IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 21 April 2023, accepted 12 May 2023, date of publication 17 May 2023, date of current version 24 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3277198

== RESEARCH ARTICLE

Visibility-Based Fast Collision Detection of a
Large Number of Moving Objects on GPU

MANKYU SUNG

Department of Game Software, Keimyung University, Daegu 42601, Republic of Korea
e-mail: mksung@kmu.ac.kr

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government
[Ministry of Science and ICT (MSIT)] under Grant 2021R1A2C1012316.

ABSTRACT This paper proposes a simple and efficient collision detection algorithm for a large number of
moving objects. The basic idea is to minimise the number of moving objects that go through the complicated
the collision checking process, which can improve the overall performance. To this end, we propose a
visibility-based culling technique that identifies substantially small or hidden objects that do not cause any
visual artifact even if we ignore them. This paper also develops a variable-size Morton codes to speed up
the construction time of the Linear Bounding Volume Hierarchy (LBVH), which is used to efficiently check
the proximity between objects efficiently. The visibility-based culling technique is based on the so called
visibility map on the top of the g-Buffer technique. This map is a texture that contains the ID of the moving
object in the screen space. The number of fragments of each object on the map is then counted in parallel
manner on the GPU. If the number of fragments is less than a predefined threshold value, the algorithm does
not include the object in the LBVH constructions step. Although the performance depends on the camera
view point, we have verified through several experiments that the proposed algorithm improves the overall

performance at least 70% even when the number of moving objects is more than 10,000.

INDEX TERMS Collision detection, linear bounding volume hierarchy, visibility.

I. INTRODUCTION

When we want to animate or simulate a large number of 3D
objects in real-time applications such as video games, the
most nagging problem we have to solve is how to prevent
them from inter-penetrating with each other. Many different
approaches have been proposed to achieve this goal. A few
survey papers [1], [2], [3] explain the evolution of key impor-
tant techniques. Today, the advent of programmable hardware
allows us to build a high-performance algorithm that exploits
the highly parallel nature of the GPU. Although GPU is
mostly used to accelerate gaming graphics. Today, General
Purpose Graphics Processing Units (GPGPUs) are the hard-
ware of choice for accelerating computational workloads in
the modern High Performance Computing (HPC) landscape.
This gives researchers a new way to solve collision detection
problems on GPUs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Wei

For the collision detection problem, the BVH(Bounding
Volume Hierarchy) is the most popular acceleration struc-
ture to represent a hierarchical abstraction of complex 3D
geometry due to its small memory requirement and simplic-
ity. Parallel construction of BVH algorithms on the GPU is
able to maximize their performance. Although the original
BVH algorithms were used for the ray-object intersection
problem, [4], [5], [6] shows that they also be used for collision
detection between many 3D moving objects as well, which
is called linear BVH(LBVH). The key idea is to first sort
the objects along a space-filling curve, also known as Morton
codes, and then recursively partition them so that each node
ends up representing a linear range of objects. Of all the steps
in constructing the LBVH, the most time consuming step
is sorting the objects based on their Morton codes, which
are generated from the 3D position of the object. Since the
Radix sorting method is generally used, the number of bits
and the layout of the bits representing the Morton codes are
the critical for improving the performance. Several methods

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

49456

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-5807-6719
https://orcid.org/0000-0001-8267-0283

M. Sung: Visibility-Based Fast Collision Detection of a Large Number of Moving Objects on GPU

IEEE Access

have been proposed to construct the tree in memory-efficient
manner [7], [8], [9] because memory usage was the prob-
lem for a large number of objects. Efficient ordering of
Morton codes using locally-ordered clustering with spatial
sorting also proposed [10], [11]. In this paper, inspired by the
extended Morton code proposed by [12], we have proposed
a variable-size Morton code technique in which the number
of bits is changing adaptively per frame depending on the
situation. That is, depending on the visible number of objects
in the scene, the number of bits changes from minimum of
16 bits to a maximum 64 bits dynamically. Through several
experiments, we have found out that this adaptive approach
speeds up the sorting time.

One major disadvantage of the LBVH is that it does not
take into account the camera’s point of view. For example,
if we apply this technique to the video game, all objects have
to go through the LBVH construction process, even though
many of them are hidden by the other objects or barely visible
on the screen because they are far away from the camera.

In this paper, we propose a visibility-based collision detec-
tion algorithm for a large number of moving objects. In this
algorithm, we assume that each moving object is encom-
passed by a bounding sphere. The basic idea is to generate
a visibility map that represents how many pixels are required
for a particular bounding sphere on the final rendered image
given a camera position and direction. If an object is sub-
stantially occluded or completely hidden by another object,
they it has a small number of pixels on the visibility map.
If the object is in this case, then the algorithm ignore it.
This makes sense because we don’t need to worry about the
collisions of visually insignificant objects. To improve the
performance, it is necessary to read the pixels of the visibility
map in parallel. We used GPU-supported Atomic counting
for this. In this way, we can reduce the number of objects
entering the collision detection. We found that the number
of visible objects entering the collision detection process is
significantly smaller than the original number of objects,
which can improve the overall performance.

A. CONTRIBUTIONS
The contributions can be summarized as following:

« Visibility based collision detection : we proposed a vis-
ibility map on the top of g-buffer algorithm where the
pixel of the map represents the id numbers of bounding
spheres. This map provides cue how visible the object
from the current camera setting, which can reduce the
total number of objects entering time consuming col-
lision detection stages by clipping out objects barely
visible.

o GPU based counting method : Given a visibility map,
we applied GPU-based pixel counting method. This
process is based on Atomic counting mechanism where
many threads are running simultaneously without inter-
fering each other to count the number of pixels having
particular id numbers.

VOLUME 11, 2023

« Adoptive Morton codes : For testing collision among a
large number of bounding spheres, the LBVH has been
proved to be an efficient algorithm. Instead of using a
fixed number of bits for Morton code, which is assigned
to each moving object based its positions, we proposed
a method that changing the number of bits for Morton
codes adaptively that improves the overall performance.

Il. RELATED WORK

A. COLLISION DETECTION

Given a large number of objects represented as bounding
spheres, the goal is to find a set of spheres that inter-
sect each other. This is called the N-body collision detec-
tion problem. Among all the different approaches to solve
the problem, sweep-based algorithms have been proposed
continuously. Basically, the sweep method finds overlaps
between AABBs(Axis-Aligned Bounding Boxes) by sorting
the projected extents of boxes on the Cartesian axis [13]. The
sweep and prune method improves on the original method
by exploiting temporal coherence, as object positions change
little over time [14]. However, it is not efficient for large
numbers of objects because it requires all pairs to be tested
separately.

Spatial subdivision is another way of improving the speed
of the check. Instead of comparing the collision for each
pair, this technique is able to limit the number of objects to
be compared by dividing up a continuous space into several
discrete areas based on a few simple rules. These techniques
include QuadTree, BSP Tree and bins/spatial Grids [15]. All
techniques have their own advantages and disadvantages [16].
One thing they have in common, however, is that they do not
consider how objects are looked on the final image plane.
No matter where the objects are, a collision test is always
performed. If an object is turns out to be negligible in the
final rendered image, we can cull it out at the earlier stage
instead. In this way, we can limit the number of objects that
enter to the collision test.

This paper introduces a perception-based visibility map
that contains object ID numbers for all fragments. By com-
bining hardware-supported Atomic counting capability with
the multi-pass rendering technique, the proposed algorithm
is able to detect which moving objects are negligible in
real-time by referencing the visibility map. Through a series
of experiments, we have verified that this leads to an improve-
ment in overall performance.

B. BOUNDING VOLUME HIERARCHY(BVH)

BVH-based techniques have been applied to ray-tracing prob-
lems for many years. The original BVH idea is to construct
a hierarchical structure of an object and in each tree node
store a bounding volume for the geometry of that sub tree [3],
[17], [18], [19]. Then, instead of doing the intersection test
of a ray against the complicate geometry itself, it performs
the test on the BVH structure instead by traversing from the
top node of the hierarchy, which is much simpler and faster.

49457

IEEE Access

M. Sung: Visibility-Based Fast Collision Detection of a Large Number of Moving Objects on GPU

TABLE 1. BVH construction time split.

Steps Avg time(us) Percentage
Morton code assignment 3.47 1.67
Radix sort with Prefix scan on the codes 191.1 92.3
Generation of leaf and internal nodes 10.2 4.92
And another entry 221 1.06

Further testing is not required if the upper level of the sub-tree
does not cause an intersection [4], [6]. However, for animated
scenes where many objects are moving at the same time,
reconstructing the BVH structure takes a significant amount
of time [20]. Re-fitting is a standard way for updating the
BVH efficiently [21].

On the top of the original BVH, researchers have proposed
several ways to construct the BVH in parallel manner, which
leads to significant performance improvement [17], [22],
[23], [24]. The linear BVH(LBVH) is the most promising
option because it fits well with the GPU architecture [15].
The LBVH gives the order of leaf nodes, which is the object
geometry, of the hierarchy tree and then internal nodes can
be built in parallel way. This order is called the space-filling
curve, also known as Morton codes [25]. In general, the Mor-
ton codes are assigned from the 3D position of objects. This
means that the X, Y and Z coordinates are interleaved bit-by-
bit to obtain the Morton codes. An extension of the Morton
code has been proposed by [12]. In the extended Morton
codes, three axes can be re-ordered or size information is
embedded for efficient traversing of the tree [12].

In this paper, by analysing the environment, we use the
adaptive Morton codes where the number of bits of the
Morton codes change dynamically depending on the number
of active objects. After the Morton codes are assigned, they
are sorted out by the Radix sorting method [26]. Although the
prefix-sum step of the Radix sorting can be done in parallel
[27], this sorting step is the most time consuming because
all the codes have to be sorted by bit-by-bit. When we check
the overall computation time of the BVH construction, this
sorting step takes almost 92% of the total computation time.
Table 1 shows the computation time of all steps for 2000 mov-
ing objects when we use 32bits for Morton codes. To reduce
the construction time, the number of bits for Morton codes
must be as small as possible. We use the re-ordered axis
version of the Morton code as suggested in [12], but we let the
number of bits change dynamically depending on the view-
point. The logic behind this is follows: If the average size of
each object in the final rendered image is not large, collisions
between objects are almost not noticeable. In this case, we can
allocate a small number of bits to the Morton codes so that
they can check for collision very quickly, although they may
miss some of the unimportant collisions.

Once the leaf nodes have been constructed by sorting
the Morton codes, the remaining internal nodes are built
by checking the common bits between two adjacent codes.
An efficient parallel algorithm for this has been introduced

49458

G-Buffer
L Creation)
) l Position /

Attach Textures

Z Visibility |

Atomic Counter
Reset

—_—— y
Object Position v
Update

J \

-

Instancing
G-buffer Object
Rendering

Atomic Counter
Reading

H

Object
Culling

H

BVH construction

|

BVH Traversal
for collision test

H

Normal Quad
Rendering

\

FIGURE 1. Overview of the algorithm.

by [6] for this. We also used this technique in our research as
well.

In summary, all other previous work did not consider how
important the objects are in the scene. That is, regardless of
the size of the object in the final rendered image, the collision
test was performed. In this paper, however, the proposed
algorithm first checks how many pixels are needed for the
object in the final rendered images, which is encoded in the
visibility map. If the object is small enough to be negligible in
the scene, or hidden by other objects, it is discarded at an early
stage. The number of bits for Morton codes in LBVH, which
significantly impacts the overall performance, is also changed
dynamically according to the camera setting in this algorithm.
The proposed method has an advantage in the performance
improvement.

lll. ALGORITHM

The whole algorithm is divided into a pre-processing step and
a rendering step. Figure 1 illustrates the whole steps. The
pre-processing step initializes the g-buffer [28]. The g-buffer
is generally used for multi-pass rendering [29], [30]. The
first render pass creates all lighting-relevant data as textures
including normal vectors, depth and world positions of the
vertices. Then, the second pass uses all the data from the
first pass and computes the shading or lighting of all pixels.
In addition to the general g-buffer structure, we propose to
add another texture called the visibility map. The visibility
map simply contains the ID numbers of objects in the screen
space. The right side of Figure 1 shows an example of the

VOLUME 11, 2023

M. Sung: Visibility-Based Fast Collision Detection of a Large Number of Moving Objects on GPU

IEEE Access

visibility map where each pixel contains the ID number
from 1 to 4 of the bounding spheres. An example of use of
visibility map is also shown in Figure 2 as well. Note that
the background pixel has an ID number of 0. The visibility
map, in our implementation, is an unsigned integer 2D texture
whose size is equal to the size of the rendered image for
simplicity. The more details about the creation of frame buffer
and textures can be found in the [31].

At the first render pass, the ID number of the object for the
visibility buffer can be easily set from the GPU instancing
where the instanced draw call has its own ID number in the
Vertex Shader. The GPU instancing is a powerful technique
for reducing draw calls when we went to similar geometry
data multiple times. It fits our case because the bounding
spheres have similar geometry even though they may have
different sizes.

The Fragment Shader then sets the same ID number for all
fragments obtained from the Rasterization. Listing 1 shows
the code snippet of the Vertex Shader and Fragment Shader
for the visibility buffer. Note that line number 40 of the
Listing 1 is where the ID number is set in Fragment Shader.

The model matrix in the listing can be built separately
for each object from the buffer containing the current world
position of the object. Note that we used the GLSL for the
implementation.

The second pass then counts the number of pixels for each
ID number in the visibility map. Due to the depth test, occlu-
sions between objects are naturally reflected on the visibility
map. Therefore, if the number of pixels for a particular object
is 0, then it means that it is completely hidden by other objects
or out of view frustum of the camera.

Once the visibility is constructed, the only remaining task
is to find a way to count the number of pixels efficiently.
In our approach, the counting of fragments is done by using
GPU-based Atomic operations [32]. Atomic operations allow
different threads to safely manipulate shared variables, and
in turn, allow synchronization and work sharing between
threads on the GPU. This is necessary because all invocations
of Fragment Shader must update the same counter exclusively
without any racing conditions. Current 3D graphics APIs
such as OpenGL, Vulkan, or DirectX support the Atomic
operations. Listing 2 shows the snippet of the Atomic count-
ing codes. Note that line number 15 of listing 2 is where the
counter is incremented.

If the number of fragments of a particular object is below
a predefined threshold value, X, the object can be ignored
for collision detection. We think of these objects as invisi-
ble. This selective culling minimizes the number of objects
entering to the complicated LBVH construction step. Figure 3
illustrates the culling process where the objects that pass
the threshold value are pushed into the visible object buffer.
In order to compact the visible object buffer, coordination
between threads is requited so that the index is increased
exclusively without a racing condition. In order to do this,
Atomic counter buffer must be created before hand. The
buffer can contain only unsigned integers and be incremented

VOLUME 11, 2023

Visibility map GPU Counting
0 1 1 0 0
o | 1 p ol o 1:7 pixels
Multi 2:9 pixels Object
o1 |1]2|2] ulti C jec
Threads . :> Culling
0 1 2 2 2 :
0 2 2 2 2
@ (b) (©
The first render pass The second render pass

FIGURE 2. An example of visibility map and its GPU counting: (a) The
visibility map contains the ID number of object. (b) Those numbers are
counted in parallel manner in GPU. (c) Those information is used to cull
out negligible objects that do not enter collision test.

Original |

Aot UGB) s B B Y
[thread [thread | thread [thread | [thread | thread |
; @ . e Y — -
|
Visible l S—
objects | |
data i
index 1 2 3 compacting

FIGURE 3. Selective Object Culling : After all threads check the visibility
of objects simultaneously, they compact the object’s data in serial
manner without conflict, if the object’s pixel count is greater than the
threshold. Note that (o) mark means the object is visible and (x) mark
means that object is not visible.

and decremented by one. Please refer to [31] for more
details.

Only objects in the visible object buffer can be sent to
the next collision checking step. This culling job was imple-
mented as a Compute Shader in our case.

As the algorithm is figuring out the visible objects, it also
calculates statistical information such as the average number
of fragments. This statistical information is used to determine
the number of Morton codes. Inspired by the extended Mor-
ton codes proposed in [12], we use a similar but modified
version of the algorithm in which the three different sets of
the number of bits are applied for depending on the situation.

The entire LBVH construction step follows the parallel
algorithm proposed in [15]. Figure 4 illustrates this step. First,
at the bottom of the figure, Morton codes are assigned to all
objects in the visible buffer. The Morton codes are built from
the global position of the object’s bounding sphere. We have
used the modified extended Morton code technique in our
algorithm. The extended Morton code method changes the
order in which the bits corresponding to different spatial axes
are used in the code [12]. In particular, ordering the axes by
putting the ones with the largest extent at the beginning of the
code had a positive effect because splitting the larger axes first
can make the center of the clusters are closer to the cuboid
shape and thus more spatially compact than always keeping
a fixed order [12]. Furthermore, instead of setting the same
number of bits for each axis, we can assign a different number
of bits depending on the extent of the axes. For example,

49459

IEEE Access

M. Sung: Visibility-Based Fast Collision Detection of a Large Number of Moving Objects on GPU

//
> //Vertex Shader
//
in vec3 VS_IN_Position; //local coord
5 in vec3 VS_IN_Normal;

7 out vec3 FS_IN_WorldPos; //global coord
8 out vec3 FS_IN_Normal;
9 out uint FS_IN_instanceID; //object ID number

11 buffer pos {
12 vec3 Pos[] //Buffer containing the p
objects

tion of all

13 };

15 void main () {
16 //Instance ID
17 FS_IN_instanceID = uint (gl_InstancelD);
18 //Build a model matrix for each object
19 mat4 model = build_transform(Pos[gl_InstancelD]);
20 //global vertex positions
FS_IN_WorldPos = model * Position;
22 //vt:rtcx normals
23 FS_IN_Normal = VS_IN_Normal;
%}
3 //
26 //Fragment Shader
7 // //
//Textures
out vec3 FS_OUT Normal; //A texture of vertex normal
out vec3 FS_OUT_WorldPos; //A texture of vertex position
out uint FS_OUT _vis;//A texture for visibility

33 in vec3 FS_IN_WorldPos;
in vec3 FS_IN_Normal;
in uint FS_IN_instancelD;

¢

void main() {

38 //for each pixel,

39 //write its ID number in the visibilt map
10 FS_OUT_vis = FS_IN_instancelD;

4 FS_OUT_Normal = FS_IN_Normal;

42 FS_OUT_WorldPos = FS_IN_WorldPos;

13}

Listing 1. Vertex shader/fragment shader snippet.

//visibility map
uniform sampler2D s_Vis;
3 //texture coordinates
in vec2 FS_IN_TexCoord;

IS

6 //Atomic counter buffer, n:number of objects
7 uniform atomic_uint acl[n];

9 void main() {
10 float v = texture(s_Vis, FS_IN_TexCoord).r
1 //if not a background

12 if (v > 0.0) {

13 int idx = int(v); //object ID

14 //increase the counter

15 uint a = atomicCounterIncrement (acl[idx - 1]);

Listing 2. Atomic counting codes in GPU.

if the environment is flat, then the y coordinate of all object
would be almost the same during animation. In this case,
we can assign the smallest number of bits for the y axis.
As we show in the table 1, the most time-consuming step in
building LBVH is the radix sorting. Radix sorting rearranges
the objects by bit-by-bit comparison. Therefore, the number
of bits has a significant effect on the overall performance.
Table 2 compares three cases when we use 16, 32 bits or
64 bits for Morton codes. Note that the configuration column
of the table explains the order of the axes and the number of
bits allocated to each axis as well.

49460

/ \
/ g \ TN (noder
/

1
]
0 1
g 2]
0 0 0
leaf nodes
0 0 0 0 1 1 1 1
T O
0 10 0 1 0 0 1 Sorted
1 0 0 1 1 0 1 0 Morton codes
A ! 4 4 4 4 4
radix sort

T T T T R
0 0 1 0 0 1 1 o Original
1 0 0 0 1 0 1 0 Morton codes
0 i 0 0 1 i 0 i

FIGURE 4. Construction of linear bounding volume hierarchy: Grey nodes
are internal nodes and yellow nodes are leaf nodes.

TABLE 2. Sorting time comparison (Note that configuration states the
order of the axes and the number of bits for the axis as well).

#of bits Sorting time(us) Configuration

16 98.13 x(7) — z(6)— y(3)
32 191.1 x(15) — z(14)— y(3)
64 403.3 x(31) — z(30)— y(3)

If we increase the number of bits for the Morton code,
detailed collision detection is possible because each object
occupies a separate leaf node. Otherwise, there is a chance
that two objects can have a exactly the same Morton code
if not enough bits are allocated. In this paper, we propose
to use the different sets of Morton codes depending on the
average number of pixels of all objects. The average number
of pixels is calculated in the visibility map counting step. The
logic behind this is similar to that of the visibility map. If the
camera is positioned far from the objects, then collisions are
almost invisible. Precise collision tests are not necessary in
this case. Given the average number of pixels of all objects,
say u, the number of bits for the Morton codes, denoted as
m, is determined by the formula 1, where a and b are the
predefined thresholds.

O<u<a=m=16
a<u<b=m=32 €))
>b=>m=064

After adding leaf nodes corresponding to all objects sorted
by Morton codes, internal nodes of the LBVH are constructed
by recursively finding common bits between adjacent nodes.
This process can be optimized by applying the parallel algo-
rithm proposed in [6]. See this paper for more details.

Once the LBVH is constructed, the actual collision test is
done by traversing the tree starting from the root internal node

VOLUME 11, 2023

M. Sung: Visibility-Based Fast Collision Detection of a Large Number of Moving Objects on GPU

IEEE Access

(a) Zoom-out camera

(b) Zoom-in camera

FIGURE 5. Collision Testing (number of objects = 2000).

1,500 T T T T T T
—F— with visibility map
—f— without visibility map
1,200 | |
3 900 |- —
<
)
g
<
L 600 |- |
300 — —
o L_L il \ L 1 \

1,000 3,000 5,000 7,000 9,000 11,000

of objects

FIGURE 6. Performance graph with/without visibility map.

and diving through the internal nodes in the tree to find leaf
nodes that intersect with the bounding sphere for that thread’s
object.

IV. EXPERIMENTS
We have conducted experiments to verify the proposed algo-
rithms. The while test system is built with OpenGL and

VOLUME 11, 2023

1,500 T T T T T T
—— with adaptive extended Morton codes

—F3— without adaptive extended Morton codes
1,200 | |

©

o

<]
T
|

Frame/sec

)

=)

)
T
|

1 i | L 1 |
1,000 3,000 5,000 7,000 9,000 11,000

of objects

FIGURE 7. Performance graph with/without adaptive extended Morton
codes.

GLSL language on Windows 11 platform. The hardware
specification includes Intel®)11th Gen. i-7-11700 CPU and
Nvidia RTX™3080 graphics card. Most of the algorithms are
implemented using Compute Shader 4.6 version. Figure 5
shows the screenshots of the test system where 2,000 objects
move in a circular motion. We set different speeds for all

49461

IEEE Access

M. Sung: Visibility-Based Fast Collision Detection of a Large Number of Moving Objects on GPU

Kb) GPU memory usage(kb)
2500000

2000000

1500000
1000000
500000
0

1000 3000 5000 7000 10000 # of objects

m with visibility map without visibilty map

FIGURE 8. GPU memory usage as we increase the number of objects.

objects so that they can easily bump into each other. Note
that the final rendered screen has a resolution of 1280 x 720.

For constructing the LBVH, we choose the method pro-
posed by [15] because it maximize the parallel performance
of GPU although the original algorithm is modified to support
dynamic changing Morton codes.

In the pictures, the red colored objects are in the middle of
the collision. The blue colored objects mean that they are not
colliding with other objects although they are visible from the
current camera. The yellow colored objects mean that their
number of pixels is below the threshold in the visibility map.

Figure 6 shows a performance graph where the blue line
shows the frame rate trend as we increase the number of
objects with the proposed visibility map, while the red line
shows the case when we don’t use the map. The visibility map
also has a resolution of 1280 x 720. From the experiment,
we found that the proposed method is about 70% faster than
the case when we didn’t use it in average. This difference
becomes larger when we increase the number of objects. For
this experiment, we set A=200 for the threshold.

Figure 7 shows a performance graph where the blue line
shows the frame rate trend when we use the adaptive extended
Morton codes explained in chapter III, while the red line
shows the trend when we don’t use the adaptive extended
Morton codes. In this experiment, we set a = 100 and
b = 400 where three levels of number of bits were applied
for the Morton code. From this experiment, we knew that the
adaptive extended Morton codes has around 5% performance
improvement.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a visibility map based collision
detection algorithm for massive number of moving objects.
The visibility map is constructed on top of the general
g-buffer structure, where each pixel of the map indicates
the ID number of moving objects. Thanks to the deferred
rendering technique where z-culling is implicitly done with
the depth map, counting the number of pixels of the vis-
ibility map reflects how visible the object is. We use this
information to decide whether or not to send the object to
the complicated collision checking process. We found that
when we use the visibility information, the number of objects
entering the test is significantly reduced, which improves

49462

the overall performance because only objects passing the
visibility are used for LBVH construction. Our algorithm
used the parallel construction of LBVH algorithm proposed
in [15]. However, we proposed an adaptive extended Morton
codes where different set of bits are used depending on the
overall visibility circumstance. We verified that the proposed
methods have a positive effect on the performance through a
series of experiments. A disadvantage of the visibility map
would be the additional memory consumption. Since we
use the same size of visibility map as the final rendered
screen, the memory usage would increase when rendering
a high resolution image such as 4K. However, the visibility
map does not need to be the same size as the final image
because the relative number of pixels of each object is
important. Instead, we can use the fixed size of the map
regardless of the final rendered image, which would be
our future work. Also, the additional memory requirement
for the visibility map would not be that large because the
overall memory usage in LBVH would be reduced due to the
early culling. To verify this, we compared the GPU memory
usage in Figure 8 as we increase the number of objects.
In this case, we used a 1024 x 768 visibility map. To find
out the memory usage, we call a function that returns the
current available memory usage and the total amount of mem-
ory(GL_GPU_MEM_INFO_TOTAL_AVAILABLE_MEM _
NVX, GL_GPU_MEM_INFO_CURRENT_AVAILABLE _
MEM_NVX). As we can see in the figure, there is no sig-
nificant memory overhead when we use the visibility map.

Also, there is a limitation on the number of Atomic counter
buffers, which is different from vendor to vendor. We plan
to use other buffers to record the pixel count information
if the number of objects is larger than the atomic buffer
limit.

In conclusion, we proposed a simple and efficient method
that culls out the insignificant moving objects for collision
testing from the camera setting. This method builds a vis-
ibility map on the top of g-buffer structure and lets the
GPU read this data in parallel manner. Since only objects
that pass the visibility test are used for collision test, it can
improve the overall performance when we construct the
LBVH. Also, the proposed dynamic Morton codes have a
positive effect on the performance as well. From various sev-
eral experiments, we know that our method does not require
a huge memory overhead.

REFERENCES

[1] P.Jiménez, F. Thomas, and C. Torras, “3D collision detection: A survey,”
Comput. Graph., vol. 25, no. 2, pp. 269-285, Apr. 2001.

[2] C. Ericson, Real-Time Collision Detection. Boca Raton, FL, USA: CRC
Press, 2004.

[3] D. Meister, S. Ogaki, C. Benthin, M. J. Doyle, M. Guthe, and J.
Bittner, “A survey on bounding volume hierarchies for ray trac-
ing,” Comput. Graph. Forum, vol. 40, no. 2, pp. 683-712, May 2021.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.
142662

[4] T.Karras. (Dec. 2012). Thinking Parallel, Part Il and I11: Tree Traversal on
the GPU. [Online]. Available: https://developer.nvidia.com/blog/thinking-
parallel-part-iii-tree-construction-gpu

VOLUME 11, 2023

M. Sung: Visibility-Based Fast Collision Detection of a Large Number of Moving Objects on GPU

IEEE Access

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

C. Lauterbach, Q. Mo, and D. Manocha, “GProximity: Hierarchical GPU-
based operations for collision and distance queries,” Comput. Graph.
Forum, vol. 29, no. 2, pp.419-428, May 2010, doi: 10.1111/j.1467-
8659.2009.01611.x.

T. Karras and T. Aila, “Fast parallel construction of high-quality bound-
ing volume hierarchies,” in Proc. 5th High-Performance Graph. Conf.,
Jul. 2013, pp. 89-99, doi: 10.1145/2492045.2492055.

F. M. Chitalu, C. Dubach, and T. Komura, “Binary ostensibly-implicit
trees for fast collision detection,” Comput. Graph. Forum, vol. 39, no. 2,
pp. 509-521, May 2020, doi: 10.1111/cgf.13948.

J. Jakob and M. Guthe, “‘Optimizing LBVH-construction and hierarchy-
traversal to accelerate KNN queries on point clouds using the GPU,”
Comput. Graph. Forum, vol. 40, no. 1, pp. 124-137, Feb. 2021, doi:
10.1111/cgf.14177.

X. Wang, M. Tang, D. Manocha, and R. Tong, ‘““Efficient BVH-based col-
lision detection scheme with ordering and restructuring,” Comput. Graph.
Forum, vol. 37, no. 2, pp. 227-237, May 2018, doi: 10.1111/cgf.13356.
D. Meister and J. Bittner, “Parallel locally-ordered clustering for bound-
ing volume hierarchy construction,” IEEE Trans. Vis. Comput. Graphics,
vol. 24, no. 3, pp. 1345-1353, Mar. 2018.

D. Bozidar and T. Dobravec, “Comparison of parallel sorting algorithms,”
Dept. Comput. Inf. Sci., Univ. Ljubljana, Ljubljana, Slovenia, Tech. Rep.,
Nov. 2015.

M. Vinkler, J. Bittner, and V. Havran, “Extended morton codes for high
performance bounding volume hierarchy construction,” in Proc. High Per-
form. Graph. New York, NY, USA: Association for Computing Machinery,
2017.

D.J. Tracy, S. R. Buss, and B. M. Woods, ““Efficient large-scale sweep and
prune methods with AABB insertion and removal,” in Proc. IEEE Virtual
Reality Conf., Mar. 2009, pp. 191-198.

F. Liu, T. Harada, Y. Lee, and Y. J. Kim, “Real-time collision culling of a
million bodies on graphics processing units,” ACM Trans. Graph., vol. 29,
no. 6, pp. 1-8, Dec. 2010, doi: 10.1145/1882261.1866180.

T. Karras, “Maximizing parallelism in the construction of BVHs, octrees,
and k — d trees,” in Proc. 4th ACM SIGGRAPH/Eurographics Conf.
High-Perform. Graph. Goslar, Germany: Eurographics Association, 2012,
pp. 33-37.

H. Jin, Z. Liu, T. Wu, and Y. Wang, “The research of collision detection
algorithm based on spatial subdivision,” in Proc. Int. Conf. Comput. Eng.
Technol., Jan. 2009, pp. 452-455.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast BVH construction on GPUSs,” Comput. Graph. Forum, vol. 28, no. 2,
pp. 375-384, Apr. 2009, doi: 10.1111/j.1467-8659.2009.01377 x.

D. Wodniok and M. Goesele, “Construction of bounding volume
hierarchies with SAH cost approximation on temporary subtrees,”
Comput. Graph., vol. 62, pp.41-52, Feb. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0097849316301376

I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using
dynamic bounding volume hierarchies,” ACM Trans. Graph.,vol.26,no. 1,
p- 6, Jan. 2007, doi: 10.1145/1189762.1206075.

D. Kopta, T. Ize, J. Spjut, E. Brunvand, A. Davis, and A. Kensler,
“Fast, effective BVH updates for animated scenes,” in Proc. ACM SIG-
GRAPH Symp. Interact. 3D Graph. Games, Mar. 2012, pp. 197-204, doi:
10.1145/2159616.2159649.

M. Yin and S. Li, “Fast BVH construction and refit for ray tracing of
dynamic scenes,” Multimedia Tools Appl., vol. 72, no. 2, pp. 1823-1839,
Sep. 2014, doi: 10.1007/s11042-013-1476-y.

VOLUME 11, 2023

(22]

(23]

(24]

[25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

T. Ize, I. Wald, and S. G. Parker, “Asynchronous BVH construction for
ray tracing dynamic scenes on parallel multi-core architectures,” in Proc.
Eurographics Symp. Parallel Graph. Visualizat., J. M. Favre, L. P. Santos,
and D. Reiners, Eds. Goslar, Germany: Eurographics Association, 2007.
J. Pantaleoni and D. Luebke, “HLBVH: Hierarchical LBVH construc-
tion for real-time ray tracing of dynamic geometry,” in Proc. Conf.
High Perform. Graph. Goslar, Germany: Eurographics Association, 2010,
pp. 87-95.

K. Garanzha, J. Pantaleoni, and D. McAllister, “Simpler and faster
HLBVH with work queues,” in Proc. ACM SIGGRAPH Symp. High Per-
form. Graph. New York, NY, USA: Association for Computing Machinery,
Aug. 2011, pp. 59-64, doi: 10.1145/2018323.2018333.

J. A. Orenstein, “Spatial query processing in an object-oriented database
system,” ACM SIGMOD Rec., vol. 15, no. 2, pp. 326-336, Jun. 1986, doi:
10.1145/16856.16886.

L. Ha, J. Krueger, and C. T. Silva, “Fast four-way parallel radix sorting on
GPUs,” Comput. Graph. Forum, vol. 28, no. 8, pp. 2368-2378, Dec. 2009.
S. Sengupta, A. Lefohn, and J. Owens, ‘A work-efficient step-efficient pre-
fix sum algorithm,” Proc. Workshop Edge Comput. Using New Commodity
Architectures, Jan. 2006, pp. 26-27.

W. Engel, “Designing a renderer for multiple lights: The light pre-pass
renderer,” in ShaderX7: Advanced Rendering Techniques. Needham, MA,
USA: Charles River Media, 2008.

S. Hargreaves, “Deferred shading,” presented at the Game Developers
Conf. (GDC), 2004.

M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The triangle
processor and normal vector shader: A VLSI system for high performance
graphics,” ACM SIGGRAPH Comput. Graph., vol. 22, no. 4, pp. 21-30,
Jun. 1988, doi: 10.1145/378456.378468.

D. S. John Kessenich and G. Sellers, OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 4.5 With SPIR-V. Reading,
MA, USA: Addison-Wesley, 2016.

M. Elteir, H. Lin, and W.-C. Feng, “‘Performance characterization and
optimization of atomic operations on AMD GPUSs,” in Proc. IEEE Int.
Conf. Cluster Comput., Sep. 2011, pp. 234-243.

MANKYU SUNG received the B.S. degree in
computer sciences from Chungnam National Uni-
versity, Daejeon, Republic of Korea, in 1993, and
the M.S. and Ph.D. degrees in computer sciences
from the University of Wisconsin—-Madison, Madi-
son, WI, USA, in 2005. From January 1995 to
July 2012, he was with the Digital Contents Divi-
sion, ETRI, Daejeon. Since March 2012, he has
been an Associate Professor with the Department
of Game Software, Keimyung University, Daegu,

Republic of Korea. His current research interests include computer graph-
ics, deep learning applications, computer animation, computer games, and
human—computer interaction. He is a member of the ACM.

49463

http://dx.doi.org/10.1111/j.1467-8659.2009.01611.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01611.x
http://dx.doi.org/10.1145/2492045.2492055
http://dx.doi.org/10.1111/cgf.13948
http://dx.doi.org/10.1111/cgf.14177
http://dx.doi.org/10.1111/cgf.13356
http://dx.doi.org/10.1145/1882261.1866180
http://dx.doi.org/10.1111/j.1467-8659.2009.01377.x
http://dx.doi.org/10.1145/1189762.1206075
http://dx.doi.org/10.1145/2159616.2159649
http://dx.doi.org/10.1007/s11042-013-1476-y
http://dx.doi.org/10.1145/2018323.2018333
http://dx.doi.org/10.1145/16856.16886
http://dx.doi.org/10.1145/378456.378468

