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ABSTRACT Diversity measures exploited by blind source separation (BSS) methods are usually based on
either statistical attributes/geometrical structures or sparse/overcomplete (underdetermined) representations
of the signals. This leads to some inefficient BSS methods that are derived from either a mixing matrix
(mm), sparse weight vectors (sw), or sparse code (sc). In contrast, the proposed efficient method, sparse
spatiotemporal BSS (ssBSS), avoids computational complications associatedwith lag sets, deflation strategy,
and repeated error matrix computation using the whole dataset. It solves the spatiotemporal data recon-
struction model (STEM) with l1-norm penalization and l0-norm constraints using Neumann’s alternating
projection lemma and block coordinate descent approach to yield the desired bases. Its specific solution
allows incorporating a three-step autoencoder and univariate soft thresholding for a block update of the
source/mixing matrices. Due to the utilization of both spatial and temporal information, it can better
distinguish between the sources and yield interpretable results. These steps also make ssBSS unique because,
to the best of my knowledge, no mixing matrix based BSS method incorporates sparsity of both features and
a multilayer network structure. The proposed method is validated using synthetic and various functional
magnetic resonance imaging (fMRI) datasets. Results reveal the superior performance of the proposed
ssBSS method compared to the existing methods based on mmBSS and swBSS. Specifically, overall, a 14%
increase in the mean correlation value and 91% reduction in computation time over the ssICA algorithm was
discovered.

INDEX TERMS Sparse representation, autoencoder, BSS, fMRI, activation maps, PCA, l0-norm, l1-norm.

I. INTRODUCTION
Over the last two decades, the statistical parametric map-
ping (SPM) toolbox’s [1] general linear model (GLM)
has been extensively used for fMRI analysis [2]. This
hypothesis-driven model requires prior knowledge about
the experimental paradigm, such as hemodynamic response
function (HRF). However, the dynamics of the experi-
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approving it for publication was Hasan S. Mir.

ment are sometimes hard to model due to HRF variability
across subjects [3] and the absence of stimulus for resting-
state experiments. Instead, the data-driven approaches offer
a promising alternative due to their adaptability to both
task-based activation detection and resting-state functional
connectivity analysis [4], [5]. In this regard, some mmBSS
methods owing to their computational efficiency, have been
very consequential for fMRI studies [6], [7], [8], [9], [10],
[11], [12].
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Blind signal extraction is a fundamental problem in many
signal and image processing applications [13], [14], [15],
[16], [17], [18] that aims at revealing hidden structures in the
multivariate data through matrix decomposition [19]. While
utterly blind to the mixing process, it makes some assump-
tions about the source signals by imposing constraints on
the data matrix. In this regard, principal component analy-
sis (PCA) assumes underlying signals are uncorrelated [20],
independent component analysis (ICA) hypothesizes statisti-
cal independence [21], canonical correlation analysis (CCA)
expects that signals are autocorrelated [22], sparse dictionary
learning (SDL) considers that signals are overcomplete [23],
partial least square (PLS) infers that sources have high auto-
covariance [24], and generalized morphological components
analysis (GMCA) [25] encouragesmorphological diversity of
signals.

Specifically, mmBSS methods are based on either deter-
ministic or stochastic approaches. Deterministic meth-
ods impose geometrical assumptions on signals such as
non-negative matrix factorization (NMF) [26] and spa-
tial/temporal correlation [27]. In contrast, statistical meth-
ods are concerned with the probabilistic distribution of the
signals such as Bayes’ theorem assigns probability density
function as priors to sources and mixing coefficients [28],
and ICA explores the statistical properties of the source
signals through higher order statistics [21]. Lower inter-
pretability offered by statistical/geometrical assumptions is
usually resolved by imposing sparsity as an additional
constraint on the weight vectors, which results in sparse
variants of BSS methods (swBSS), as discussed in the
next section.

Alternatively, consider scBSS methods due to an over-
complete representation of the sparse signals such as SDL,
GMCA, and sparse component analysis (SCA) [29] that
naturally circumvent the interpretability problem but their
computational cost is enormous. On the other hand, spa-
tial ICA (sICA) has been very popular due to its numer-
ical simplicity, better performance, and fMRI data’s lower
spatial variations [30]. Previously, it has been argued that
independence is not adaptive for fMRI [31], and the sparsity
of components rather than independence is a more fruitful
assumption. Nevertheless, it was recently concluded that both
sparsity and independence are reasonable assumptions for
fMRI analysis [32]. More recently, a framework was devel-
oped that jointly exploited both source diversities to increase
separation accuracy for fMRI [33].

Analyzing temporal and spatial information separately
had been the convention, whereas exploiting both fea-
tures concurrently may lead to better performance. Some
mmBBS methods have attempted this strategy in their
analysis. For instance, ECG specific BSS technique used
spatial ICA to remove non-Gaussian interference fol-
lowed by second-order blind identification (SOBI) [34]
step to suppress temporal Gaussian noise [35], a low-
dimensional CCA approach for fMRI that incorporated

straight forward image projection into temporal BSS model
to exploit autocorrelations of both temporal and spatial
features concurrently [36], and an SDL based method for
multi-subject fMRI analysis that attempted to utilize informa-
tion from both dimensions in terms of principal components
and loadings [37].

More recent application-specific BSS methods are also
worth mentioning. For instance, a hybrid approach was pro-
posed that combined a variational autoencoder and bandpass
filtering for speech processing [38], an efficient BSS method
was proposed that utilized multi-channelWiener filtering and
joint diagonalization [39] for audio signal processing [40],
two smooth variants of NMF namely smooth successive
projection algorithm and smooth vertex component analysis
have been presented for hyperspectral unmixing [41], and
a novel BSS approach named semi-blind GMCA (sGMCA)
was introduced that combined alternating least square algo-
rithm with learning based regularization for hyperspectral
imaging [42].

Some computationally efficient mmBSS methods, such as
regular PCA and CCA, perform poorly for BSS. On the other
hand, sparse variants of BSS strive to improve separation
accuracy at the cost of the increased numerical burden. This
is due to their reliance on either deflation strategy, iterative
thresholding, repeated eigen/singular value decomposition
(SVD), or error matrix computation of huge covariance/data
matrices. This paper reached a compromise between the two
scenarios by separating all source signals simultaneously in
a transformed space through a sparse approach. Moreover,
motivated by this discussion and the effectiveness of con-
current feature extraction [37], a new method named ssBSS
has been proposed for fMRI data. The main contributions
are

1) A novel approach that attempts to solve the proposed
model in a computationally efficientmanner through an
autoencoder, BSS theory exploitation, and continuous
but implicit training from the data.

2) UtilizingNeumann’s successive projection lemma [43],
each of the two sub-problems from the penalized and
constrained STEM model is solved in an alternating
least square manner.

3) A comprehensive validation of the proposed method
and its comparison with existing mmBSS and swBSS
methods using synthetic and experimental data.

4) In-depth analysis using performance metrics such as
similarity measure, convergence analysis, and numer-
ical cost.

The rest of the paper is organized into five sections where
section II highlights the related work, section III pro-
vides some background on sparse BSS methods, section IV
presents some direction on mathematical notations followed
by the discussion on the proposedmethod and its related algo-
rithm, section V produces experimental study, and section VI
contains the concluding remarks.
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FIGURE 1. A pictorial description of different blind source separation strategies. The rendered brain is obtained using the BrainNet Viewer [44].

II. RELATED WORK
As shown in Fig. 1, BSS methods generally employ three
strategies. These are

1) mmBSS: The whitening operation followed by a non-
sparse mixing/rotation matrix estimation.

2) swBSS: Utilization of full data matrix to estimate
sparse weight matrix through deflation.

3) scBSS: Computation of the error matrix using full data
matrix to estimate dictionary and sparse code through
alternating minimization.

State-of-the-art swBSSmethods that have been quite success-
ful for neuroimaging data include sparse PCA (sPCA) [45],
sparse CCA (sCCA) [46], [47], sparse PLS (sPLS) [48], [49],
multi-task sparse model (MTS) [50], and sparse two dimen-
sional CCA (s2DCCA) [51]. On the other hand, improved fast
ICA (ifICA) utilizes a fast ICA algorithm and l0-norm [52]
and sparse spatial ICA employs an entropy bound minimiza-
tion algorithm (ssICA) and l1-norm [33]. They both consist
of the step-wise optimization approach for implementing
independence and sparsity.

Sparse PCA improved the interpretation of original prin-
cipal components by reformulating eigen-vector decomposi-
tion as a penalized regression problem to obtain sparse load-
ings [45]. Sparse CCA extends the sPCA strategy and adapts
the elastic net to CCA to get sparse canonical weights [46].
Sparse PLS discovered an improved relationship between two
datasets by a penalized matrix decomposition applied to cross
matrix product to obtain sparse weight vectors [49]. Based on
the l0 norm, the improved fast ICA method was proposed by
incorporating the sparsity constraint via Gaussian kernel to
the fast ICA algorithm [52].

A regularized and a sparse CCA employed penalized rank-
1 matrix approximation on the product of the orthogonal
projectors of two sets of data to improve interpretability and
performance of the canonical variates [47]. To simultaneously
handle the sparse decomposition of mixed signals, the BSS
problem was reformulated as a multi-task sparse problem
that exploited the connection between tasks to achieve higher

retrieval accuracy [50]. While preserving the correlation
structure of fMR images, two variants of s2DCCA, regular-
ized and sparse, were proposed to improve the interpretability
of the projected variables [51].

III. BACKGROUND
According to the uniquely/overdetermined case of BSS the-
ory, where more or an equal number of mixtures than sources
are observed, let an observed vector y = [y1, y2, . . . , yN ]⊤

be a linear mixture of the unknown source vector s =

[s1, s2, . . . , sk ]⊤, i.e., y = T⊤x, where T ∈ RK×N is a
transpose of the mixing matrix, and its size is N ≥ K . This
can be more formally expressed for multiple sources as

Y = T⊤S + E (1)

where E is the model error. When implementing (1) using
ICA or CCA, prewhitening the data is the first step. This is
carried out to reduce the correlation between features and
dimensionality of the data. Only D < N principal compo-
nents are kept, followed by the estimation of mixing matrix
T⊤

∈ RD×K as the second step as shown in Fig. 1.
From a general BSS perspective, there are two possible

outcomes i) spatial BSS would require mixture matrix Y ∈

RN×V to be obtained by assembling time courses of length N
across V voxels resulting in a K number of retrieved maps in
the source matrix S = TY ∈ RK×V , where T is assumed to
be a semi-orthogonal demixing matrix whose pseudo-inverse
is equal to its transpose. As an alternative, temporal BSS
considers collecting mixture matrix as Y⊤

∈ RV×N to obtain
K number of source signals as T = SY⊤

∈ RK×N , where S
is a semi-orthogonal demixing matrix.

The BSS model given by equation (1) can be extended to
a sparse model, which is formulated as [53]

||yi − T⊤si||22 + λf (si), i = 1, . . . ,V (2)

whereV is the number of voxels, ||yi−T⊤si||22 is a smooth and
convex data fidelity term and f (.) is a convex regularization
function that promotes sparsity, and λ controls the trade-off
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FIGURE 2. An algorithmic description of different sparse blind source separation approaches.

between sparsity and reconstruction error. This leads to the
extraction of source signals from the observed signals in
an overcomplete manner; however, this model during sparse
coding decomposes each mixture signal in Y independently,
resulting in an increased learning complexity as shown in
Fig. 2a. One can refer to [54] for a block update of T⊤ and [23]
for a sequential update.

Consider on the other hand deflation based sparse meth-
ods [46], [47], [48], [49], [55] that exploit a different fidelity
term given by ||Y −

∑K
k=1 t

⊤
k s

k
||
2
F , where K is the number

of sources as shown in Fig. 2b. This results in reliance on
estimating one source signal at a time and applying deflation
to the data matrix to remove the effect described by the cur-
rent sparse mixing vector. This creates learning inefficiency,
just like SDL algorithms given by equation (2), and lowers
the retrieval accuracy because this sort of penalized matrix
decomposition ignores the important relationship between
the source signals.

The proposed methodology described in the next section
eliminates the shortcomings mentioned in the last two para-
graphs. While performing source separation, the relationship
among source signals was taken into account by continu-
ously updating all sources until convergence. This resulted
in better interpretability of retrieved sources compared to
the deflation strategy. On the other hand, sparse assumption
and reduced-dimension space allowed us to use equation (1)
indirectly for the source separation problem, which resulted
in a significant computational gain.

IV. METHODS
Throughout this paper, small italic or capital italic letters
characterize the scalar values, small boldface letters signify
vectors, and capital boldface letters are utilized to depict
matrices. The specific column and row of the matrix are indi-
cated by vectors attached with subscripts and superscripts,
respectively. The error matrix for the k-th temporal source
and its respective coefficient row is represented by the error
matrix attached with a subscript k .

For the proposed method, equation (1) is extended and
refined to produce a STEM model. Specifically, consider
an example of fMRI blood-oxygen-level-dependent (BOLD)
time series, which consists of N scanned volumes and V
number of voxels arranged along the column direction in
Y = [y1, y2, . . . , yV ] ∈ RN×V . It is assumed that due to
sparseness along the row direction, each signal in Y can be
represented as a linear combination of temporal sources from
T according to the sparse coefficient strength in each column
of the spatial source matrix S. Suppose that the BOLD signal
at any voxel can be assumed smooth due to a neural response
that is smoothed by the HRF [56]; then this can be accounted
for as T⊤

= TpA. To achieve this decomposition, a sparsity
constraint is imposed on coefficient rows and corresponding
columns of the sparse representation matrix A ∈ RKp×K [57]
as

min
A,S

∥∥Y − TpAS
∥∥2
F + λ ∥S∥1 ,

sub.to.
∥∥Tpak∥∥2 = 1, ∥ak∥0 ≤ ζ (3)

where Tp ∈ RN×Kp is the matrix containing DCT basis,
and ak is the k-th column of A, K < Kp < N , ∥.∥0 is
the l0 norm that induces sparsity by counting the number of
non-zero elements, ∥S∥1 is the l1 norm on S and is given as∑K

k=1
∑V

j=1 |skj |, and λ is the sparsity parameter that controls
coefficient values in the k-th row. Associated l0 norm con-
strained least square is not part of the regularized problem
and is solved separately [58]. One way to solve this problem
is by computing error matrix of full data [56], [59], [60] to
update the unknowns in a sequential manner as

{ak , xk} = arg min
ak ,xk

∥∥∥Ek − Tpakxk
∥∥∥2
F

where Ek = Y −
∑K

i=1,i̸=k t
i⊤xi. This is another example

of inefficient learning because it calls dataset L times for
each of the K dictionary atoms/sparse codes, creating an
analytic complexity of 4LK and computational complexity of
approximately LK (KNV+3NV+ζ 3+KpN ) [56]. Because the
proposed algorithm operates in a block manner, makes lesser
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TABLE 1. Algorithm for spatiotemporal dimensionality reduction.

calls to data, and performs lesser computations, the total
complexity is brought down to approximately 2LK (K 2

+NV ).

A. SPATIOTEMPORAL AUTOENCODER
A spatiotemporal PCA can be achieved by performing SVD
on the data matrix Y to decompose it as

Y = �10⊤

where 1 ∈ RM×M consists of singular values on the diago-
nal, and matrices � ∈ RN×M and 0 ∈ RV×M consists of M
number of left and right singular vectors, respectively. Using
these singular matrices that contain the eigenvectors of the
temporal and spatial covariance matrices, one can obtain the
reduced spatial and temporal feature matrices Xt ∈ RK×N

and Xs ∈ RK×V by keeping only the first K < M singular
vectors with maximum variance as

Xt = 10⊤Y⊤, Xs = �⊤Y

Mathematically, this is same as Xt = �⊤, and Xs = 10⊤.
The objective of PCA is to encapsulatemost information from
the data into a few components. This may result in severe
noise contamination of significant components because the
hemodynamic response signal of fMRI is usually weak com-
pared to the noise signals [8]. One way to resolve this is
to order components by their autocorrelation profile rather
than maximum variance, but producing corresponding spa-
tial components is challenging. Due to this limitation and
computational inefficiency associated with SVD operation,
an autoencoder was introduced as an alternative to PCA.

A three-step temporal autoencoder [61] has been deployed
for the proposed method. It is an extension of an extreme
learning machine equipped with a feedback mechanism to
pull the output data back to hidden nodes to enrich and
accelerate the learning process. It is adapted for the proposed
ssBSS case to learn the respective spatial features along with
temporal ones. It is used as a dimensionality reduction step,
and preferred over PCA-based whitening operation due to
its learning efficiency and overcomplete nature. It atleast can
preserve the quantity of the input information, and subsequent
steps of the proposed method can improve quality.

TABLE 2. Algorithm for realizing l0 constraint.

It is a two-layer network where input is transferred
to low-dimensional random feature space followed by the
computation of hidden nodes using invertible functions
and, finally, re-estimating low-dimensional feature space by
pulling the weights of the decoding layer back to the hidden
nodes. For a given data matrix Y ∈ RN×V , orthogonal
random weight matrix fA ∈ RK×V and bias vector f b ∈ RK

of the encoding layer, the first step constructs the first layer
of the network through the orthogonal random process for
(N ,V ) number of input neurons and (K ,K ) number of hidden
neurons given as

fH = G
(
fA, f b,Y⊤

)
,

fAfA
⊤

= I, f b
⊤f b = 1,

f F = G
(
fH,Y

)
. (4)

where
(
fH,Y

)
=

fH(fH⊤fH + βN IN )−1Y, and G is any
general hidden neuron function such as sigmoid, wavelet,
radial basis, and sinusoid. In the second step, invertibility of
the activation function is exploited to obtain weights jA ∈

RK×N , jC ∈ RK×V and biases jb ∈ RV , jd ∈ RN of the
decoding layer as

jA =
fH

†(
sin−1(Y⊤)

)⊤

if G(.) = sin(.),

jC = −
f F

†(
log

( 1
Y

− 1
))⊤

if G(.) =
1

1 + e−(.) ,

jB =

√
mse

(
fH⊤jA −

(
sin−1(Y⊤)

)⊤)
,

jD =

√
mse

(
f F⊤jC +

(
log

( 1
Y

− 1
))⊤)

. (5)

where the sigmoid transfer function is just a proposition, and
sinusoid can be used for the spatial case as well and vice-
versa, fH†

= (fHfH⊤
+ βK IK )−1fH and f F† = (f Ff F⊤

+

βK IK )−1f F. In the third step, feature data is updated using
weights fA =

jA, f C =
jC and biases f b =

jb1 ∈ R, f d =
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TABLE 3. Algorithm for solving the minimization problem (3).

jd1 ∈ R from the decoding layer as

fH = G
(
fA, f b,Y⊤

)
,

f F = G
(
f C, f d,Y

)
. (6)

Steps 2 and 3 are repeated several times until convergence;
however, we found that the computation of feature data fH
just twice is sufficient to transform the data from high to low
dimensional space while retaining the meaningful informa-
tion from the observed data. The detailed description of these
steps is given in Table 1 in the form of an algorithm.

B. ssBSS
Using blind source separation theory, one can obtain the
following pair of mixture models given as

X⊤
t = T⊤U⊤, Xs = WS (7)

where the unknowns U,W ∈ RK×P are the mixing matrices
whereas T ∈ RP×N and S ∈ RP×V are the source matri-
ces, and K ≥ P. For a non-orthogonal demixing matrices,
equation (7) and (1) can be manipulated together to obtain

the unknowns W and U as

W = Xs(Y⊤Y + βV IV )−1Y⊤X⊤
t (UU

⊤
+ βK IK )−1U,

U⊤
= (W⊤W + βPIP)−1W⊤Xs(Y⊤Y + βV IV )−1Y⊤X⊤

t

where βK IK and βPIP are the Tikhonov regularization terms
to avoid overfitting and singularity of UU⊤ and W⊤W,
respectively [55]. From the above equation, one can infer that
taking the inverse of the data’s covariance matrix is cumber-
some. Therefore, it would be more convenient to indirectly
exploit the information from the observedmixturematrixY to
estimate the source signals. Specifically, the source estimates
S and T obtained directly from the entire data matrix can
be used to estimate mixing matrices and then re-estimate the
source matrices. This approach will produce an optimal solu-
tion by properly unmixing the PC/autoencoder components.
For instance, by imposing sparsity on the matrices W, U, S,
and T, the orthogonality condition of the mixing matrices,
e.g., W†

= W⊤ can be violated and results far superior to
PCA/autoencoder can be obtained. This is because dimen-
sionality reduction methods’ spatial and temporal overfitting
can be retracted.

Therefore, we extend this idea to efficiently solve the non-
smooth constrained optimization problem given in equation
(3). For this purpose, consider solving equation (3) using (7),
which breaks (3) into following pair of problems

min
A,U

∥∥∥X⊤
t − TpAU⊤

∥∥∥2
F

+ λ1 ∥U∥1 ,

sub.to.
∥∥Tpap∥∥2 = 1,

∥∥ap∥∥0 ≤ ζ (8)

min
S,W

∥Xs − WS∥
2
F + λ2 ∥W∥1 + λ3 ∥S∥1 (9)

According to Neumann’s alternating projection strategy [43],
these two subproblems can be solved iteratively and alter-
nately until the convergence of the unknowns, and they will
ultimately result in an optimal solution of equation (3) while
mutually converging to the subspace formed by them. This
can be accomplished by letting T estimated from equation (8)
to play its role in optimizing (9) and using S estimated from
equation (9) in solving (8) through their mutual connection
given by equation (1). Therefore, temporal sources obtained
from the above problem can then be plugged into equation (1)
to obtain the spatial sources and vice versa.

Due to l1 norm in (3), proximal splitting methods [62] are
deployed to minimize functions that are not differentiable by
splitting the cost function into a sum of convex functions that
areminimized in an alternatingmanner. For instance, oneway
to approach this problem is through gradient descent, giving
rise to the thresholded Landweber problem given as

sn+1
k = Mλ

(
snk − T(T⊤snk − yk )

)
,

Mλ(z) = sgn(z) ◦

(
|z| −

1λ
2

)
+

where (z)+, sgn(.), and ◦ define the component-wise max
between (0, z), the component-wise sign, and the Hadamard
product, respectively [63]. For the proposed ssBSS method,
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FIGURE 3. A block diagram of the proposed method where the autoencoder performs dimensionality reduction and the rest of the blocks attempt to
recover underlying spatial and temporal sources.

FIGURE 4. The size of 8 different activation blobs controlled using spread parameter ρ to create none to significant spatial overlap.

the sparsity pattern, however, has been imposed row-wise,
then sk,n+1

= Mλ

(
sk,n − tk (t⊤k s

k,n
− Y)

)
. It is speculated

that similar conditions, that is, when T⊤ holds the finite basis
injective property and s†k possesses a strict sparsity pattern,
linear convergence rate would be achieved as sk,n → s†k such
that

∥∥∥sk,n → s†k
∥∥∥ ≤ Cα where C > 0 and 0 < α < 1 [64].

Similarly, it is also postulated that both mixing matrices
must hold i) strict sparsity pattern because none of their
columns can be completely zero for any case, and ii) both
source matrices S/T hold unique sources/basis that cannot
be constructed as a linear combination of the other two.
When a scenario such as a bad source occurs (whose spatial
source consists of all zeros), the respective temporal source is
replaced with the least represented normalized data element
from the mixture matrix. Before attempting an efficient solu-
tion, equation (8) can be re-written for a sequential update
as

min
ap,u⊤

p

∥∥∥E⊤
p − Tpapu⊤

p

∥∥∥2
F

+

K∑
k=1

λk1p|u
k
p|,

sub.to.
∥∥Tpap∥∥2 = 1,

∥∥ap∥∥0 ≤ ζ

where E⊤
p = X⊤

t −
∑P

i=1,i̸=p t
i⊤u⊤

i ∈ RN×K . Then the
following closed-form solution can be reached by solving this

equation with respect to the unknowns as shown in [56]

u⊤
p = sgn

(
a⊤
p T

⊤
p E

⊤
p

)
◦

(
|a⊤
p T

⊤
p E

⊤
p | −

λ1p

2

)
+

,

ap = argmin
ap

∥∥∥E⊤
p up − Tpap

∥∥∥2
2

sub.to.
∥∥ap∥∥0 ≤ ζ (10)

where λ1p = [λ11p, . . . , λ
k
1p]. Although this error matrix based

solution in combination with equation (9) is not based on a
full data matrix, it is still only efficient for the synthetic data.
As the size of the components (K ) increase, it becomes an
expensive update, and therefore we shift our focus toward the
block update for all experimental data. Taking the Lagrangian
of equation (8) provides

L(A,U) = XtX⊤
t − 2X⊤

t UT + UTT⊤U⊤
+ λ1 ∥U∥1 (11)

Ignoring penalization on the mixing matrix and after some
manipulations, a block update for U can be obtained as

U = XtT⊤(TT⊤
+ βPIP)−1 (12)

Now taking penalization of U into account, univariate soft
thresholding can be performed on it as up = sgn(up)◦ (|up|−
1λ1
2 )+, and block update for T is obtained as

T⊤
= X⊤

t U(U
⊤U + βPIP)−1 (13)

where 1 is a vector of ones of length K . Using (13) an
update for p-th column of A can be obtained as ap =

(T⊤
p Tp)

−1T⊤
p X

⊤
t up. Using this solution of ap and imposing
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FIGURE 5. Mean values of a) mcTC and b) mcSM over 100 trails where sources are recovered with respect to GT-SMs.

l0 norm constraint on it gives rise to the following constrained
problem given as

ap = argmin
ap

∥∥∥X⊤
t up − Tpap

∥∥∥2
2

sub.to.
∥∥ap∥∥0 ≤ ζ (14)

Solution for (14) is ap,is = (T⊤
p,isTp,is )

−1T⊤
p,isX

⊤
t up, where

finding the indices set is using correlation based thresholded
values [56], [65], [66] is the main task as described in Table 2
in the shape of an algorithm. Equation (9) can be written as

L(S,W) = X⊤
s Xs − 2X⊤

s WS + S⊤W⊤WS + λ2 ∥W∥1

+ λ3 ∥S∥1 (15)

While disregarding penalization on mixing matrix, from (15)
an update for W is given as

W = XsS⊤(SS⊤
+ βPIP)−1 (16)

To accommodate penalization on W, take into account the
soft thresholding given by wp = sgn(wp) ◦ (|wp| −

1λ2
2 )+.

Similarly, S, while ignoring penalization on its entries, can
be updated as

S = (W⊤W + βPIP)−1W⊤Xs (17)

and its soft thresholding is implemented as sp = sgn(sp) ◦

(|sp| −
1λ3
2 )+. Using equation (12, (14), (16), and (17)) a

block update for four unknowns U, A, W, and S can be
obtained by an alternating minimization approach where one
variable is kept fixed while other one is updated. The related
optimization steps are given as an algorithm in Table 3 and
in terms of a flow chart in Fig. 3. The soft thresholding for
these matrices, which is applied row/column-wise, can also
be realized in a block manner for a threshold υ > 0 and the
matrix M as (Tυ (M))ji = sgn(mji) ◦ (|mji| −

υ
2 )+.

V. EXPERIMENTS
To validate the proposed ssBSS method, its evaluation is
carried out in this section. It consists of several compar-
ative studies implemented using a synthetic dataset, three

experimental fMRI datasets, and existing BSS algorithms
based on mixing matrices and sparse weights strategies. The
participating algorithms are introduced in Table 4 along with
their code availability. These are JADE, sICA, sPCA, ifICA,
ssICA, sPLS, sCCA, and the variants of the proposed method
i) ssBSSP, ii) ssBSSA, and iii) ssBSSAS.

The synthetic dataset was prepared using the Simtb tool-
box [67], the block design fMRI dataset of a single subject
was acquired from the quarter 3 release of the Human Con-
nectome Project (HCP) [68], [69], the resting-state dataset of
a single subject was obtained from the first set of the S900
release of the HCP [68], [69], and the event-related dataset of
a single subject was provided by theKoreaAdvanced Institute
of Science and Technology (KAIST) and has been previously
used in other papers [70], [71], [72]. Using these datasets,
all participating BSS algorithms are compared to assess their
ability to recover the ground truth.

Before commencing with the analysis, it is imperative to
mention the following specifics, which are common to all
datasets:

1) For the variants of the proposed method, the matrix T
was generated by drawing random numbers from the
standard normal distribution when using both synthetic
and experimental datasets.

2) Each algorithm’s tuning parameter settings were man-
aged by trying their different combinations. The ones
that produced the best results in terms of the sum of
the correlation strength between the recovered and the
ground truth sources were considered.

3) It was aimed to preserve most of the information in
the data when performing dimensionality reduction by
PCA or autoencoder. For this purpose, trying different
values and selecting the best one was preferred over the
model selection approach such as Akaike’s Information
criterion [73].

4) While selecting the total number of DCT basis and their
associated sparsity parameter for the proposed method,
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FIGURE 6. For all variants of the proposed method, a) convergence rate, and b) the mean of the sum of the highest
correlations between ground truth SMs/TCs and recovered sources shown as a function of algorithm iterations.

TABLE 4. A summary of the BSS algorithms that have been included in the comparative study.

our approach relied on a bias-variance tradeoff to avoid
preserving toomuch information and ignoring essential
features in the temporal source. For this purpose, sev-
eral bases were tried between 60 andN before reaching
an optimal number.

5) For sPLS and sCCA, the second multivariate data set
was generated using a lagged version of SVD’s left
singular vectors.

6) The number of underlying sources is unknown for
experimental fMRI data, so their selectionwas based on
trial and error. Several numbers ranging between 30 and
60 were tested, and the ones that gave the best results
were used for each algorithm.

7) Because sICA and ssICA gave different results and
computation times when applied repeatedly on the
same dataset, they were applied ten times on each

experimental data. The run with best results was
acknowledged, and themean computation time over ten
runs was considered.

8) The MRIcron toolbox [74] is used for all brain image
plots of experimental fMRI dataset.

A. SYNTHETIC DATASET
1) SYNTHETIC DATASET GENERATION
In order to produce a dataset that mimics the experimental
fMRI signals, the Simtb toolbox was employed. It allowed
constructing eight distinct temporal and spatial sources for
synthetic dataset generation. Each time source consisted of
240 points with a repetition time (TR) of 1 sec, and each
spatial source comprised a square image of 150 × 150 vox-
els. The spatial components were generated by these source
IDs {3, 6, 8, 10, 22, 23, 26, 30}. Activations within the image
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slices were created by combining Gaussian distributions
parameterized by location, orientation, and spread. The spa-
tial extent of these activations was controlled using the spread
parameter (ρ), which is the mean of the Gaussian distribu-
tion ∼ N (ρ, 0.012). The spatial maps (SMs) with none to
significant spatial overlaps are shown in Fig. 4a-e, and their
respective time courses (TCs) are shown in Fig. 7, which are
also considered as the ground truth (GT) TCs and SMs when
retrieving the underlying sources.

The reason for including 4a is to create a scenario with
no spatial dependence but considerable sparseness of the
spatial sources. These sources were then utilized to generate
a synthetic dataset using a linear mixture model given as
Y =

∑8
i=1(tci + ψi)(smi

+ φi), where the noise generating
matrices 9 ∈ R240×8 and 8 ∈ R8×22500 were produced
using Gaussian distribution ∼ N (0, 0.6) and ∼ N (0, 0.01),
respectively, TC ∈ R240×8 contains the time courses, and
SM ∈ R8×22500 contains the spatial maps obtained after
reshaping the image slices. Depending on the value of ρ, the
resulting dataset Y was then generated and used for source
retrieval by all algorithms.

2) SYNTHETIC DATASET SOURCE SEPARATION
To keep the convergence rate comparable, the total number of
iterations was set to 30 for all algorithms. Unlike real fMRI
data, ground truth about the number of generating sources is
known for the synthetic dataset. Therefore, the same number
of components were trained for each algorithm. The total
number of components to be extracted was set to 8 for JADE,
sPCA, sPLS, and sCCA. Using SVD dimensionality of the
data was reduced to 16, from which eight components were
extracted using sICA, ssICA, ifICA, and ssBSSP. Whereas
250 components were kept from the autoencoder, and then
eight sources were retrieved for ssBSSA and ssBSSAS. The
ability of the autoencoder to extract a set of overcomplete
basis is exhibited by reducing the data dimensionality to 250,
which is greater than the total number of time points. As the
selection of tuning parameters was based on getting the best
results in terms of correlation values, many values were tried
before setting the sparsity parameter to 300 for sPCA, 30 for
sCCA, and 5 for sPLS, and default parameter settings were
used for ifICA. The sparsity and smoothing parameter for
ssICA was set to 0.7 and 105, respectively. For ssBSSP, the
sparsity parameters were set as λ1 = λ2 = 0.01 and ζ = 90,
whereas λ1 = 2, λ2 = 3, and ζ = 60 for ssBSSA, and
λ1 = λ2 = 2 and ζ = 60 for ssBSSAS, and the total number
of DCT basis was set to Kp = 150 and λ3 = 12 for all three
variants.

3) SYNTHETIC DATASET RESULTS
This section discusses simulation results to demonstrate the
robustness and consistency of the proposed method to spatial
dependence. In this regard, the spread parameter ρ was varied
between 0.6 and 5 to gradually create activation overlaps
as shown in Fig. 4a-e and Fig. 7. Initially, five different
activation instances were created using five different values

FIGURE 7. Activation maps with a different spatial dependence compared
to Fig. 4 and the corresponding time courses.

TABLE 5. Mean correlation values over 10 trials for ρ = 4.5.

of ρ. For each activation instance, all algorithms attempted
to recover the underlying sources 100 times, where every
time the dataset Y was generated using Gaussian distribution
∼ N (0, 0.6) and ∼ N (0, 0.01) , for spatial and temporal
noise respectively.

Underlying source TCs/SMswere recovered by correlating
every algorithm’s extracted sources with the ground truth
sources and keeping the indices of the highest correlation
values. These values were computed with respect to GT-SMs
and saved as cTC/cSM. Except for JADE and ifICA, where
temporal sources were recovered first, all other algorithms
recovered spatial maps and then obtained corresponding tem-
poral sources using least squares. For each of the 100 trials
and five spatial overlap instances, the mean of the highest
correlation values for eight spatiotemporal sources is saved
as mcTC/mcSM, and their mean is plotted in Fig. 5. The
convergence rate of all variants of the proposed method as
a function of algorithm iterations is plotted in Fig. 6a. The
progression of the mean of the sum of correlation values
between the recovered spatiotemporal sources and ground
truth sources over the algorithm iterations is shown in Fig. 6b.
It can be deduced from Fig. 5 that the proposed method’s

variants achieved the highest source recovery performance.
Although this performance decreased with increasing spa-
tial overlaps, it remained higher than all other competing
algorithms. Among all the variants, the ssBSSAS algorithm
seemed to have performed slightly better than ssBSSA for
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FIGURE 8. For the block design dataset’s left toe (A) and tongue
(B) movement tasks, the most correlated temporal components with MHR
obtained using a) JADE, b) sICA, c) ssICA, d) ssBSSP, and e) ssBSSA. The
corresponding correlation values are given in Table 6.

some cases; however, this performance gain is at the cost
of increased computational complexity. Moreover, compared
to other algorithms, the proposed algorithms had performed
exceptionally well in unveiling spatial maps when the sources
were very sparse, that is, ρ = 0.6. It is worth mention-
ing that ssICA turned out to be a runner-up as the spatial
dependence was increased, and JADE also accomplished
impressive results over all cases. Fig. 6 illustrates that all
variants of the proposed method have converged around the
fifteenth iteration, after which they also stopped accumulat-
ing the correlation strength. After the fifteenth iteration, this
strength was maintained as the algorithms settled down after
convergence to a local minimum.

Later on, in order to obtain component-wise analysis and
keep computational analysis on equal footing to the real fMRI
datasets, the experiment was repeated for ρ = 4.5 as shown
in Fig. 7. For this experiment and the real fMRI dataset in sub-
sequent sections, ssBSSAS, due to its higher computational
cost, ifICA and sPCA, due to their inferior results in terms of
spatial maps, have been dropped from further analysis. This
experiment was repeated ten times with a random spatial and
temporal noise of variance 0.6 and 0.01, respectively. The
mean of correlation values over ten trials is given in Table 5
where one can see that the block variant of the proposed
method with components from autoencoder (ssBSSA) has
outperformed all other algorithms by recovering both spa-
tial and temporal sources with the highest correlation values
except the few occurrences. In this case, the total computation
time in seconds consumed by all algorithms over all trials
is given in the top row of Table 9 with the lowest values
highlighted in bold.

B. EXPERIMENTAL fMRI DATASET
1) EXPERIMENTAL fMRI DATASET PREPROCESSING
Excluding the resting-state dataset, which the HCP had
already processed using their preprocessing pipelines, the
block design, and the event-related dataset were prepro-

TABLE 6. Correlation values of most correlated temporal components
with MHRs for six different block design tasks obtained using five BSS
algorithms and two variants of the proposed method.

cessed using the SPM-12 toolbox [1]. The preprocessing
steps comprised realignment, normalization, spatial smooth-
ing, and masking. More details about these steps can be
found in [56]. To correct for motion artifacts, functional
images were realigned to the first image, then all images
were spatially normalized to a standard Tailarach template,
resampled to 2 × 2 × 2 mm3 voxels, and spatially smoothed
using a 6×6×6 mm3 full-width at half-maximum (FWHM)
Gaussian kernel followed by the masking step to remove
any data outside the scalp. After the masking step, the
four-dimensional datasets were reshaped and stored in a 2-
dimensional matrix Y to be considered as a whole brain
dataset. This resulted in the size of Y to be 284× 236115 for
the block design dataset, 311 × 166390 for the event-related
dataset, and 400 × 230367 for the resting-state dataset. As a
second last step, temporal filtering was performed on all three
datasets, which consisted of a high-pass DCT basis set filter to
remove scanner-induced trends and a low-pass FWHM filter
to remove physiological noise. The cutoff for a DCT-based
filter was set to 1/150 Hz for block design, whereas 1/128
Hz for event-related and resting-state datasets. FWHM of
1 sec was used for both block design resting-state dataset,
and 1.5 secs for event-related. These cutoffs were assigned
according to the previous studies [70], [72]. As a final step,
all column entries of Y were normalized to have zero mean
and unit variance for all datasets.

2) BLOCK DESIGN DATASET
The motor task 3T MRI unprocessed block design dataset
used in this section was acquired from the quarter 3 release
of the HCP [68], [69]. To map the primary motor cortex of
the brain experiment was run for 204 secs; the visual cues
were presented to the subjects to tap their right or left fingers,
squeeze their right or left toes, or move their tongue. Subjects
were shown a three-second visual cue followed by a specific
movement task lasting 12 seconds. There were ten movement
tasks, including left/right finger, left/right toe, and two tongue
movements. Thus, there were a total of 13 blocks, including
three fixation blocks that lasted for 15 secs. To obtain GT-
TCs, six modeled HRF (MHRs) were produced by using the
convolution operation between the canonical HRF and task
stimuli related to 5 movement types {left toe (LT), left finger
(LF), right toe (RT), right finger (RF), tongue (T)} and visual
type cue (VC). A Siemens 3 Tesla (3T) scanner was used to
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FIGURE 9. Thresholded activation maps for left toe (A) and tongue
(B) movement tasks at a random field correction p < 0.001 obtained
using a) JADE, b) sICA, c) ssICA, d) ssBSSP, and e) ssBSSA.

acquire fMRI images for each subject. The acquisition param-
eters were TR= 0.72 secs, echo time (TE)= 33.1ms, field of
view (FOV) = 208× 180 mm, flip angle (FA) = 52o, matrix
size = 104× 90, slice thickness = 2 mm with 72 contiguous
slices, and 2 mm isotropic voxels, echo spacing = 0.58 ms,
BW = 2290 Hz/Px, and 284 EPI volumes were collected.
The dataset of a single subject with ID 163129, aged between
26 and 30 years, was used in our analysis.

3) BLOCK DESIGN DATASET SOURCE SEPARATION
Many values of the tuning parameters were tested, and
their best combination in terms of the sum of correla-
tion strength with the ground truth was considered. The
total number of components to be estimated was set
to 40 for sPLS, and sCCA. While performing dimen-
sionality reduction 40/60/50 components were kept from
PCA, and then 40/60/50 sources were uncovered using
JADE/sICA/ssICA. Whereas 60/105 components were kept
from PCA/autoencoder, and then 40/35 were extracted using
ssBSSP/ssBSSA. The total number of iterations was set to
30 for all algorithms. The sparsity parameter was set to 15 for
sCCA and sPLS. The sparsity and smoothing parameter for
ssICA was set to 50 and 105. For ssBSSP, the sparsity param-
eters were set as λ1 = λ2 = 0.01, λ3 = 16, ζ = 50, and
Kp = 60, whereas λ1 = 0.3, λ2 = 0.11, λ3 = 16, ζ = 50,
and Kp = 60 were used for ssBSSA.

4) BLOCK DESIGN DATASET RESULTS
Due to the absence of ground truth for spatial maps,
we decided to base our analysis on the BOLD time series via
six constructedMHRs. This was accomplished by correlating
the MHRs with temporal components retrieved by all algo-
rithms and saving the highest correlation values. These values

FIGURE 10. For the even-related dataset, thresholded activation maps for
the right finger tapping task at a random field correction p < 0.001 and
corresponding most correlated temporal source with MHR function
obtained using a) JADE, b) sICA, c) ssICA, d) ssBSSP, and e) ssBSSA. The
respective correlation values are given in Table 7.

FIGURE 11. For the event-related dataset, default mode network retrieved
by keeping the most correlated spatial map with R4 RSN template
obtained from a) JADE, b) sICA, c) ssICA, d) ssBSSP, and e) ssBSSA.

are mentioned in Table 6 with the highest values highlighted
in bold, and a couple of recovered temporal components
(left toe and tongue along with the MHRs in red) and their
corresponding spatial maps are given in Fig. 8 and 9, respec-
tively. Only two activation maps have been shown to avoid
unnecessarily increasing the paper length. The table shows
that the proposed ssBSSA algorithm has the highest similarity
with the ground truth overall. Fig. 9 shows that the vari-
ants of the proposed (ssBSS) method, specifically ssBSSA,
retrieved activation maps that are very specific to the motor
area compared to other algorithms. Although, ssBSSA has
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FIGURE 12. For the resting-state dataset, occipital pole visual (A) and lateral visual (B) network retrieved by keeping the most correlated spatial maps
with R2 and R3 RSN templates, respectively, obtained from a) JADE, b) sICA, c) ssICA, d) ssBSSP, and e) ssBSSA.

not produced the highest correlation values compared to other
algorithms for these plotted tasks, the recovered temporal
dynamics are comparable and spatial maps are distinct but
analogous. These results for the motor task dataset are very
similar to what has been reported in other papers [56], [72],
[75].

5) EVENT RELATED DATASET
The motor task 3T MRI unprocessed event-related dataset
used in this section was provided by KAIST [70]. During
the experiment, which was recorded for 650 secs, subjects
were asked to perform a right finger tapping task to map the
left motor area of the brain. The session began with an initial
preparation period of 30 secs and a resting period of 30 secs,
followed by 40 repeated trials of the task and resting period.
Here each trial’s duration is 28 secs, always starting with a
task period and ending with a rest. This was followed by an
additional 30 secs resting period. The interstimulus interval
varied between 4 and 20 secs, with a mean of 12 secs within
each repeated trial. The brain scans were acquired using the
3T ISOL Technologies MRI system Korea. The acquisition
parameters werematrix size= 64×64, TR/TE= 2000/35ms,
FA = 80o, slice thickness = 4 mm with 24 contiguous slices,
voxel size= 3.44×3.44×4mm3. A total of 325 EPI volumes
were collected, from which the first 15 preparation scans
were discarded. The dataset of a single subject with ID s3sh
aged between 23 and 28 years approximately was used in our
analysis.

6) EVENT RELATED DATASET SOURCE SEPARATION
The same strategy used for the block design dataset was
adapted for event-related dataset analysis. We commenced by
selecting the optimal number of sources and tuning parame-
ters by experimentation. To keep the comparison unbiased, all

TABLE 7. Correlation values of most correlated temporal components
with event-related finger tapping MHR and most correlated spatial map
with few RSN templates using five BSS algorithms and two variants of the
proposed method. The best values are highlighted in bold.

TABLE 8. For resting-state dataset, correlation values of the most
correlated spatial component with few RSN templates using seven
different algorithms, including the variants of the proposed method.

algorithms were run for 30 iterations. For sPLS, and sCCA,
40 components were estimated. For JADE, sICA and ssICA,
40 components were estimated after retaining the same num-
ber of components from PCA. Whereas for ssBSSP/ssBSSA,
the dimensionality of the data was reduced to 60/105 using
PCA/autoencoder to extract 40 components in both cases. For
sCCA and sPLS, the sparsity parameter was set to 25 and 8,
respectively. For ssICA, the smoothing/sparsity parameters
were set to 105/5. The sparsity parameters were set to λ1 =

λ2 = 0.025, λ3 = 11.5, ζ = 150, and Kp = 300 for ssBSSP.
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On the other hand, λ1 = 0.5, λ2 = 0.01, λ3 = 11.5, ζ = 150,
and Kp = 300 were used for ssBSSA.

7) EVENT RELATED DATASET RESULTS
This section deployed task-related MHR and some
resting-state networks (RSNs: R1-R10) described in [76] as
the ground truth. Using recovered components from each
algorithm, both temporal and spatial sources correlated with
the ground truth, and the highest correlation values were
saved. These values are reported in Table 7 with highest
values highlighted in bold, task-related (right finger tappig)
recovered time course and its associated spatial maps are
plotted in Fig. 10, and recovered default mode network (R4)
is plotted in Fig. 11. Overall, the ssBSSA algorithm has
produced the highest correlation values. Like the block design
dataset, task-related activationmaps from all algorithms seem
to have recovered activations very specific to the motor area,
and all algorithms have successfully recovered the default
mode network. In both cases, the maps obtained using ssB-
SSA seems to be more specific compared to other algorithms.
The recovered activation maps are similar to earlier reported
results for this dataset [37], [70], [71], [72], [77].

8) RESTING STATE DATASET
The resting-state dataset was obtained from the first set of 3T
MRI preprocessed S900 release of the HCP [68], [69]. The
same acquisition parameters as for the block design dataset
given in Section V-B2 were used. The experiment was run
for 873 secs, resulting in a total of 1200 scans. This data was
acquired two times in a single session for two different phase
encoding directions. Subjects were asked to keep their eyes
fixated on a bright crosshair presented in a darkened room,
and the second run that consisted of left to right phase encod-
ing was considered for our analysis. The first 20 scans were
discarded, the following 400 scans were kept for analysis,
and the remaining 780 scans were discarded. Before applying
temporal filtering, the preprocessed data downloaded from
the HCP website also underwent spatial smoothing using
6 × 6 × 6 mm3 FWHM Gaussian kernel. The dataset of a
single subject with ID 100206, aged between 26 and 30 years,
was used in our analysis.

9) RESTING STATE DATASET SOURCE SEPARATION
Similar to the last three datasets, all algorithms were iterated
30 times for an unbiased comparison. The number of sources
to be uncovered by each algorithm was decided by trying
numbers between 30 and 60. Different tuning parameter com-
binations were tested, and only the best were considered.
The number of components estimated using sPLS and sCCA
was 40. Whereas the dimensionality of the data was reduced
to 40/60/40, and the number of components estimated
was set to 40/40/30 for JADE/sICA/ssICA. On the other
hand, the dimensionality reduction was set to 60/105 for
ssBSSP/ssBSSA, while only 40 components for both algo-
rithms were eventually retained. The best sparsity settings

TABLE 9. Total and mean computation time in seconds and correlation
values by each algorithm for four different datasets.

for sCCA/sPLS were found to be 60/12. The best smooth-
ing/sparsity parameters for ssICA were noted as 105/10. The
sparsity parameters were set to λ1 = λ2 = 0.01, λ3 = 13,
ζ = 150, and Kp = 300 for ssBSSP. In contrast, λ1 = 0.2,
λ2 = 0.2, λ3 = 13, ζ = 150, and Kp = 300 were used for
ssBSSA.

10) RESTING STATE DATASET RESULTS
The resting-state networks (R1-R10), as reported in [76],
were factored in as the ground truth. Six of these networks
were found to be recovered by all algorithms. The recovered
components were correlated with six of these resting-state
templates, and the highest correlation values were kept, which
are reported in Table 8 with best values highlighted in bold.
The recovered activation maps that were most correlated
with R2 and R3 are plotted in Fig. 12. Overall, the ssBSSA
algorithm has produced the highest correlation values. All
algorithms successfully recovered the activation network for
the occipital pole region; however, only ssICA, ssBSSA,
and ssBSSP could correctly recover the ground truth for the
lateral visual network. Maps from both ssBSSA and ssBSSP
were found to be more specific, with lower false positives
compared to other algorithms.

C. DISCUSSION
Some statistics about the proposed method and its overall
comparison with other algorithms are illustrated in Fig. 13
and 14. The convergence rate of the block variants of the
proposed method for block design (BD), event-related (ER),
and resting-state (RS) datasets as a function of algorithm
iterations is plotted in Fig. 13a. The growth of the mean
of the sum of correlation coefficients between the retrieved
spatiotemporal and ground truth sources over the algorithm
iterations is shown in Fig. 13b. To give an idea about the
sparseness of the mixing matrix for the ssBSSA algorithm,
its image with scaled colors for the event-related dataset is
drawn in Fig. 14a. The total computation time and correla-
tion values by all participating algorithms for all datasets,
including the synthetic dataset (SD), are given in Table 9.
The pictorial version of this performance comparison is pro-
vided in Fig. 14b, where the mean computation time values
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FIGURE 13. For two variants of the proposed method, a) convergence rate, and b) the mean of the sum of highest
correlations between ground truth spatiotemporal sources and retrieved sources shown as a function of algorithm
iterations.

FIGURE 14. a) Temporal mixing matrix (U) of the event-related dataset revealing sparseness of its entries, b)
comparison of all participating algorithms in terms of computational time and source retrieval accuracy.

have been normalized to accommodate correlation values and
computation time in the same graph.

Fig. 13a shows that apart from some fluctuations, both
variants of the proposed method converged for all experimen-
tal datasets consistently; however, this consistency was more
evident for ssBSSP. Fig. 13b shows the gradual development
of source retrieval where the ssBSSA has been shown to
have performed better than ssBSSP. After observing both
subfigures, one can conclude that both algorithms for all three
datasets started to settle down after the fifteenth iteration
except for ssBSSA in case of the BDdataset. Fig. 14b displays
the overall performance by all algorithms where the variants
of the proposed method have exhibited superior results in
terms of computation time and source recovery strength, with
ssICA being the runner-up in source recovery category and
sICA in computation time.

VI. CONCLUSION
A new source separation method is proposed for fMRI
data, and all possible settings for its solution are presented,
including thresholding, PCA, autoencoder, and discussion
on convergence. The effectiveness of the proposed ssBSS

method is demonstrated using synthetic and experimental
fMRI datasets. Its performance was consistent across exper-
iments, and its computational simplicity makes it favorable
over swBSS and scBSS variants such as SOBI, JADE, sPCA,
sCCA, sPLS, sICA, ssICA, and ifICA. Its reduced com-
putational complexity is in terms of analytical complexity
associated with lesser calls to data and arithmetic complex-
ity associated with lesser operations required to solve the
method [78]. It can be considered a promising alternative to
ICA, sparse ICA, and other swBSS-based neuroimaging data
analysis methods. Investigating the fluctuations exhibited in
the convergence of the ssBSSA algorithm and using model
selection criteria for the optimal number of PCA/autoencoder
components can be pursued as part of future work.

Unlike conventional time-consuming strategies, such as
joint diagonalization of covariance matrices, deflation, inde-
pendent decomposition of each mixture signal during sparse
coding, and repeated error matrix computation of full data
matrix, the proposed method concurrently exploited spa-
tial and temporal information from reduced-dimension space
in a sparse manner, leading to better source recovery at a
reduced computational cost. The STEMmodel that takes into
account the temporal smoothness and the spatial sparseness
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along the fMRI data matrix columns and rows, respectively,
is computationally intensive to solve; however, by manip-
ulating the BSS theory, it was disintegrated into two sub-
optimization problems. Based on Neumann’s alternating
projection lemma, its solution is based on performing the
block/sequential update of the source/mixing matrices from
these two sub-problems in an iterative manner. This strategy
allowed us to solve the STEM model in a computationally
efficient manner. It was speculated and then found empiri-
cally that convergence of the proposed model is guaranteed if
finite basis injective property and a strict sparsity pattern are
sustained. It produced results that were specifically superior
to strategies based on the combination of sparsity and inde-
pendence.
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