively. After the uth

element of S ′O is obtained (line 4), the algorithm initializes v∗
that indicates the minimum completion time of an operation
of the uth operation type in S ′O. Then, an operation of typeOi,j
is assigned to one of NM machines by executing lines 6–17.
In lines 6 and 7, after Mk is selected, the setup status of

Mk is obtained. Lines 7–11 aim to calculate the completion
time vk when an operation of type Oi,j is allocated to Mk
by dividing the case whether Oi,j is the first operation type
of JTi or not. If vk is less than v∗, O∗, M∗, and v∗ are set
to be Oi,j, Mk , and vk , respectively (lines 13–15). After an
operation of type O∗ is allocated on M∗ (line 17), fk is set
to be v∗ (line 18). Finally, after the first element of Qi,j is
deleted when j is not equal to the value of 1 (lines 19–21),
v∗ is added to the last position of Qi,j (line 22). By repeating
lines 4–22 for each element in S ′O, all operations for a test
scheduling problem are allocated to one of the machines.
The computational complexity of Algorithm 3 is equal to
O(NML ′).
We summarize the overall procedure for solving a test

scheduling problem, which is described in Algorithm 4. After
P ′ is obtained from a test scheduling problem (line 1), lines
2–5 are repeated for each case that belongs toR. Specifically,
NR schedules are generated by performing Algorithms 2 and
3 to a test scheduling problem. Finally, the best schedule
whose Fw is lowest among NR schedules is obtained (line 6).
We note that the computational complexity of Algorithm 4 is
O(NR · (NML ′ + dmaxL)).

V. EXPERIMENTAL RESULTS
A. DATASET
We prepared 6 datasets that simulated the die attach and wire
bonding stages of the real-world semiconductor packaging
facilities, which are well-known bottleneck stages. Table 1
shows the datasets used in the experiments. It can be observed
that NJT and NO on D4 to D6 are larger than those of D1 to
D3, respectively.

For each dataset, we generated 70 case scheduling prob-
lems by randomly varying the initial setup status. Specifi-
cally, the production requirements of job types and NM for
each scheduling problem were perturbed by 10% to 30%
on the basis of the datasets provided in the supplementary
materials of [27]. Moreover, to validate the performances

50636 VOLUME 11, 2023

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

TABLE 1. Datasets used for performance comparison.

of the proposed method, we randomly generated 30 test
scheduling problems in the same manner as when building
the case scheduling problems. In order to demonstrate the
effectiveness of the proposed method with respect to the
change in w, the performances of the proposed method and
the other baseline methods were investigated by varying w to
be 0, 0.25, 0.5, 0.75, and 1 for each dataset.

As mentioned in Section IV-B, a separate case database
was built for each dataset by solving case scheduling prob-
lems using TSGA and GASO, resulting in the construction
of six different case databases. In order to avoid building too
many cases for a single case scheduling problem, a case was
stored in the case database only when Fw decreased while
the two genetic algorithms were running. During the case
generation and the performance comparisons, the parameters
of TSGA and GASO were set to the best ones presented
in [22] and [21], respectively. All the experiments were
conducted using Python on a Core i7 3.6 GHz PC with 8-GB
memory.

B. PERFORMANCE COMPARISON
Fig. 2 depicts Fw (in hours) curves when w = 0, 0.5, and 1,
where Figs. 2(a) and 2(b) show the results for D3 and D6,
respectively, which have the highest perturbation rate. The x
and y axes in the plots shown in Fig. 2 indicate the number
of retrieved cases and the average Fw of the scheduling prob-
lems, respectively.

As shown in Fig. 2, Fw declined at different rates according
to for each dataset. Specifically, Fw tends to be more quickly
decreased when the number of retrieved cases is less than 5.
This implies that the performance of the proposed method
might not be guaranteed when a small number of cases were
retrieved to solve test scheduling problems. On the other
hand, the performance changes were negligible when the
number of retrieved cases is larger than 30. Therefore, the
number of retrieved cases was set to be 30 during the per-
formance comparisons with the other methods considered in
order to reduce the computation time of the proposedmethod.

To investigate the effect of the case database size on the
performance of the proposed method, we visualized the aver-
age Fw (in hours) results on D1–D3 and D4–D6 in Figs. 3
(a)–(c) and Figs. 3 (d)–(f), respectively. For each curve
in Fig. 3, the number of retrieved cases was set to be 30.

Since the changes in Fw were negligible when |C| exceeds
3,000, Fig. 3 only presented the curves up to 3,000 cases.
It was observed that Fw tends to decrease until |C| reaches
a certain threshold. Once beyond this threshold, significant
changes in Fw were not found, and even slight increases in
Fw occurred as |C| grows. This may be attributed to the fact
that a newly generated case is more likely to be subsumed
by or conflicted with the others as the size of case database
becomes larger [42].

In the experiments, TSGA, GASO, and 8 rule-based meth-
ods were compared with the proposed method. It is worth
noting that the execution time of TSGA and GASO was set
to one hour, since a schedule is built on an hourly basis in the
real-world semiconductor packaging facilities [32]. Further-
more, the rule-based methods considered are shortest setup
unit (SSU), shortest sum of processing time and setup unit
(SPTSSU), most operations remaining (MOR), least opera-
tions remaining (LOR), most work remaining (MWR), least
work remaining (LWR), shortest processing time (SPT), and
longest processing time (LPT), which was presented in [27].

Table 2 presents Fw results obtained from the proposed
method as well as its percent improvement rates over TSGA,
GASO, and the rule-based methods considered in terms of
Fw. The negative value indicates that the Fw yielded by our
method is larger than that of the other methods.

It was observed that Fw values of the proposed method,
compared to those of TSGA, become larger in D3 and D6
than in D1 and D4, respectively. This is because the per-
formance of the proposed method might achieve the better
results in terms ofFw as the perturbation rate decreases. Com-
pared to TSGA and GASO, the performance of the proposed
method tends to become better as w decreases. This might be
attributed to the fact that TSGA and GASO do not relatively
effective to reduce AWT since they were respectively devised
to minimize the makespan and maximize the utilization of
machines, which is related to reduce ALT [21].
Nevertheless, the proposed method outperformed the other

methods considered on D1, and yielded the comparable per-
formance to TSGA. Based on the observations, it can be said
that Fw obtained from the proposed method was comparable
to those of TSGA and GASO when the perturbation level is
low. Meanwhile, in order to obtain the satisfactory sched-
ules by employing the proposed approach in a real-world

VOLUME 11, 2023 50637

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

FIGURE 2. Fw results with respect to the number of retrieval cases on D3 and D6.

FIGURE 3. Fw results according to the size of the case database.

semiconductor packaging system, it is of great importance to
build a case database that minimizes the differences between
case and test scheduling problems.

The performance of SPTSSU was better than that of the
other rules in terms of Fw on D1 to D3. On the other
hand, on D4 to D6, F0 and F1 vaalues obtained by SPTSSU
were larger than those of LOR and MWR, respectively. This

reveals that the best rule is determined depending on the
characteristics of scheduling problems such as the number of
machines, NJ , and NO. However, across all datasets, the Fw
values of the proposed method were smaller than those of the
rules, demonstrating the superiority of the proposed method
in comparison with the rule-based methods considered in
terms of Fw.

50638 VOLUME 11, 2023

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

TABLE 2. Fw results (in hours) of ours with its percent improvements over TSGA, GASO, and 8 rule-based methods.

FIGURE 4. Computation time (in seconds) of the proposed method and
the best rule on D6.

To assess the computational efficiency of the proposed
method, the computation time (in seconds) required to solve
a test scheduling problem was calculated for D6, which has
the largest values for NO and the perturbation rate among
all the datasets. Fig. 4 represents the average computation
time of the proposed method and the best rule whose average
computation time is the lowest among the rules. In the plot,

the x and y coordinates of each point refer to the number of the
retrieved cases and the average computation time for solving
a test scheduling problem, respectively.

As depicted in Fig. 4, the computation time of the best rule
was similar to that of the proposed method when retrieved
cases were between 5 and 10. Furthermore, there is a strong
tendency for the computation time of the proposed method
to increase linearly with the number of retrieved cases. This
is because the computational complexity becomes O(NR ·
(NML ′ + dmaxL)), as described in Section IV-B. Therefore,
if practitioners have sufficient time to generate a schedule,
they can select a relatively large value for NR. However,
if time is limited, they should choose a smaller value for NR.
Based on the observation, the proposed approach seems to be
practicable for contemporary semiconductor manufacturers
in terms of the computation time since a scheduling decision
is required to made within an hour to accommodate the varia-
tions in production requirements, the available machines, and
w [32].

VI. CONCLUSION
In this paper, we proposed a CBR-based framework for
scheduling semiconductor packaging facilities. Specifically,
the proposed framework attempts to utilize cases belonging
to the case database that is built by solving a number of
case scheduling problems in advance. Furthermore, efficient

VOLUME 11, 2023 50639

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

operation type repair and machine allocation algorithms are
devised to address the variabilities in initial setup status,
available machines, production requirements, as well as the
relative importance between waiting time of jobs and loss
time of machines.

To demonstrate the effectiveness and robustness of the
proposed framework, the experiments are conducted for
large-scale datasets that simulate the real-world semiconduc-
tor packaging facilities. The results showed that the proposed
approach outperformed the existing rule-based methods in
terms of the weighted sum of the average waiting time of
jobs and loss time of machines while the quality of the
schedule remains almost intact compared to the metaheuris-
tics considered. Furthermore, the computation time taken
by the proposed method is similar to that of the rule-based
methods.

Despite these achievements, there are still some rooms
for further research. We plan to improve the consistency
of the proposed CBR framework. To attain this goal, the
maintenance strategy of the pre-generated case database and
a similarity measure for retrieving more relevant cases will
be developed. Moreover, real-world constraints such as the
stochastic processing time and dynamic job arrivals will be
considered in future work.

REFERENCES
[1] J. Lin, Y.-Y. Li, and H.-B. Song, ‘‘Semiconductor final testing schedul-

ing using Q-learning based hyper-heuristic,’’ Exp. Syst. Appl., vol. 187,
Jan. 2022, Art. no. 115978.

[2] J. Huh, I. Park, S. Lim, B. Paeng, J. Park, and K. Kim, ‘‘Learning to dis-
patch operations with intentional delay for re-entrant multiple-chip product
assembly lines,’’ Sustainability, vol. 10, no. 11, p. 4123, Nov. 2018.

[3] M. Fu, R. Askin, J. Fowler, M. Haghnevis, N. Keng, J. S. Pettinato, and
M. Zhang, ‘‘Batch production scheduling for semiconductor back-end
operations,’’ IEEE Trans. Semicond. Manuf., vol. 24, no. 2, pp. 249–260,
May 2011.

[4] G. Weigert, A. Klemmt, and S. Horn, ‘‘Design and validation of
heuristic algorithms for simulation-based scheduling of a semiconduc-
tor backend facility,’’ Int. J. Prod. Res., vol. 47, no. 8, pp. 2165–2184,
Apr. 2009.

[5] C. Zhang, J. F. Bard, and R. Chacon, ‘‘Controlling work in process during
semiconductor assembly and test operations,’’ Int. J. Prod. Res., vol. 55,
no. 24, pp. 7251–7275, Dec. 2017.

[6] S. Yao, Z. Jiang, N. Li, H. Zhang, and N. Geng, ‘‘A multi-objective
dynamic scheduling approach using multiple attribute decision making
in semiconductor manufacturing,’’ Int. J. Prod. Econ., vol. 130, no. 1,
pp. 125–133, Mar. 2011.

[7] D. Lei, ‘‘A Pareto archive particle swarm optimization for multi-objective
job shop scheduling,’’ Comput. Ind. Eng., vol. 54, no. 4, pp. 960–971,
May 2008.

[8] S. Chen, Q.-K. Pan, L. Gao, and H.-Y. Sang, ‘‘A population-based iterated
greedy algorithm to minimize total flowtime for the distributed block-
ing flowshop scheduling problem,’’ Eng. Appl. Artif. Intell., vol. 104,
Sep. 2021, Art. no. 104375.

[9] M. Li, D. Lei, and J. Cai, ‘‘Two-level imperialist competitive algorithm
for energy-efficient hybrid flow shop scheduling problem with relative
importance of objectives,’’ Swarm Evol. Comput., vol. 49, pp. 34–43,
Sep. 2019.

[10] J. Liu, F. Qiao, and W. Kong, ‘‘Scenario-based multi-objective robust
scheduling for a semiconductor production line,’’ Int. J. Prod. Res., vol. 57,
no. 21, pp. 6807–6826, Nov. 2019.

[11] I. Park, J. Huh, J. Kim, and J. Park, ‘‘A reinforcement learning approach to
robust scheduling of semiconductor manufacturing facilities,’’ IEEE Trans.
Autom. Sci. Eng., vol. 17, no. 3, pp. 1420–1431, Jul. 2020.

[12] E. Hernández-Nieves, G. Hernández, A. B. Gil-González,
S. Rodríguez-González, and J. M. Corchado, ‘‘CEBRA: A CasE-
based reasoning application to recommend banking products,’’ Eng. Appl.
Artif. Intell., vol. 104, Sep. 2021, Art. no. 104327.

[13] Y. Gao, X. Chen, Y. Chen, Y. Sun, X. Niu, and Y. Yang, ‘‘A secure
cryptocurrency scheme based on post-quantum blockchain,’’ IEEE Access,
vol. 6, pp. 27205–27213, 2018.

[14] S. Jia, D. J. Morrice, and J. F. Bard, ‘‘A performance analysis of dispatch
rules for semiconductor assembly & test operations,’’ J. Simul., vol. 13,
no. 3, pp. 163–180, Jul. 2019.

[15] H. Zhang, Z. Jiang, and C. Guo, ‘‘Simulation-based optimization of dis-
patching rules for semiconductor wafer fabrication system scheduling by
the response surface methodology,’’ Int. J. Adv. Manuf. Technol., vol. 41,
nos. 1–2, pp. 110–121, Mar. 2009.

[16] Y. Ni, Y. Li, J. Yao, and J. Li, ‘‘Development of an integrated real time
dispatching system: A case study at a semiconductor assembly and test fac-
tory,’’ J. Manuf. Technol. Manage., vol. 25, no. 7, pp. 980–997, Aug. 2014.

[17] N. B. Ho and J. C. Tay, ‘‘Evolving dispatching rules for solving the flexible
job-shop problem,’’ in Proc. IEEE Congr. Evol. Comput., vol. 3, Sep. 2005,
pp. 2848–2855.

[18] F. Zhang, Y.Mei, andM. Zhang, ‘‘Can stochastic dispatching rules evolved
by genetic programming hyper-heuristics help in dynamic flexible job
shop scheduling?’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019,
pp. 41–48.

[19] Q. Luo, Q. Deng, G. Gong, L. Zhang, W. Han, and K. Li, ‘‘An efficient
memetic algorithm for distributed flexible job shop scheduling problem
with transfers,’’ Exp. Syst. Appl., vol. 160, Dec. 2020, Art. no. 113721.

[20] Z. Zhu and X. Zhou, ‘‘A multi-objective multi-micro-swarm leadership
hierarchy-based optimizer for uncertain flexible job shop scheduling prob-
lemwith job precedence constraints,’’Exp. Syst. Appl., vol. 182, Nov. 2021,
Art. no. 115214.

[21] B.-S. Chung, J. Lim, I.-B. Park, J. Park, M. Seo, and J. Seo, ‘‘Setup
change scheduling for semiconductor packaging facilities using a genetic
algorithmwith an operator recommender,’’ IEEE Trans. Semicond.Manuf.,
vol. 27, no. 3, pp. 377–387, Aug. 2014.

[22] F. M. Defersha and D. Rooyani, ‘‘An efficient two-stage genetic algo-
rithm for a flexible job-shop scheduling problem with sequence dependent
attached/detached setup, machine release date and lag-time,’’Comput. Ind.
Eng., vol. 147, Sep. 2020, Art. no. 106605.

[23] Y. Wang and Q. Zhu, ‘‘A hybrid genetic algorithm for flexible job shop
scheduling problem with sequence-dependent setup times and job lag
times,’’ IEEE Access, vol. 9, pp. 104864–104873, 2021.

[24] J. Fan, C. Zhang, Q. Liu, W. Shen, and L. Gao, ‘‘An improved genetic algo-
rithm for flexible job shop scheduling problem considering reconfigurable
machine tools with limited auxiliary modules,’’ J. Manuf. Syst., vol. 62,
pp. 650–667, Jan. 2022.

[25] K. Lei, P. Guo, W. Zhao, Y. Wang, L. Qian, X. Meng, and L. Tang,
‘‘A multi-action deep reinforcement learning framework for flexible
job-shop scheduling problem,’’ Exp. Syst. Appl., vol. 205, Nov. 2022,
Art. no. 117796.

[26] R. Li, W. Gong, and C. Lu, ‘‘A reinforcement learning based RMOEA/D
for bi-objective fuzzy flexible job shop scheduling,’’ Exp. Syst. Appl.,
vol. 203, Oct. 2022, Art. no. 117380.

[27] I. Park and J. Park, ‘‘Scalable scheduling of semiconductor packaging
facilities using deep reinforcement learning,’’ IEEE Trans. Cybern., vol.
53, no. 6, pp. 3518–3531, Jun. 2021.

[28] S. H. Oh, Y. I. Cho, and J. H. Woo, ‘‘Distributional reinforcement
learning with the independent learners for flexible job shop scheduling
problem with high variability,’’ J. Comput. Design Eng., vol. 9, no. 4,
pp. 1157–1174, Jul. 2022.

[29] J. Kolodner,Case-Based Reasoning. Burlington,MA, USA:Morgan Kauf-
mann, 2014.

[30] L. Fei and Y. Feng, ‘‘A novel retrieval strategy for case-based reasoning
based on attitudinal choquet integral,’’ Eng. Appl. Artif. Intell., vol. 94,
Sep. 2020, Art. no. 103791.

[31] P. Veerakamolmal and S. M. Gupta, ‘‘A case-based reasoning approach for
automating disassembly process planning,’’ J. Intell. Manuf., vol. 13, no. 1,
pp. 47–60, 2002.

[32] J. Lim, M. Chae, Y. Yang, I. Park, J. Lee, and J. Park, ‘‘Fast scheduling of
semiconductormanufacturing facilities using case-based reasoning,’’ IEEE
Trans. Semicond. Manuf., vol. 29, no. 1, pp. 22–32, Feb. 2016.

50640 VOLUME 11, 2023

I.-B. Park et al.: Generation and Repair Approach to Scheduling Semiconductor Packaging Facilities Using CBR

[33] J. Huh,M.-J. Chae, J. Park, and K. Kim, ‘‘A case-based reasoning approach
to fast optimization of travel routes for large-scale AS/RSs,’’ J. Intell.
Manuf., vol. 30, no. 4, pp. 1765–1778, Apr. 2019.

[34] M. R. Khosravani, S. Nasiri, and K. Weinberg, ‘‘Application of case-based
reasoning in a fault detection system on production of drippers,’’ Appl. Soft
Comput., vol. 75, pp. 227–232, Feb. 2019.

[35] M. T. Rezvan, A. Zeinal Hamadani, and A. Shalbafzadeh, ‘‘Case-based
reasoning for classification in themixed data sets employing the compound
distance methods,’’ Eng. Appl. Artif. Intell., vol. 26, no. 9, pp. 2001–2009,
Oct. 2013.

[36] S. Simić, D.Milutinović, S. Sekulić, D. Simić, S. D. Simić, and J. Dord̄ević,
‘‘A hybrid case-based reasoning approach to detecting the optimal solution
in nurse scheduling problem,’’ Log. J. IGPL, vol. 28, no. 2, pp. 226–238,
Oct. 2018.

[37] J. I. Guerrero, G. Miró-Amarante, and A. Martín, ‘‘Decision support sys-
tem in health care building design based on case-based reasoning and rein-
forcement learning,’’ Exp. Syst. Appl., vol. 187, Jan. 2022, Art. no. 116037.

[38] C.-G. Chang, D.-W. Wang, K.-Y. Hu, and B.-L. Zheng, ‘‘Two stage case-
based reasoning application research on steel-making dynamic schedul-
ing,’’ in Proc. Int. Conf. Mach. Learn. Cybern., Aug. 2004, pp. 2116–2121.

[39] P.-C. Chang, J.-C. Hsieh, andC.-H. Liu, ‘‘A case-injected genetic algorithm
for single machine scheduling problems with release time,’’ Int. J. Prod.
Econ., vol. 103, no. 2, pp. 551–564, Oct. 2006.

[40] I. Pereira and A. Madureira, ‘‘Meta-heuristics tunning using CBR for
dynamic scheduling,’’ in Proc. IEEE 9th Int. Conf. Cyberntic Intell. Syst.,
Sep. 2010, pp. 1–6.

[41] K. F. Guimaraes and M. A. Fernandes, ‘‘An approach for flexible job-shop
scheduling with separable sequence-dependent setup time,’’ in Proc. IEEE
Int. Conf. Syst., Man Cybern., vol. 5, Oct. 2006, pp. 3727–3731.

[42] S. K. Pal and S. C. Shiu, Foundations of Soft Case-Based Reasoning.
Hoboken, NJ, USA: Wiley, 2004.

IN-BEOM PARK received the B.S. and Ph.D.
degrees in industrial engineering from Seoul
National University, South Korea, in 2012 and
2020, respectively. He is currently an Assis-
tant Professor with the Department of Industrial
and Management Engineering, Myongji Univer-
sity, South Korea. His research interests include
scheduling manufacturing systems and solving
real-world sequential decision making problems.

JAESEOK HUH received the B.S. and Ph.D.
degrees in industrial engineering from Seoul
National University (SNU), South Korea, in
2013 and 2019, respectively. He is currently
an Assistant Professor with the Department
of Business Administration, Tech University of
Korea, South Korea. His research interests include
semiconductor manufacturing system dispatch-
ing/scheduling, machine learning, smart factory,
and deep reinforcement learning.

JONGHUN PARK received the Ph.D. degree in
industrial and systems engineering with a minor
in computer science from the Georgia Institute
of Technology, Atlanta, in 2000. He is currently
a Professor with the Department of Industrial
Engineering, Seoul National University (SNU),
South Korea. Before joining SNU, he was an
Assistant Professor with the School of Informa-
tion Sciences and Technology, Pennsylvania State
University, University Park, and an Assistant Pro-

fessor with the Department of Industrial Engineering, KAIST, Daejeon. His
research interests include generative artificial intelligence and deep learning
applications.

VOLUME 11, 2023 50641

