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ABSTRACT Many deep-learning-based seizure detection algorithms have achieved good classification,
which usually outperformed traditional machine-learning-based algorithms. However, the hand-engineered
features increase the computational complexity and potentially have an ineffectiveness problem for the
category. Therefore, this paper proposes a novel end-to-end deep-learning model comprising an inception
module and a residual module to analyze the multi-scales of original EEG signals and realize seizure
detection without feature extraction. Experiments were conducted and evaluated on the Bonn dataset and
the CHB-MIT dataset. In the subject-dependent experiments, our model achieved an average F1-score of
69.34% on the CHB-MIT dataset. In subject-independent experiments, our method achieved an average
accuracy of 99.04% on the Bonn dataset and an average F1-score of 37.31% on the CHB-MIT dataset.
A series of analyses confirmed that our proposed model has better classification performance and lower
computational complexity than existing end-to-end seizure detection models.

INDEX TERMS Convolutional neural networks, seizure detection, epilepsy, electroencephalography, end-
to-end model.

I. INTRODUCTION
Epilepsy is a chronic neurological disease affecting about
50 million people worldwide [1]. Abnormal discharge of
brain cells during epileptic seizures causes symptoms such
as convulsions, fainting, loss of consciousness, behavior
changes, etc. These symptoms may not only cause physical
damage to patients but may also cause psychological prob-
lems in the long run [2]. Although most patients’ epilepsy
symptoms can be effectively improved with antiepileptic
drugs. However, about 20-40% of patients with severe
epilepsy may need surgical treatment, and an accurate diag-
nosis of epilepsy is a necessary preoperative evaluation [3].

Electroencephalography (EEG) a method for recording
brain electrical activity is often used in diagnosing brain
diseases [4]. The traditional epilepsy diagnosis method is
manual detection by visual observation of EEG signals by
neurologists. This method is time-consuming and the accu-
racy of diagnosis highly depends on the experience and ability
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of the diagnostician. Long-term EEG diagnosis is more prone
to human negligence resulting in misdiagnosis or delayed
diagnosis aggravating the condition [5].

In recent years, many automated seizure detection tech-
nologies have been proposed for epilepsy diagnosis assis-
tance systems [6], [7] and seizure alarm systems [8], [9]. The
epilepsy diagnostic assistance system can increase the accu-
racy of epilepsy diagnosis and shorten the diagnosis time. The
seizure alarm systems can immediately notify relevant units
when a seizure occurs. Patients can quickly obtain treatment
and the sudden unexpected death in epilepsy (SUDEP) can
be reduced [10].

Seizure detection is regarded as a classification problem.
Those related algorithms can be roughly divided into two cat-
egories: traditional machine learning and deep learning. The
algorithm based on traditional machine learning generally
includes pre-processing, feature extraction, feature selection,
classifier, and post-processing. For example, Chen et al. [6]
used discrete wavelet transformation (DWT) and calculates a
variety of different types of entropy (Shannon entropy, sam-
ple entropy, fuzzy entropy, etc.) as features. Then, analysis
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of variance (ANOVA) is used to sort and select features.
Finally, the least squares support vector machine (LS-SVM)
was used as a classifier to identify whether the input signal
was a seizure. Olokodana et al. [10] used DWT soft threshold
technology to filter out signal noise, and then calculate fractal
dimension, Hjorth parameter, and singular value decomposi-
tion entropy as signal features. Finally, the Kriging model is
applied for classification. Tiwari et al. [11] used the difference
of Gaussian (DoG) to identify the key positions in the EEG
signal, then calculates the local binary pattern (LBP) as a
feature. Finally, the support vector machine (SVM) is used
as a classifier.

Deep learning techniques have been widely applied in
many non-stationary signal processing tasks. For example,
Lopac et al. [12] used Cohen’s class time-frequency repre-
sentations and convolutional neural network (CNN) mod-
els to detect gravitational waves. Arias-Vergara et al. [13]
used a CNN to detect speech deficits and classify phone
attributes based on convolutional gated recurrent units
(CGRU). Sakib et al. [14] used a CNN model to analyze
raw Electrocardiogram (ECG) signals for arrhythmia detec-
tion on the embedded system. In recent years, many seizure
detection algorithms are also based on deep learning mod-
els, such as long short-term memory (LSTM) [15], gated
recurrent units (GRU) [16], CNN [17], [18], [19], [20],
[21], [22], [23] etc. The CNN-based algorithm is the most
commonly used model architecture. The EEG is converted
into two-dimensional feature images in the pre-processing
and then input into CNN for classification. For instance,
Rashed-Al-Mahfuz et al. [17] used short-time Fourier trans-
form (STFT) and continuous wavelet transform (CWT) to
convert EEG into a two-dimensional time-frequency map
and then used pre-trained VGG16 [24] and ResNet50 [25]
for classification. Lai et al. [18] used a bandpass filter
to obtain 80-250Hz and 250-500Hz signals in EEG, and
then the candidate regions are identified by calculating
the short-time energy. Finally, CWT was used to convert
the EEG of candidate regions into time-frequency images
and input shallow CNN with a depth of 5 layers for
classification.

However, hand-engineered feature representations may
ignore temporal patterns of the original EEG signals and have
ineffectiveness issues for classification [19]. Design an end-
to-end model that directly uses the original EEG signal as
the model input. For instance, Acharya et al. [20] analyzed
raw EEG signals using a 13-layer 1D-CNN. Wang et al. [21]
extracted high-level representations from EEG through two
convolution blocks with different sizes of the kernels, and
output with a fully connected layer. Thuwajit et al. [22] used
a multiscale architecture to analyze the different ranges of
time domain information of EEG. Duan et al. [23] used the
Siamese network architecture to train the embedding module.
Through the embeddingmodule, EEG can be converted to the
embedding space, and the classification can be performed in
the embedding space.The main contributions of this paper are
summarized as follows:

• We propose a novel end-to-end deep learning model
to detect seizures based on the ResNet and Inception
Net [26]. Unlike the previous end-to-end models that
use different scale information independently, we use
the inception module to integrate multi-scale features
effectively.

• Besides using traditional metrics accuracy, sensitivity
and specificity for seizure detection evaluation, we use
the metric F1-score to measure and compare model per-
formance. Experimental results show the F1-score is a
more helpful metric than others, especially on the class
imbalanced datasets.

• We conduct experiments and analyses on two datasets to
show that our proposed model has promising classifica-
tion performance and lower computational complexity
than existing end-to-end models.

The rest of this paper is organized as follows. Section II
describes the details of our proposed method. Section III
specifies the experimental setups, including the dataset
description, classification tasks, baseline methods, and eval-
uation metrics. Section IV presents experimental results for
model performance evaluation and comparisons. Section V
introduces the findings for further analysis and discussion.
Conclusions with future directions are finally drawn in
Section VI.

II. METHODOLOGY
A. PROPOSED MODEL ARCHITECTURE
This paper uses the inception module, residual module, and
global average pooling as feature extractors to generate fea-
ture vectors from EEG. Using a two-layer fully connected
layer as a classifier to output the EEG is inter-ictal or
seizure. The overall model architecture is shown in Fig. 1.
The EEG signals will first pass through three inception and
residual modules for feature extraction. We then perform the
global average pooling to obtain the output using the fully-
connected layer. The inception module allows the model
to have multi-scale analysis and integration. The residual
module effectively maintains the gradient process during
the model training phase. Finally, the fully-connected layer
classifies the features extracted by the inception and residual
modules.

1) INCEPTION MODULE
Many seizure detection studies have achieved better clas-
sification performance through multi-scale feature extrac-
tion [19], [21], [22].Multi-scale feature extraction enables the
model to analyze EEG signals in different ranges, obtaining
comprehensive features with local and global information.
We use the inception module to extract multi- scale features
through convolutional layers with different convolution ker-
nel sizes. Compared with the previous multi- scale feature
extraction, the inception module integrates features in differ-
ent scales and reduces the number of model parameters [27].
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FIGURE 1. Model architecture of our proposed method.

Our used inception module comprises three parallel convo-
lutional blocks and a convolutional layer with a convolution
kernel size of one. Each convolutional block is deduced by a
convolutional layer (stride is 2, paddingmode is the same, and
the number of kernels is 16), batch normalization, and leaky
ReLu activation function. The convolution kernel sizes of the
three blocks are 3, 7, and 11, respectively. The output of the
three parallel convolutional layers is concatenated and then
passed through the convolutional layer (kernel size is one, and
the number of kernels is 16).

2) RESIDUAL MODULE
The shortcut connections architecture of the residual module
effectively maintains the gradient process during training to
avoid the problem of exploding or vanishing gradients [25].
In addition, the skip connectionmitigates the information loss
after the signal passes through the convolutional layers so
that the extracted features retain the original signal informa-
tion [28].

Our used residual module is composed of three stacked
convolution blocks.We use the output of the third convolution
Block in the inception module as the input of our residual
module. Each convolution block comprises a convolution
layer with a convolution kernel size of three, batch normal-
ization, and leaky ReLu.

3) CLASSIFIER
We use the feature vectors generated by the inception and
residual modules to train the classifier comprising a two-layer
fully-connected layer for seizure detection. The size of the

first layer is four units, and the activation function is ReLu.
The size of the second layer is two units, and the activation
function is softmax.

During the training phase, if an EEG record is anno-
tated with seizure, the class is assigned as 1, and 0 oth-
erwise. To prevent abnormal stopping caused by unstable
loss, we apply the early stopping mechanism when the epoch
exceeds the threshold (i.e., Imin). The training loss func-
tion is categorical cross-entropy. The optimizer is Adam
(epsilon=0.1, clipnorm=1), and the learning rate uses cosine
decay restart [29]. We summarize the model parameters in
Table 1. To detect an instance during the testing phase, we use
the class with the more significant probability than the other
as model output.

III. EXPERIMENT
A. DATABASE
We use the CHB-MIT and Bonn datasets to verify the model
performance. The CHB-MIT dataset contains long-term EEG
record files with time characteristics. In addition, its imbal-
anced class distribution may naturally reflect real-life seizure
detection challenges. The Bonn dataset contains the seg-
mented EEG data for fair performance comparisons, which
gets rid of the bias caused by different pre-processing. Details
are introduced as follows

1) CHB-MIT DATASET
The CHB-MIT dataset, a scalp EEG (sEEG) dataset from
Children’s Hospital Boston, was sampled using 16-bit
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TABLE 1. Training parameters of our proposed method.

resolution and 256Hz [30]. The CHB-MIT dataset is a
long-term EEG dataset that is commonly used to evaluate
seizure detection algorithms. The entire dataset contained
EEG recordings of 24 epileptic patients aged 3-22 years with
a total of 198 epileptic events and 644. The edf files were each
about 1 hour long.

In this paper, according to the baseline studies [22], the
following preprocessing is carried out:
1. Select FP1-F7, F7-T7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-

O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, and
‘‘T8-P8-0’’, ‘‘P8-O2’’, ‘‘FZ-CZ’’, ‘‘CZ-PZ’’, ‘‘P7-T7’’,
‘‘T7-FT9’’, ‘‘FT9-FT10’’, and ‘‘FT10-T8’’ 21 common
channels.

2. Split the record into 4-second segments with 1-second
overlaps between each segment.

3. Use a low-pass filter to remove noise above 64 Hz.
Files chb12_27.edf, chb12_28.edf, and chb12_29.edf were
excluded from the experiment because they did not contain
any common channels.

2) BONN DATASET
The Bonn dataset, an epilepsy dataset provided by the Uni-
versity of Bonn, was sampled using 12-bit resolution at
173.61Hz [31]. The data set consists of 500 records and each
record is a single channel with 4096 sampling points. The
duration is about 23.6 seconds and can be divided into five
categories: A to E. Class A and Class B signals were collected
from sEEG signals of five healthy awake subjects. Class C,
Class D, and Class E were collected from intracranial EEG
(iEEG) signals of five epileptic patients.

Class A is the signal when the eyes are opened. Class
B is the signal when the eyes are closed. Class C and
D are the signals when the inter-ictal. Class D measures
the epileptogenic zone. Class C measured the hippocam-
pal formation of the opposite hemisphere of the epileptic
seizure region. Class E is the signal during an epileptic
seizure.

B. CLASSIFICATION TASK
1) EXPERIMENT I–SUBJECT-DEPENDENT
Subject dependent experiment of this paper is validated in the
CHB-MIT dataset and leave-one-record-out cross-validation
was used. First, one record file is reserved as the testing set
and the rest files are used as the training set. Then, 20% of the
training set data are randomly sampled as a validation set.

2) EXPERIMENT II–SUBJECT-INDEPENDENT
Subject-independent experiment of this paper is validated in
the CHB-MIT dataset and the Bonn dataset. The CHB-MIT
dataset uses leave-one-subject-out cross-validation. First, one
subject is reserved as the testing set, and the rest subjects are
used as the training set. Then 20% of the training set data are
randomly sampled as a validation set.

For Bonn Dataset, we use ten-fold cross-validation and
eight tasks in Table 2 were performed to evaluate the model.
Case1, Case2, and Case5 compare the EEG of healthy sub-
jects with the EEG of seizure. Case3, Case4, and Case6 com-
pared EEG in epileptic patients with inter-ictal and during
seizures. Case7 and Case8 contain EEG signals from healthy
subjects and people with epilepsy. The epileptic EEG, non-
epileptic EEG, and healthy EEG were compared.

TABLE 2. Classification task of the Bonn dataset.

C. BASELINE METHOD
We compared with one traditional machine learning algo-
rithm and three end-to-end deep learning models to show
the classification performance of the proposed method. The
following is a brief introduction to each method.

1) FBCSP+SVM
The common spatial pattern (CSP) is a classic feature extrac-
tion method that is applied to emotion recognition [32], [33],
imaginary movement [34], [35], seizure detection [36], [37],
etc. Brain-computer interface (BCI).

The filter bank common spatial pattern (FBCSP) divides
the signals into different frequency bands through multiple
filter banks, and thenmultiplies the projectionmatrix with the
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EEG signals by CSP algorithm to maximize the difference
between each category of EEG signals. Finally extract the
most discriminant part as the feature. The bandpass filter
bands of the filter banks used in this paper are respectively
4-8Hz, 8-16Hz, 16-32Hz, and 32-55Hz. The kernel function
of SVM is ‘‘rbf’’.

2) EEGNET-8,2
EEGNet [38] is a convolutional neural network with a com-
pact architecture, and its architecture is formed by stack-
ing three convolutional layers. EEGNet makes each layer of
the network learn different features by designing different
convolution modes and sizes of the convolution kernel. The
first layer uses 2D convolution to learn frequency filters,
and the second layer uses Depthwise convolution to learn
frequency-specific spatial filters. The third layer uses Sep-
arable convolution to learn the integration and optimization
of time-frequency and spatial features. Finally, it is output
as a model through a fully connected layer. This paper uses
EEGNet-8,2 which has 8 frequency filters and 2 spatial filters
as the baseline model.

3) STACKED 1D-CNN
Stacked 1D-CNN [21] is an end-to-end model, which uses
two parallel convolutional blocks to extract features from the
EEG and then outputs them through a fully connected layer.
Two convolution blocks are formed by repeated stacking of
convolutional layers, Batch Normalization, and Max Pooling
three times, and the number of convolutional kernels is 32,
64, and 128, respectively. The kernel size of the convolutional
layer in convolution block 1 is 3. In convolution block 2,
the kernel size of the first two convolutional layers is 5, and
the kernel size of the last convolutional layer is 3. Features
extracted from two convolution blocks are used as the input
of the classifier after a Global Average Pooling. The classifier
consists of two fully connected layers, whose unit number is
128 and 2, respectively.

4) EEGWAVENET
EEGWaveNet [22] is an end-to-end model consisting of
a multiscale convolution module, a spatial-temporal fea-
ture extractor, and a classifier. The multiscale convolution
module uses 6-layer depthwise convolution (kernel size=2,
strides=2), and the length of the signal will become 1/2 of
the original one after each layer. The feature maps gener-
ated by depthwise convolution from layer 2 to layer 6 are
used as the output of the multi-scale convolution module.
The space-time domain feature extractor repeatedly stacks
the convolutional layer (kernel size=4, strides=2) and batch
normalization three times, and then performs global average
pooling. The space-time domain feature extractor outputs a
32-dimensional feature vector at each scale and concatenates
the 5-scale feature vectors to 160 - dimensional feature vec-
tors as classifier input. The classifier is a three-layer fully
connected layer, and the number of units is 64, 32, and 2,
respectively.

D. EVALUATION METRICS
In this paper, Accuracy, Sensitivity, Specificity, and F1-score
were used to evaluate the classification performance of the
model. Accuracy evaluation model reflects the resolution of
the model in the overall data. The calculation method is
shown as follows.

Accuracy =
TP + TN

TP + FP+ TN + FN
(1)

TP, TN, FP, and FN represent true positive, true negative, false
positive, and false negative.

Sensitivity was calculated through Eq. (2) to indicate the
accuracy of a model for a positive sample, while Specificity
was calculated through Eq. (3) to indicate the accuracy of a
model for a negative sample.

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

F1-Score is the harmonic average of Precision and Sen-
sitivity. For imbalanced data sets, F1-Score can more accu-
rately reflect the classification performance of the model. Its
calculation method is shown in Eq. (4).

F1Score =
2TP

2TP+ FP+ FN
(4)

Many seizure detection studies used accuracy, sensitivity,
and specificity as evaluationmetrics for performance compar-
isons [16], [23], [36], [39]. However, accuracy and specificity
may have a bias due to the class imbalance. For example,
about 98.4% of the CHB-MIT dataset are negative samples.
If a classifier predicts all testing instances as negative class
will achieve high accuracy of 98.4% and perfect specificity of
100%. Therefore, the F1-score measure, which is a harmonic
mean of recall (i.e., sensitivity) and precision, is usually more
helpful than accuracy, especially for data with an uneven class
distribution.

IV. RESULT
A. RESULTS OF SUBJECT-DEPENDENT EXPERIMENTS
Table 3 shows the average classification performance of
different algorithms in the subject-dependence experiment.
Compared with the previous end-to-end model, the proposed
method has the best performance in all performance met-
rics, and the number of model parameters is only more
than EEGNet-8,2 [38]. FBCSP+SVM [34] has the high-
est accuracy and specificity, but its F1-score is the lowest
comparing with other methods. The sensitivity achieved by
FBCSP+SVM even clearly underperformed (about 10%)
other methods, revealing that seizure cases cannot be effec-
tively detected. This confirms that accuracy and specificity
are not proper metrics on class imbalance data like the CHB-
MIT dataset. The model structure of EEGNet-8,2 is the most
concise and has the least number of parameters, the overly
simple model structure also causes the classification perfor-
mance to be slightly lower than other models.
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TABLE 3. Comparison of subject-dependent approach performance in the CHB-MIT dataset.

FIGURE 2. The chb05_22.edf file model detection result. (a) Result for all file. (b) Zoom in seizure location.

Fig. 2 shows the model prediction results of the record
file chb05_22.edf, which are the seizure probability output
by the model, the result after moving average, the result after
thresholding, and the real label in sequence. Fig. 2(a) shows
the results of the entire file. It can be seen that even if the
model has false detections, it can be effectively suppressed
by moving average and thresholding. Fig. 2(b) zooms in on
the seizure event region, and the gray background is the
seizure occurs. The detection errors for this seizure event
were only one false positive at the onset of the seizure and
one false negative during the seizure. The F1-score of chb04,
chb06, chb08, chb13, chb14, chb16, chb23, and chb24 is low
than 60%. The characteristics of each patient’s data and the
reasons for difficult trainingwill be discussed in the following
section.

B. RESULTS OF SUBJECT-INDEPENDENT EXPERIMENTS
We also conducted the subject-independent experiment for
both CHB-MIT and Bonn datasets. Table 4 shows the aver-
age classification performance of different algorithms in
subject-independent experiments. Compared with the pre-
vious end-to-end model, the method of this paper has the
best Accuracy, Specificity, F1-score. Sensitivity is second
only to Stacked 1D-CNN [21]. Stacked 1D-CNN has the
best Sensitivity, its F1-score is lower than the proposed
method, which means that Stacked 1D-CNN has more

false positives. FBCSP+SVM has the same problem as the
subject-dependent experiment, and the Sensitivity is 10-20%
less than other methods.

Table 5 shows the experimental results of different algo-
rithms on the Bonn dataset. According to Table 5, it can
be seen that the proposed method can still have excel-
lent classification performance in datasets with a small
amount of data, with an average accuracy of 99.04%. Com-
pared with [21], [22], [38], [40], [41], and [42], the pro-
posed method has more excellent performance. Compared
with [17], [43], [44], and [45], the classification accuracy
of the proposed method is a little bit worse, but [17], [43],
and [45] did not report the accuracy of Case 8, and the
difference between Class AB and Class CD cannot be clearly
distinguished in its feature representation. Furthermore, those
methods use hand-engineered feature representations that
have potentially an ineffectiveness problem for classifica-
tion [19].

The experiments and results on the CHB-MIT dataset
experiment are closely similar to the related study conducted
by Thuwajit et al. [22]. The lower F1-score was mainly
caused by extremely imbalanced class distribution. The F1-
scores of the previous studies [10], [19] were higher than 80%
on the class-balanced data such as the Bonn dataset. We also
analyzed the F1-scores in the experiments of the Bonn
dataset. Our proposed method achieved a Marco-averaging
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TABLE 4. Comparison of subject-independent approach performance in the CHB-MIT dataset.

TABLE 5. Comparison of epilepsy classification performance in the Bonn dataset.

F1 score of 98.85%. In practice, intel-ictal samples and
seizure samples are not balanced in real applications, so the
results of the CHB-MIT dataset may naturally reflect the
real-life seizure detection challenges.

V. DISCUSSION
In this section, we discuss the causes of false positives
and missed detections. It can be mainly divided into noise,
extreme class imbalance, and heterogeneity.

A. NOISE
We found that the subjects chb04, chb08, chb13, chb23,
and chb24 in the CHB-MIT dataset had long-duration, huge
amplitude, and multi-band noises. The noise appears in

multiple channels at the same time, and it is difficult to
filter it out through pre-processing because the noise fre-
quency of each subject is different. Such noise can cause
the model to generate a large number of false positives.
The results of the short-time Fourier transform (STFT) and
model output of the normal record file (chb04_28.edf) shown
in Fig. 3 (a), which are the result of STFT, seizure prob-
ability output by the model, the result after moving aver-
age, and the real label in sequence. The abnormal record
file (chb04_05.edf) is shown in Fig. 3 (b). In Fig. 3 (b),
high-energy noise appears at about 3.5Hz, 8Hz, 11Hz,
15Hz. . . etc. A large number of false positives appear in
the model output due to high energy noise at the same
position.
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FIGURE 3. Short-time Fourier transform result, and the proposed model output. a) result of chb04_28.edf file. b) result of chb04_05.edf file.

B. EXTREME CLASS IMBALANCE
In the experiment of this paper, CHB-MIT is an imbalanced
dataset, and the class ratio is about 1:63 (Seizure: Normal).
In a few subjects such as chb04, chb06, chb14, etc., the
number of normal samples was more than 100 times the
number of seizure samples, which caused the model to aban-
don seizure samples during training. The chb16 only has
24 seizure samples, which made the model unable to learn
more general features.

C. HETEROGENEITY
EEG classification of epilepsy has a high degree of hetero-
geneity within the same category. The EEG of the same
subject will vary depending on the subject’s current physical
state when they are not having a seizure, and depending
on the symptoms of epilepsy when the seizure occurs. The
same class of EEG from different subjects varied depending
on their physiological characteristics. Fig. 4 (a) and (b) show
the proposed model dimension reduction distribution of the
chb11 training data feature vector in the subject-dependence
experiment by the t-SNE algorithm [46]. Fig. 4 (c) and (d)
show the proposed model, dimension reduction distribution
of the feature vectors chb10, chb18, and chb24 in the training
data subject in the subject-independent experiment (chb01 as
the test data) using the t-SNE algorithm. Fig. 4 (a) and (c) are
labeled according to data categories, and Fig. 4 (b) and (d)
are labeled according to data sources. We can find that
although the feature vectors extracted by the model can
clearly distinguish the states of seizures and non-seizures,

FIGURE 4. t-SNE result for proposed model feature vector.

they can also easily identify the source of the data. Fig. 4 (b)
shows the samples from chb11_82.edf file is mainly dis-
tributed on the left side of the figure, and the samples from
chb11_92.edf are mainly distributed on the right side of the
figure. Fig. 4 (d) shows that the samples from chb18 are
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mainly distributed on the upper side of the figure, the samples
from chb10 are mainly distributed on the left side of the
figure, and the samples from chb24 are mainly distributed
on the right side of the figure. According to the results in
Fig. 4, the model cannot eliminate the differences caused by
different seizure events or different subjects in the process of
generating feature vectors, to obtain more normalized EEG
features.

VI. CONCLUSION
We propose a novel end-to-end deep learning model based
on the inception and residual modules for seizure detection.
We do not need domain expert knowledge to design the
feature engineering with an end-to-end architecture. Com-
pared to the previous models, our method integrates different
scale information through the inception module for feature
extraction. In addition, the residual module maintains the
gradient process effectively during the model training phase.
We conducted subject-dependent and subject-independent
experiments on CHB-MIT and Bonn datasets. The previous
methods, including FBCSP+SVM, EEGNet-8.2, Stacked
1D-CNN, and EEGWaveNet, were used to compare model
performance. The experimental results show that our pro-
posed model has the best classification performance in the
CHB-MIT dataset. The macro-averaging f1-scores of the
subject-dependent and subject-independent experiments are
69.34% and 37.31%. Our method has a macro-averaging
accuracy of 99.04% in the Bonn dataset. Compared with the
previous seizure detection methods needing a feature engi-
neering process, our approach uses the original EEG signal
as the model input, resulting in fewer parameters and lower
computational complexity. The advantages of our proposed
method are summarized as follows:

• Use EEG signals directly to avoid the highly complex
feature extraction and the ineffectiveness risk of hand-
engineered features.

• Our proposed method requires fewer parameters and
lower computing resource requirements.

• Integrate different scale information in feature extraction
through the inception module to achieve better classifi-
cation performance.

As error cases we have analyzed and discussed, our model
is limited to three aspects: noises, class imbalance, and het-
erogeneity that cause performance degradation. Therefore,
future work is investigated in several directions. First, the
denoising autoencoder [47] may help reduce noise. Secondly,
for the class imbalance problem, deep metric learning [23]
would be an attempt to transform the classification prob-
lem into a similarity problem during model training. Finally,
domain-adversarial learning [48] that uses domain classifiers
against a feature extractor during training may benefit from
the heterogeneity limitation.
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