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ABSTRACT The paradigm shift from ‘‘connected things’’ to ‘‘connected intelligence’’ is anticipated to be
made possible by the sixth-generationwireless systems, which typically usemillimeter wave beamforming to
mitigate the significant propagation loss. However, beamforming design in millimeter wave communications
poses many different challenges owing to the large antenna arrays with the limitation of radio frequency
chains and analog beamforming architectures. To circumvent this problem, deep learning models have
recently been utilized as a disruptive method for solving difficult optimization problems in sixth-generation
mobile systems, such as maximizing spectral efficiency. However, it is still unclear how to produce
high-performance deep learning models which require considering appropriate hyperparameters. This study
proposes a metaheuristics-based approach for optimizing hyperparameters that are used to build optimized
deep learning models to maximize spectral efficiency. The research results demonstrate that the proposed
approach-based models establish higher spectral efficiency than the state-of-the-art approach-based models
and the reference model whose hyperparameters are based on empirical trials.

INDEX TERMS Hyperparameter optimization, beamforming, metaheuristics, millimeter wave, large-scale
antenna arrays.

I. INTRODUCTION
Since the first generation of mobile telecommunications was
introduced in the 1970s, wireless communication technology
has advanced incredibly quickly. By 2030, newly developed
data-hungry applications and a greatly expanded wireless
network will have required the use of the sixth generation
(6G) communication, which is a significant improvement
over other network generations and might cover nearly the
entire surface of the earth as well as the vicinity of space.
In addition, as the number of wireless consumer devices
and the Internet of Things grows rapidly, the amount of
mobile data transfer nearly doubles every year, surpassing
that of cable communication. Therefore, in the future 6G
network, millimeter wave (mmWave) technology will play
a significant part in attaining the anticipated network perfor-
mance and communication responsibilities with greater speed
and reliability than previous generations of networks [1].
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Millimeter-wave communication with gigahertz or tens of
gigahertz bandwidths is also viewed as a possible technology
for 6Gwireless systems. Communication in these bandwidths
will ease the spectrum deficiency and capacity constraints of
existing wireless systems [2].

Large-phased arrays are typically used in mmWave com-
munication to mitigate the significant propagation loss using
mmWave beamforming, which includes hybrid or analog
beamforming when one or several radio frequency (RF)
chains are present. Analog and hybrid beamforming are
bound by the constraint of constant modulus since only
phase shifters are used to adjust excited antenna weights [2].
Fully digital beamforming systems are impractical for
mmWave/Sub-THz frequency because each antenna element
requires a specialized RF transceiver chain, which is neither
cost-effective nor energy-effective to construct for large-scale
arrays and bandwidths [3]. In addition, analog beamforming,
in which phase shifting is accomplished in the analog domain,
has been frequently used owing to its affordable price and
ease of implementation [1].
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The needs for the 6G systems have necessitated the granu-
lar optimization of radio resources and the efficient acqui-
sition of network-related data [4]. Due to the huge size,
high density, the varied quality of services, and integrated
multi-functional cross-layer architecture, 6G optimization
problems might be exceedingly complex and time-sensitive,
posing many challenges to the development of effective opti-
mization algorithms. Deep learning (DL) has recently been
utilized as a disruptive method to solve difficult optimization
problems in 6G and to support a number of artificial intelli-
gence services and the Internet of Everything applications [4].
It has also been proven to be a useful tool for dealing with
difficult non-convex problems and high-computability con-
cerns owing to its excellent recognition and representation
capabilities [5]. To enable a paradigm shift from traditional
optimization theory-based approaches for employing more
promising DL architectures, DL-based optimization algo-
rithm design aims to achieve near-optimal performance with
excellent computing efficiency for challenging large-scale
optimization problems in 6G systems [4]. In particular, supe-
rior performance, scalability and generalizability, computa-
tional efficiency, and robustness are some benefits of using
DL for large-scale optimization.

Hyperparameters, however, allow the performance of the
DL approach to be greatly tuned. The values of these
parameters must be carefully chosen in order to get the
best performance because they typically have a significant
impact on the learner’s complexity, behavior, speed, and
other aspects. Human trial-and-error selection of these val-
ues is time-consuming, prone to error, frequently biased,
and computationally impossible to reproduce unreproducible.
As the mathematical formulation of hyperparameter opti-
mization (HPO) is basically black-box optimization with
higher-dimensional spaces, it is preferable to transfer this task
to suitable algorithms in order to improve efficiency and guar-
antee reproduction [6]. Over the past 20 to 30 years, numerous
HPO strategies have been developed to facilitate and auto-
mate the search for hyperparameter combinations with opti-
mal performance. However, more advanced HPO techniques
are not utilized as frequently as they could (or should) be. This
may be due to a combination of the following reasons [6]:
(i) a lack of understanding of HPO techniques by prospec-
tive users, who could consider them as complicated ‘‘black
boxes’’; (ii) low belief among prospective users in the superi-
ority of HPO processes over rudimentary methods, resulting
in doubt over the anticipated return on investment (time);
(iii) the absence of guidance on the selection and config-
uration of pertinent HPO approaches to the issue at hand;
(iv) difficulty accurately defining the search space of HPO
approaches. The primary objective of HPO is to automate
the process of searching hyperparameters and enable users
to utilize optimized DL models for real-world problems.
A DL model’s optimal model architecture is expected to
be attained using an HPO procedure. To effectively utilize
HPO approaches, it is essential to choose an appropriate

optimization strategy to identify optimal hyperparame-
ters. Numerous HPO problems are non-convex or non-
differentiable optimization problems. Therefore, traditional
optimization approaches dealing with these HPO problems
might lead to a local solution rather than a global solution [7].

Though traditional optimization algorithms can be effec-
tive for the local search, metaheuristic algorithms, also known
asmetaheuristics, have significant advantages for global opti-
mization due to the fact that they typically treat the problem
as a black box and are therefore flexible and easy to imple-
ment. In addition, these optimizers have no stringent mathe-
matical criteria (e.g., differentiability, smoothness), making
them acceptable for problems with various features, such
as discontinuities and nonlinearity [8]. A metaheuristic is
considered a potential solution to optimization problems if
it can strike a tradeoff between exploration (diversification)
and exploitation (intensification). Exploitation is required
to find regions of the search space that contain solutions
of high quality. Exploration is necessary to intensify the
search in some prospective regions based on gathered search
knowledge [9], [10]. Metaheuristics are aimed at obtaining
acceptable solutions in a realistic running time and provid-
ing practical solutions to a variety of problems [11], [12].
Metaheuristics have also gained appeal over exact meth-
ods for addressing optimization issues due to the ease and
robustness of the solutions they give in a range of sectors,
including engineering, business, transportation, and even
the social sciences. The metaheuristic community has also
conducted substantial research, which includes the devel-
opment of novel methods, applications, and performance
evaluations [13], [14].

It can be seen that DL and metaheuristics both provide
their own distinct advantages, but what is missing from the
past studies is a comprehensive approach to utilizing DL in
the context of beamforming design. Our study contributes
to finding solutions for beamforming design based on the
combination of metaheuristics and DL in a manner that
facilitates synergy between the two approaches. Specifically,
we propose an HPO approach utilizing metaheuristics for
designing beamforming in mmWave communication sys-
tems. By applying this approach, obtained hyperparameters
can be used to build DL models with high performance. The
proposed approach-based model has proved to outperform
the state-of-art approach-based model [15] and the reference
model in [16] with respect to spectral efficiency, convergence
characteristics, and computational time.

The structure of this study is as follows. Section II dis-
cusses related studies on HPO and DL-based beamform-
ing design for mmWave systems. Section III sheds light
on DL-based beamforming design in mmWave communi-
cation systems. Section IV formulates the HPO problem
based on metaheuristics and introduces an algorithm for opti-
mizing hyperparameters. Results and comparative analysis
are shown in Section V, and the discussion is presented
in Section VI in Section VII.
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II. RELATED WORK
Recently, some HPO techniques have been developed with
their own merits and demerits. Grid search (GS) is a straight-
forward approach, but it suffers from the dimensionality curse
and takes a long time [17], [18]. In comparison to GS, ran-
dom search (RS) is more effective and supports all kinds of
hyperparameters. In real-world applications, RS evaluation
of the hyperparameter values chosen at random enables ana-
lysts to search a wide area. However, as RS does not take
the outcomes of earlier tests into account, it may include
numerous pointless evaluations, which reduces its effective-
ness [7], [18]. The iterative Bayesian optimization (BO) algo-
rithm is a well-liked solution to HPO problems. In contrast
to GS and RS, BO bases the next hyperparameter value on
the outcomes of prior evaluations in order to cut down on
pointless assessments and increase efficiency. As a result,
BO needs fewer iterations to find the ideal set of hyper-
parameters than GS and RS. However, it is challenging to
parallelize BO models since they operate sequentially to
balance the search for unexplored areas and the utilization
of currently tested regions [7]. Although GS, RS, and BO
are frequently used to configure hyperparameters, they are
unworkable when the complexity of the problem and the
number of parameters are high. Both Hyperband and RS
offer simultaneous executions, but Hyperband can be consid-
ered an enhanced form of RS. Hyperband is more effective
than RS, especially when time and resources are at a pre-
mium. It balances model performance with resource utiliza-
tion. GS, RS, BO, and Hyperband treat each hyperparameter
independently and do not take into account hyperparame-
ter correlations. This is a significant limitation for any of
these approaches. They will therefore be ineffective in logis-
tic regression, support vector machines, and density-based
spatial clustering of noisy applications, which are all
DL algorithms [7].

In addition, to automate the search for DLs’ designs and
settings, researchers have also presented new studies based
on metaheuristic optimization techniques. The differential
evolution approach was used in the work [17] to give a frame-
work for automating the search for long short-term memory
hyperparameters, such as the number of hidden neurons and
batch size. The experimental findings demonstrated that the
system’s average accuracy, which was based on an optimized
long short-term memory network using differential evolu-
tion and particle swarm optimization algorithms, improved
dramatically over time. Besides, the work [19] trained DL
by adjusting its parameters for the vehicle logo recognition
system. The learning rate, the number of filters, and the size
of the filters, in each convolutional layer, were all optimized
hyperparameters. They claimed that when compared to exist-
ing manual feature extraction techniques, the DL framework
optimized by particle swarm optimization obtained more
accuracy. A hyper-heuristic parameter optimization approach
was proposed in the work [20] for configuring deep belief net-
work parameters. On the MNIST, CalTech 101 Silhouettes,
and Semeion datasets, this approach was contrasted with

various metaheuristic algorithms such as particle swarm opti-
mization. In almost all datasets, the hyper-heuristic parameter
optimization had the lowest test mean square error.

In the context of the mmWave communication systems,
the implementation of DL research advancements has also
enhanced solutions for these systems [21]. There are several
productive applications namely designing beamforming for
weighted sum-rate maximization [22], predicting the optimal
transmit/receive beam pairs by utilizingDLmodels as the role
of hybrid precoding [23], using an autoencoder DL model to
improve hybrid precoding [5], leveraging deep reinforcement
learning for beamforming [24]. A technique based on convo-
lutional neural networks for joint antenna selection and beam-
forming is proposed [25].Works [16], [26] have shown that in
comparison to conventional approaches, DL approaches are
computationally more efficient in their search for optimum
beamformers and tolerant of imperfect channel inputs. Based
on compressive channel data learned by deep auto-encoders,
the work [23] has designed beamformer vectors. BSs that col-
lect themobile user’s omni-beampatterns for codebook-based
beamforming have been taken into account for the DL-based
wideband beamforming in [27]. Moreover, in the case of
assuming perfect channel covariance matrix knowledge at
the transmitter, DL-based statistical hybrid beamforming is
studied in [28]. mmWave multiple-input multiple-output sys-
tems can considerably benefit from the application of DL
approaches to their essential components, as evidenced by
these works. However, hyperparameters in these DL models
are all determined experimentally or not based on any prin-
ciples at all. Therefore, HPO approaches for DL models in
mmWave communication problems are imperative.

III. DL-BASED BEAMFORMING
A. SYSTEM MODEL
The downlink of narrowband multiple-input single-output
mmWave systems using analog beamforming architectures in
Fig. 1 is studied, in which base stations with a single RF chain
and Nt antennas transmit one data stream to a user equipped
with a single antenna [16]. Let s represent the symbol with
normalized average symbol energy throughout transmission.
The symbol is multiplied by a scalar digital precoder υD
(υD is a scalar because there is only one RF chain) before
being multiplied by an Nt × 1 analog precoder vector (vRF)
that is used by phase shifters. The final signal after precoding
is x = vRFυDs.

The received signal through the mmWave channel is
denoted as r = h†channelvRFυDs + n, where n is the

FIGURE 1. The diagram of a multiple-input single-output mmWave
system using one RF chain [16].
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additive white gaussian noise satisfying the circularly-
symmetric complex normal with zero mean and covariance
σ 2, h†channel is mmWave channel vector between the base
station and the user, and † denotes Hermitian transpose. With
one line-of-sight path and L − 1 non-line-of-sight paths,
the widely employed Saleh-Valenzuela mmWave channel is
expressed as [29]:

h†channel =

√
Nt
L

L∑
ℓ=1

αℓa
†
t

(
φℓ
t

)
, (1)

where αℓ represents the complex gain of the ℓth path, φℓ
t is

the azimuth angle of departure of the ℓth path, and a†t
(
φℓ
t
)

is the antenna array response vector at the base station. The
term with ℓ = 1 means the line-of-sight path in h†channel.

The optimization objective function of the problem is con-
sidered the spectral efficiency that is widely utilized in current
beamforming design works. This function is given as [16]:

R = log2

(
1 +

γ

Nt

∥∥∥h†channelvRF∥∥∥2) , (2)

where γ represents the Signal-to-Noise Ratio (SNR). The
beamformer aims to generate the optimized analog beam-
forming vectors vRF so that the spectral efficiency is max-
imized. Then, the beamforming optimization problem with
the constant modulus constraint of vRF can be given by [16]:

minimize − log2

(
1 +

γ

Nt

∥∥∥h†channelvRF∥∥∥2)
vRF

subject to |[vRF]nt |
2

= 1, for nt = 1, . . . ,Nt . (3)

As the SNR is often regarded as being more correctly mea-
sured than the channel, the SNR γ and the estimated SNR
γest are assumed to be equal, i.e., γest = γ .

B. DL-BASED BEAMFORMING DESIGN
In this study, we take the DL-based beamformer designed
in [16] as the reference one to verify our proposed approach.
This beamformer consists of two stages, which are illustrated
in Fig. 2, directly output vRF to solve (3). During the offline
training stage, random channel samples are generated using
via simulation on the system model. The base station then
applies a practical channel estimator to achieve partial chan-
nel state information. The mmWave channel estimator in [29]
is adopted, where the mmWave channels are estimated by
sending pilot symbols in a hierarchical codebook and then
receiving the user’s decision feedback based on the signal
received rp. The estimated channel h†channel_est and the esti-
mated SNR γest are inputs for the DL-based beamformer with
γest = γ . By minimizing a loss function, the beamformer
then can generate optimized beamforming vectors vRF. As the
SNR values and channel samples are produced randomly by
the simulation (called generated channels in this study), they
can be used directly in the loss computation. By utilizing the
estimated channels as the input and generated channels in
the loss function, the beamformer can be trained to figure

FIGURE 2. The illustration of offline and online stages for DL-based
beamformer [16] .

FIGURE 3. The architecture of the reference DL model.

out how to obtain as close to the ideal spectral efficiency
with the estimated channels as possible and become robust
to channel estimation errors. During the online deployment
phase, the base station uses the same mmWave channel
estimator. The estimated channels are then inputted to the
trained beamformer to obtain optimized beamforming vectors
for maximizing spectral efficiency. It is important to note
that generated channels are only necessary during the offline
training stage to compute the loss. This is because all the
parameters of the trained beamformer have already been
fixed, and the trained beamformer is ready to accept practical
mmWave channels as inputs to directly output beamforming
vectors. Multiple offline training samples are necessary to
ensure the generalizability of DL models, so 1e5 samples to
train and 5e3 samples to test are used in this study.
The architecture of the referencemodel for the beamformer

in [16] in the offline stage consists of six main layers which
are demonstrated in Fig. 3. The inputs are the generated
channels hchannel, the estimated SNRs γest (random in the
training stage), and the estimated channels hchannel_est, where
complex-valued hchannel_est with the size of Nt = 64 is
separated into real and imaginary parts, and then these parts
are concatenated into a vector with the size of 128. The output
is the optimized analog beamforming vectors vRF that are
applied to analog phase shifters. Besides, Lambda layer 1 is
added to compute complex-valued vectors vRF based on Nt
real-valued phases so that the constant modulus constraint is
satisfied. With the input of vRF, γest and hchannel, the Lambda
layer 2 is used to compute the loss function which is defined
as:

Loss = −
1

Nsam

Nsam∑
ns=1

log2

(
1 +

γns

Nt

∥∥∥h†channel,nsvRF,ns∥∥∥2).

(4)
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FIGURE 4. The utilization of the proposed approach for hyperparameter
optimization.

The loss function has a direct relationship with the objective
function in (3) with Nsam training samples, where vRF,ns, γns
and h†channel,ns represent the optimized analog beamforming
vectors, SNRs, and the generated channels associated with
the nsth sample. Note that the reduction in loss correlates
precisely with the increase in the average spectral efficiency.
The fully connected (FC) layers 1, 2, and 3 include 256, 128,
and 64 neurons, respectively, with corresponding activation
functions in Fig. 3 and batch normalization layers preceded
these FC layers. The Adam optimizer is adopted with a
learning rate of 0.001, and the channel samples are related
to different random SNRs between −20dB and 20dB.

IV. PROPOSED APPROACH
HPO approaches aim to improve DL architectures by
identifying the best combinations of hyperparameters [7].
As shown in Fig. 4, our proposed approach is adopted to
optimize hyperparameters for the DL model described in the
previous section. The key ideas of the HPO problem and the
algorithm are described in this section.

A. FORMULATION OF HPO PROBLEM
The process of searching hyperparameter combinations
involves four main parts [7]: an estimator (a classifier or
regressor) with its fitness functions, a search space (config-
uration space), an optimization or a search method, and an
evaluation function to evaluate howwell various hyperparam-
eter configurations perform. A hyperparameter’s domain can
be categorical (e.g., type of optimizer), binary (e.g., whether
to apply early stopping), discrete (e.g., number of clusters),
or continuous (e.g., learning rate). For an HPO problem,
in general, the aim is to obtain:

h∗
= argmin

h∈H
f (h), (5)

where f (h) is the fitness function to be minimized, h∗ is a
hyperparameter vector that yields the optimum value of f (h)

while a hyperparameter vector h can take any value in the
search space H. The goal of HPO is to tune hyperparameters
within allowed budgets to produce optimal or nearly optimal
model performance. Somemetrics, including accuracy or loss
such as root mean square error can be used to evaluate the

performance of the model. DL models are retrained if a new
hyperparameter set is evaluated, and the validation set should
be processed to produce a score that measures the model’s
performance [7].

For DL models, the search space H can include the num-
ber of filters, the size of the filters in convolutional layers,
the dimensionality of the output in long short-term memory
layers, the number of neurons in fully connected layers, acti-
vation functions, optimizers, and the learning rate. Assuming
that a DL model requires optimizing m different hyperpa-
rameters and that the domain of these hyperparameters are
categorical and discrete, each hyperparameter has ni choices
in the i-th search space Hi for i = 1, 2, . . . ,m. Hence, the
search space can be expressed as:

H =

H1,1 H1,2 . . . H1,n1
H2,1 H2,2 . . . H2,n2
. . . . . . . . . . . .

Hm,1 Hm,2 . . . Hm,nm

. (6)

The vector h∗
= [h1, h2, . . . , hm]T consists of m optimal

hyperparameters. To determine this vector, the index vector
k = [k1, k2, . . . , km]T , which includes m values mapping to
H, should be optimized. The values in the index vector are
less than or equal to the choices inHi. For example, if the first
search space H1 has n1 choices, k1 is less than or equal to n1,
and the first optimal hyperparameter h1 is H1,k1 . Therefore,
it is necessary to apply the proper optimization methods to
HPOproblems to determine the index vector and then identify
optimal hyperparameter configurations for DL models.

B. PROPOSED ALGORITHM
The proposed algorithm is developed based on Binary Bat
Algorithm (BBA) [30], which is one of the best metaheuris-
tics for solving problems with discrete binary search spaces,
to identify the optimal hyperparameter vector h∗. However,
other metaheuristics can still be applied based on the pro-
posed algorithm instead of BBA. The pseudocode is demon-
strated in Algorithm 1. It can be briefly described as follows:

1) INITIALIZATION
First, the type of learning (supervised versus unsupervised)
and datasets should be determined. Next, the search spaceH,
such as the number of neurons in FC layers, activation func-
tions, the number of choices or upper and lower limits for
each hyperparameter, and whether to apply early stopping or
not, should be defined. Because the goal of the optimization
problem is to minimize the fitness function, this function
is determined according to performance metrics such as the
spectral efficiency on test datasets. After that, the number of
populations and iterations are initialized, and the dimension
of solutions of BBA (d) is calculated based on H as follows:

d =

m∑
i=1

⌈
log2 ni

⌉
, (7)

where ⌈•⌉ denotes rounding up to the nearest number. The
bats’ solutions, which are binary numbers, are initialized
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Algorithm 1 The Proposed Algorithm for HPO
1: Determine: Datasets; the search space H;

performance metrics; fitness function Fitness; number
of populations (numPop); number of iterations,
and dimension of solutions.

2: Initialize populations and then obtain h from
solutions in initialized populations; train and test DL
models with h; and find the current best
solution (the current h∗).

3: Repeat
4: Adjust frequency and update velocities; compute

transfer function; and then update positions.
5: if rand > pulse rate then
6: Select randomly binary values among the

best solutions (Gbest ).
7: Change binary values in sol with the selected

binary values in Gbest .
8: end if
9: Obtain new h from current solutions; train and

test DL models with new h.
10: Compute the fitness function; rank the bats and

determine the current Gbest .
11: Until Termination conditions are satisfied.
12: Obtain h∗ from the final Gbest .
13: Train DL models with h∗ and then use trained

models to directly output beamforming vectors.

randomly. The solutions or bats’ positions, sol, are a binary
number vector, so they should be converted to a decimal
number vector that is k. For i = 1, 2, . . . ,m, the element ki
in k is determined as follows:

ki =

[
ni

2⌈log2 ni⌉ − 1
int (sol)

]
, (8)

where [•] and int (•) denotes rounding to the nearest num-
ber and converting to integer numbers, respectively. Next,
the hyperparameter vector h can be obtained by mapping
k into H. At this point, it can build DL models with h,
then train models and test models to find the current best
hyperparameter vector based on performance metrics.

2) FINDING THE BEST HYPERPARAMETERS
The search operation of BBA is implemented. For the p-th
bat with p = 1, 2, . . . , numPop, the frequency Qp and the
velocity V iter

p at the iter-th iteration are updated as follows:

Qp = Qmin + (Qmax − Qmin) rand, (9)

V iter
p = V iter−1

p +

(
soliter−1

p − Gbest
)
Qp, (10)

where Qmin, Qmax, Gbest , and rand are the minimum fre-
quency, the maximum frequency, the current best solutions,
and random values drawn from the uniform distribution in
(0, 1), respectively. To map velocity values to binary values
for updating the positions or forcing bats to move in a binary
space, the following V-shaped transfer function is used to

update the position of the p-th bat:

Ftranfer
(
V iter
p

)
=

∣∣∣∣ 2π arctan
(
2
π
V iter
p

)∣∣∣∣ , (11)

soliterp =


(
soliter−1

p

)−1
if rand < Ftranfer

(
V iter
p

)
soliter−1

p if rand ≥ Ftranfer
(
V iter
p

)
,

(12)

where (•)−1 indicates the complement of binary numbers.
If rand is greater than pulse rate, change binary numbers
in sol with the randomly selected binary values in Gbest so
that the local solution, sol, moves towards the current best
solutionGbest , where pulse rate represents the pulse emission
rate of bats. At the step of obtaining new h from current
solutions, h is derived from the same manner as explained
above. The operation is finished when the termination condi-
tions are satisfied. In this paper, the optimization process is
terminated after running 15 iterations, which is chosen based
on experiments.

3) BUILDING, TRAINING, AND EMPLOYING DL MODELS
WITH OPTIMIZED HYPERPARAMETERS
From the best solution (binary numbers), the best hyperpa-
rameter vector h∗ can be obtained. Next, the optimal DL
model is built and trained. Finally, the trained model is used
to output beamforming vectors.

V. RESULTS AND COMPARATIVE ANALYSIS
The efficiency of the proposed approach will be evaluated in
this section. Firstly, the reference model’s parameters, BBA’s
parameters, andH are described. Next, the convergence abil-
ity is demonstrated. Finally, the proposed approach-based
model is compared to the reference model and the Hyper-
band approach-based model in terms of maximizing spectral
efficiency. In all figures, reference, Hyperband, and proposal
refer to the reference model, the Hyperband approach-based
model, and the proposed approach-based model, respectively.

A. PARAMETER SETUP
This study focuses on verifying the proposed approach,
so we use the same datasets as used for the reference model.
Datasets, source code, and trained weights for the reference
model are publicly provided by authors in [16]. The number
of total paths (L) is 3 and the estimation of channel samples
with the pilot-to-noise power ratio is 20dB.

BBA belongs to one type of metaheuristics; in addition,
the maximum number of iterations and the population size
are two factors that have a close relationship with the meta-
heuristics’ performance [8]. Based on experiments, we have
determined that the population size and themaximumnumber
of iterations should be 20 and 15, respectively, for this prob-
lem. Termination conditions are that all iterations have been
completed. Other parameters are set as suggested by [30]:
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pulse rate = 0.5;Qmin = 0;Qmax = 2. The illustrated results
are the average value of 20 independent runs.

This study verifies the proposed approach by optimizing
hyperparameters of DLmodels that have sixmain layers same
as the model of the reference beamformer. The search space
H, which is expressed in (13), includes the number of neurons
in the first two FC layers (corresponding to the first two rows),
activation functions after the first two FC layers (the fourth
row), optimizers (the fifth row), and the initial learning rate
(the last row). The order of hyperparameters in the search
space is not required to be in the order of each layer in the
reference DL model. These hyperparameters are determined
by the empirical trials in [16], so they will be optimized
by our proposed approach for achieving the ideal spectral
efficiency. Assume that each hyperparameter has 4 choices,
the dimension of one solution d is 12, calculated by (7).

H =

128 192 256 320
64 96 128 192
ELU ReLU Sigmoid Tanh

AdaMax Adam RMSprop Nadam
1e−4 5e−4 1e−3 5e−3

. (13)

The network complexity of DL models increases proportion-
ally with the number of neurons, so the search space for
the number of neurons in the first two FC layers is set to
values in a range that includes the number of neurons set
in the reference model. Exponential Linear Unit (ELU), Sig-
moid, Rectified Linear Unit (ReLU), and Tanh are the most
prevalent and widespread non-linearity layers and are proven
to be effective solutions to non-zero mean and zero gradi-
ent problems, as well as the accuracy versus training time
tradeoff [31]. AdaMax, Adam, RMSProp, and Nadam are
the most efficient and widely used optimization algorithms
in DL [32], [33], [34]. A large learning rate helps the model
to learn quicker at the expense of arriving at a suboptimal
final set of weights. A smaller learning rate may enable the
model to acquire amore optimum or even globally optimal set
of weights, but it may require much more time to train [35].
The learning rate range to be taken into consideration is from
1e−4 to 5e−3, including the learning rate which is set in the
reference model.

The fitness function for the proposed algorithm is built
based on the spectral efficiency function in (2) as follows:

Fitness =
1

20∑
snr=−20

|Rsnr |

. (14)

The spectral efficiency is evaluated on test datasets with
SNRs from −20dB to 20dB with the step of 5. Note that the
spectral efficiency increases as the fitness function decreases.

B. CONVERGENCE CHARACTERISTICS
In this subsection, the convergence ability and the training
loss produced by DL models on test datasets are evaluated.
The values of the fitness function in Fig. 5 indicate that the
proposed approach nearly converges after the 6th iteration

FIGURE 5. The fitness function over 15 iterations.

with the value of −16.728dB and insignificantly decreases
from the 7th iteration onwards. This means that at the
6th iteration, the proposed approach can figure out opti-
mized hyperparameters that are listed in Table 1. Fig. 6
compares the training loss between the reference model,
the proposed approach-based model, and the Hyperband
approach-based model, where optimized hyperparameters of
these DL models are in Table 1. Both HBO approach-based
models achieve lower loss values and converge faster than
the reference model even though both have more trainable
parameters. However, the proposed approach-based model
achieves−5.302while the Hyperband approach-basedmodel
is −5.252, and the reference model is −5.136.

C. SPECTRAL EFFICIENCY CHARACTERISTICS
This subsection compares the achievable spectral efficiency
between the reference model, the Hyperband approach-based
model, and the proposed approach-based model. The spectral
efficiency versus SNR performance in Fig. 7 shows that
the proposed approach-based model produces higher spectral
efficiency than the reference model. To obtain 9.72 bits/s/Hz,
for example, the optimized model achieves around 1dB
in SNR over the reference model. Besides, the proposed
approach-based model is also slightly better than the Hyper-
band approach-based model for spectral efficiency.

There are estimation errors in estimating L in practical
systems. Owing to the estimation complexity and the sparsity
of mmWave channels, the estimated number of channel paths
should be set to a small value [29]. Moreover, L in practice
often differs from those in training, so the consideration
of the mismatch between training and deployment plays an
important role. Assuming that the online deployment stage’s
channel model has three paths (L = 3), but the DL-based
models are trained with LTr paths. The impact of the channel
model’s mismatch between training and deployment stages
is depicted in Fig. 8. This figure demonstrates the achievable
spectral efficiency with the output of the DL-based models
which have been trained with LTr = 2, 3, respectively.
Even though there is a model mismatch when LTr = 2, 3,
the losses between the training and deployment stages are
limited, which indicates the robustness and generalizability
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TABLE 1. Hyperparameters for three DL models.

FIGURE 6. The training loss versus epochs.

FIGURE 7. The spectral efficiency versus SNR.

of DL-based models to the model mismatch issue. In these
models, the proposed approach-based model produces higher
spectral efficiency than the reference model by about 0.041 to
0.304 bits/s/Hz.

Fig. 9 shows violet plots, and Table 2 shows the median,
the first and the third quartiles of the distribution of the
spectral efficiency with SNR = 5dB of three DL models.
The median, the first and third quartiles based on the pro-
posed approach-based model are 7.616, 5.538, and 7.663,
respectively, which are higher than both those based on the

FIGURE 8. The impact of the channel model’s mismatch.

FIGURE 9. The distribution of the spectral efficiency.

reference model and the Hyperband-based model. Moreover,
the shape of the distribution from the minimum value to the
first quartile in Fig. 9 indicates that the spectral efficiency of
the proposed approach-based model is thinner than those of
the other two models and is highly concentrated around the
median compared to the reference model.

Typically, considering the resolution of practical phase
shifters is limited. When beamforming coefficients or the
output of DL models are quantized with q bits, the spectral
efficiency performance versus as a function of these bits
is considered, which is shown in Fig. 10. As q increases,
the performance loss lessens, and it is negligible when
q > 4. For SNR = 5dB, moreover, the proposed
approach-based model is better than both the Hyperband
approach-based model and the reference model in respect of
spectral efficiency. With q = 3, for example, the proposed
approach-based model achieves 6.412 bits/s/Hz while the
Hyperband approach-based model and the reference model
only achieve 6.365 and 6.104 bits/s/Hz, respectively.

Once the DL model is trained in the offline stage, this
model will be adopted to output beamforming vectors. There-
fore, the computational time for yielding these vectors should
be carefully considered in the online stage. Table 3 shows the

VOLUME 11, 2023 52257



K. Thuc et al.: Metaheuristics-Based Hyperparameter Optimization Approach to Beamforming Design

TABLE 2. The median, the first and the third quartiles produced by three
DL models.

FIGURE 10. The spectral efficiency performance versus the resolution of
phase shifters.

TABLE 3. Computational time (in milliseconds) to output beamforming
vectors.

average computational time in milliseconds to output beam-
forming vectors on 5000 test samples over 1000 independent
runs in computers equipped with an NVIDIA T4 Tensor Core
GPU. The proposed approach-based model not only takes
less time than the other two models but also achieves higher
spectral efficiency.

VI. DISCUSSION
This study has combined metaheuristics and DL in a manner
that facilitates synergy between these two approaches to pro-
pose an HPO approach. This combination solves not only the
HPO problem but also the following problems [36]: training
DL models, architecture optimization (architecture search),
and optimization at feature representation levels. Interest-
ingly, these types of optimization problems are amenable to
solutions via metaheuristic algorithms. Based on the knowl-
edge of solutions, the selection operators of metaheuristic
algorithms direct the search for promising regions in the
search space, making them efficient approaches for solving
challenging problems.

Besides, in recent years, there is considerable interest
in DL due to its ability to develop intelligent systems
that can make effective decisions and accurate predictions.
DL approaches help significantly enhance efficiency com-
pared to conventional communication systems [27]. There-
fore, the proposed approach can be considered a premise for
optimizing hyperparameters for various DL-based problems
in general, not just problems for mmWave communication
systems.

Although the proposed approach is specifically verified
by optimizing main hyperparameters such as the number
of neurons in FC layers, and activation functions in this
study, it can have good generality for more complex models
and problems. For instance, the proposed approach can be
used to optimize hyperparameters in convolutional and long
short-termmemory neural networks. In [37], for example, the
following hyperparameters can be optimized: the number of
filters, the size of pooling windows in convolutional neural
network modules, and the output size of long short-term
memory modules. Eventually, DL models built with opti-
mized hyperparameters will output predictive beamforming
matrices. These matrices are utilized to approach achievable
sum rates of the upper bound method for vehicular networks
with the integration of sensing and communication.

VII. CONCLUSION
This study has proposed an HPO approach based on meta-
heuristics for DLmodels. The proposed approachwas applied
to optimizing hyperparameters in DL models that aim to out-
put optimized beamforming coefficients to approach the ideal
spectral efficiency in mmWave communication systems with
large-scale antenna arrays. Results have shown the ability to
optimize hyperparameters and provided an insightful solu-
tion to forthcoming HPO problems. Comparative analysis
has also indicated that the proposed approach-based models
can produce higher spectral efficiency than the Hyperband
approach-based models and the reference model. As for
future work, it would be interesting to apply the proposed
approach to more complex DL models and beamforming
problems using hybrid beamforming architectures for recon-
figurable intelligent surfaces, and integrated sensing and
communication in 6G wireless communication systems.
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