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ABSTRACT In autonomous vehicles, perception information about the surrounding road environment can
be obtained through image semantic segmentation. The fisheye camera commonly used in autonomous
vehicle surround view systems offers a wide field of view (FoV), providing comprehensive perception
information about the surrounding environment and assisting in understanding complex scenes. However,
there is a challenge in model training due to the limited availability of fisheye semantic image datasets,
resulting in reduced generalization performance and unreliable results in various test environments. In par-
ticular, changes in the position and orientation of the camera result in changes in the camera viewpoint,
which can impair the model’s segmentation performance. Generally, data scarcity problems are solved
using augmentation methods, but existing methods have difficulty reflecting the distortion characteristics of
fisheye images. To solve this problem, we propose viewpoint augmentation considering the spatially variant
distortion characteristic of fisheye images. First, we use the fisheye camera projection model in reverse to
map the captured 2D fisheye image to a point on the surface of a unit sphere in 3D. Then, we change the
camera’s orientation and position by applying rotation and translation operations to the point. Finally, we re-
project the transformed point to the fisheye image to generate a fisheye image with a changed viewpoint. The
experimental results show that the proposed augmentation method increases the generalization performance
of the model and effectively reduces model performance degradation under changing camera viewpoints,
making it suitable for practical applications.

INDEX TERMS Camera viewpoint change, data augmentation, surround-view fisheye camera, image
semantic segmentation, intelligent vehicles.

I. INTRODUCTION

Surround-view system of an autonomous vehicle is a
camera-based system that provides a 360° view of the vehi-
cle’s surroundings, allowing the vehicle to understand its sur-
rounding environment comprehensively. The surround-view
system typically uses multiple fisheye cameras mounted out-
side the vehicle to capture images of the surrounding area.
Fisheye cameras use wide-angle lenses with a field of view
(FoV) of 180° or greater to capture images that cover a wider

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

area than a pinhole camera. Therefore, this system can pro-
vide more comprehensive information to the driver, making
it suitable for complex urban environments that require a lot
of perception information.

Semantic segmentation can be used to perceive the sur-
rounding environment from this image data. Semantic seg-
mentation is a task of pixel-level classification of an image,
allowing for dense and fine tagging of classes. This detailed
perception information enables the vehicle to make informed
and safe driving decisions, ultimately improving traffic
safety. It is typically performed through supervised learning,
where a model is trained to minimize the difference between
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predicted and ground truth segmentations. Supervised learn-
ing aims to perform well on any new data within the problem
domain based on the patterns learned from the training data.
The model’s generalization performance can be enhanced by
using diverse and abundant labeled data.

By applying semantic segmentation to fisheye cameras,
which are a common sensor in most commercial vehicles,
a wider field of view can be utilized to acquire more situ-
ational awareness information about the surrounding envi-
ronment. Despite the benefits, limited research has been
conducted on fisheye image semantic segmentation due to
the scarcity of publicly available fisheye semantic image
datasets. Before fisheye datasets become available, there are
two main approaches to extracting semantic information from
fisheye images. The first approach is rectifying the distorted
fisheye images [1]. The rectified images can then be applied
to any segmentation solution trained on any available pin-
hole datasets. However, undistortion on the fisheye image
has significant drawbacks, such as information loss at the
image edges, resampling distortion, and high consumption
of computational resources [2]. Especially losing some FoV
contradicts the original intention of using a fisheye cam-
era. The second approach is to generate synthetic datasets
by introducing distortion to existing pinhole images such
as CityScapes [3], which has the advantage of having rela-
tively more available data than fisheye datasets. However, this
approach does not reflect the distortion of real fisheye lenses
and has a narrow FoV compared to fisheye cameras [4], [5],
[6]. Learning the model directly from real fisheye data and
applying semantic algorithms to raw data without undistor-
tion could be an optimal solution. However, to our knowl-
edge, the only high-quality fisheye semantic dataset acquired
from the real world is WoodScape [7]. The scarcity of data
can degrade the model’s generalization ability, which means
it could be overfitted to a small number of training data and
make incorrect predictions for new data.

The problem becomes even more apparent when the
trained model is applied to real-world scenarios. The training
and testing environments can differ significantly in many
aspects, including weather conditions, time of day, location,
and sensor settings. While data for various weather condi-
tions, times of day, and locations are often naturally available
during data acquisition, providing data for different sensor
settings is rare. Therefore, when the camera setting during
testing differs from what was used during training, the model
may exhibit reduced generalization ability and make inaccu-
rate predictions. In practice, there can be various reasons for
changes in the camera setting. For example, the orientation
of the camera may change due to impacts such as aging or
accidents in a vehicle. Furthermore, since different vehicles
have varying heights and structures, the position where the
camera is installed can also differ. Consequently, these dif-
ferences in the camera’s orientation and position can cause
a change in the camera’s viewpoint, resulting in a degra-
dation in the model’s segmentation performance in actual
situations.
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FIGURE 1. Comparison of object shapes in two types of images:
(a) pinhole images from the (top) CityScapes [3] and (down) nulmages [9]
datasets, and (b) fisheye images from the WoodScape [7] dataset.

The simplest way to address this problem is to create
training data from the changed camera viewpoint. However,
constructing training data is time-consuming and expensive,
starting from data collection to labeling. Therefore, within a
limited dataset, data augmentation techniques are generally
used to solve the problem of data scarcity [8]. Data augmenta-
tion is a technique used to increase the quantity and diversity
of the training dataset by applying various transformations
to existing image data. By using augmented image data with
techniques such as rotation, translation, and scaling, we can
increase the robustness of the model to situations where
objects can be captured from different viewpoints without
additional cost.

However, existing augmentation methods do not consider
the distortion characteristics of fisheye cameras. The fish-
eye images have significant distortion, with the degree of
distortion increasing towards the image’s periphery. Fig. 1
compares the shape of an object captured with a typical
pinhole camera and a fisheye camera. The shape of an object
in a pinhole image is similar regardless of which part of the
image is observed. In contrast, the shape of an object in a
fisheye image varies depending on the object’s position in the
image. The existing augmentation technique does not alter the
shape of an object based on its position within the image, and
the shape remains consistent throughout. Therefore, even if
the existing augmentation technique is applied, it is difficult
for the model to learn individual objects’ varying degrees of
distortion effectively.

This paper proposes a viewpoint augmentation method
that considers the spatially variant distortion characteristic
of fisheye images. To our best knowledge, this is the first
distortion-aware augmentation method for image semantic
segmentation. It can assist in fisheye image semantic seg-
mentation research, which is challenging to train the model
due to lack of data, and prevent performance degradation of
segmentation models due to changes in camera viewpoint.
The overall system consists of three parts, as shown in Fig. 2.
The first step (a) is to map all pixels of the 2D image to
points on a 3D unit sphere in the camera coordinate system.
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FIGURE 2. System architecture proposed in this paper. The main processes are divided into three parts: (a) 2D image to 3D unit
sphere mapping using unprojection, (b) Random rotation and translation of points on a 3D unit sphere and (c) 3D unit sphere to 2D

image mapping using reprojection.

TABLE 1. Comparison of image semantic segmentation datasets for
autonomous driving acquired in real-world environments.

Camera Datasets Year # of class # of samples
KITTI 2015 8 0.4k
CityScapes 2016 30 Sk
Pinhole Mapillary Vistas 2017 66 25k
ApolloScape 2018 25 144k
BDD100k 2018 40 5.7k
nulmages 2020 23 93k
Fisheye WoodScape 2021 10 8k

We apply the reverse process of the fisheye imaging principle
and achieve mapping to 3D through unprojection. The second
step (b) is to randomly rotate and translate the points on the
3D unit sphere with respect to the camera coordinate system.
Although this is an operation on the points, it can give the
effect of the camera’s rotation and movement in the opposite
direction. The last step (c) is to reconstruct the transformed
points using a fisheye camera projection model into a 2D
image. The augmented images are then trained and evaluated
in various image semantic segmentation models.

The main contribution of our paper is summarized as
follows:

o« We analyze the performance degradation of various
image semantic segmentation models under diverse
view change situations of fisheye cameras using real
fisheye datasets.

o We propose viewpoint augmentation using a fisheye
camera projection model. It can mitigate performance
degradation of image semantic segmentation models
in camera view change situations by learning various
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distortion shapes in which individual objects can be
represented in fisheye images.

The paper is organized as follows. In Section II, previous
studies are introduced. Section III reviews various camera
projection models, and section IV explains the viewpoint
augmentation method in detail. Section V describes the eval-
uation of the proposed method, and we conclude the paper in
the last section VI.

Il. PREVIOUS STUDIES

A. IMAGE SEMANTIC SEGMENTATION DATASETS FOR
AUTONOMOUS DRIVING

The image semantic segmentation datasets can be catego-
rized based on the type of camera used for data acquisi-
tion: the Pinhole and the Fisheye camera dataset. Firstly,
the pinhole camera dataset is composed of narrow FoV
pinhole images. Pinhole images have the advantage of having
a simple imaging principle and low distortion, but due to
the limits of the aperture and image sensor size, they are
not easily able to exceed an FoV of 80° [2]. The pinhole
cameras are typically used for perceiving distant forward
driving environments in autonomous vehicles. KITTI is a
pioneering dataset that provides data for various tasks in
addition to image semantic segmentation [10]. CityScape
provides a large-scale image semantic segmentation dataset
that surpasses its predecessors in terms of dataset size and
richness of annotation, acquired from 50 cities [3]. Mapillary
provides even larger-scale image data acquired from various
sensors such as dash cam and smartphone cameras [11].
ApolloScape expands the annotation scale by providing a
dataset acquired from high-resolution camera sensors in the
driving environments of four cities, with 144K image anno-
tations [12]. BDD100k provides information on 40 classes
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acquired from driving environments in four cities [13]. Nulm-
ages is the latest dataset that provides detailed classification
information for vehicles and pedestrians acquired from six
surrounding cameras attached to vehicles [9].

On the other hand, the fisheye camera dataset consists
of fisheye images that capture a wide FoV of 180° or more.
Although this introduces significant distortion, it is suitable
for obtaining environmental information for the surrounding
area within a close range with a small number of cam-
eras, making it mainly used in surround-view systems for
autonomous vehicles. However, despite its prevalence, there
are few fisheye image semantic segmentation datasets for
autonomous driving. WoodScape is the first surround-view
fisheye dataset acquired with four cameras mounted outside
the vehicle [7]. It provides data for nine tasks: semantic
segmentation, monocular depth estimation, 2D and 3D object
detection, visual odometry, visual SLAM, motion segmenta-
tion, soiling detection, and end-to-end driving.

Table. 1 shows image semantic segmentation datasets for
autonomous driving acquired in real-world environments.
Pinhole camera semantic segmentation datasets with detailed
class labels have been available for a long time. In contrast,
there is a significant shortage in quantity and diversity of
fisheye image semantic segmentation datasets compared to
pinhole cameras, making it challenging for related research.
Accordingly, some studies have artificially generated fisheye
image datasets from rich pinhole camera datasets for training
purposes. Artificial fisheye image is generated based on the
formation principle of fisheye images using the geometric
distortion model of fisheye lenses. Early studies [4] used
the well-known equidistance geometric distortion model to
generate data from CityScape [3]. Subsequent studies have
generated data with varying degrees of distortion by changing
the camera’s focal length [5], [14], [15], position and direc-
tion [6]. For fisheye data generation for pedestrian detection,
projective model transformation (PMT) based on the equidis-
tance distortion model is proposed [16], [17]. Other studies
use the projection model of the actually manufactured camera
lens introduced in [18] rather than the classical projection
model that provides theoretical approximations [19].

B. IMAGE DATA AUGMENTATION

There are two main types of basic image manipulation tech-
niques: Geometric and Photometric transformations. Geo-
metric transformation is the process of changing the over-
all shape of the entire image by changing the structure in
which the pixels that make up the image are arranged. This
includes flipping, rotation, translation, cropping, and other
techniques. On the other hand, Photometric transformation
involves modifying pixel values, such as contrast, sharpness,
blurring, brightness, and color changes. When applying the
geometric transformation, which is related to pixel position
changes, it is necessary to consider the types of the camera.
This is because the shapes of objects in fisheye images are
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spatially variant, unlike pinhole images, where objects appear
with similar shapes regardless of their position in the image.

Research on data augmentation considering the character-
istics of fisheye cameras can be found in studies on generating
artificial fisheye datasets. Some propose zoom augmentation
by changing the focal length parameter of the equidistant
projection function [4], [5], [14], [15]. This type of aug-
mentation, which takes into account camera characteristics
rather than simply scaling images, can generate datasets with
varying degrees of distortion depending on the focal length.
However, it simulates the distortions in various fisheye cam-
eras that may exist rather than reflecting the distortion of
a specific camera. Other studies have made the mapping
position of pinhole images movable but only consider left and
right movement [17]. Later, six degrees of freedom (6DoF)
augmentation for rotation and translation [19] and seven
degrees of freedom (7DoF) augmentation including focal
length [6] provide better methods for generating various data.
Our work is different in that it focuses on data augmentation
from fisheye to fisheye, not from pinhole to fisheye. Addi-
tionally, it reflects the distortion of an actual lens rather than
a geometric projection model designed by assumption.

Ill. CAMERA PROJECTION MODEL

The camera projection model represents how a camera cap-
tures and projects a three-dimensional scene onto a two-
dimensional image. Fig. 3 illustrates the pinhole camera
projection model and the fisheye camera projection model. A
3D object point P(X, Y, Z) passes through the optical center
and reaches a point p(x, y) on the image sensor. The point
where the optical axis intersects the image plane is called
the principal point O'(cy, ¢y), and the distance between the
optical center and the image plane is called the focal length
f . The angle between the optical axis and the incident light ray
is called the incident angle 6. The projection model expresses
the distance p between the projected point p(x,y) and the
principal point as a function of the incident angle 6.

Pinhole camera projection model assumes that light trav-
els in straight lines and that an inverted image of the external
world is projected onto a flat surface through a single point,
such as a pinhole or aperture. In other words, a point in the
3D world is projected through the pinhole of the camera and
forms an inverted image on the opposite side of the camera
sensor. The pinhole projection (also known as perspective
projection) is expressed simply using trigonometric ratios,
as it assumes that the incident angle and refraction angle are
equal:

Ppinhole = f tan(9) (D

On the other hand, the fisheye camera projection model
describes a fisheye camera’s more complex imaging process
compared to the simple pinhole camera imaging process.
Fisheye cameras use fisheye lenses that provide a much wider
FoV than conventional lenses, resulting in circular images
with significant distortion around the edges. The fisheye
camera projection model maps the 3D world onto a 2D image
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FIGURE 3. Comparison of the imaging principles between a pinhole
camera (blue) and a fisheye camera (red).

plane in a non-linear way to explain this distortion. Common
types of geometric fisheye projection models include equidis-
tance projection (2) and stereographic projection (3) as in:

Ofisheye = [0 2)
0
Pfisheye = 2f tan(a) 3)

The geometric projection models discussed above provide a
reasonable approximation of the imaging process, where rays
pass through the camera lens and form an image on the image
sensor. However, these are simplified models that simulate
the non-linear mapping of a real lens and do not accurately
represent the lens distortion, sensor misalignment, and man-
ufacturing variations that may affect the image formation
process [20]. To accurately represent the imaging process of
the real manufactured fisheye camera, applying additional
parameters to compensate for deviations from the physical
reality [21] or finding out complex mathematical models such
as polynomials through the calibration [7] is required.

The WoodScape [7] provides parameters for a more gen-
eral polynomial model obtained through the calibration:

Pfisheve = k10 + ka0? + k367 + ka6 o))

When describing the projection model using a polynomial,
we can remove the link to the physical property of the lens
by changing the focal length as a parameter, and there is no
need for additional distortion parameters [2]. In Sec. V-C3,
we show the augmentation results based on the difference in
the projection functions of the fisheye cameras.

IV. FISHEYE CAMERA VIEWPOINT AUGMENTATION

The proposed viewpoint augmentation method consists of
three main steps, as shown in Fig. 4. These steps are based
on the fisheye camera projection model mentioned in Sec.
III. First, the unprojection, which is the reverse process of
projection, maps 2D image pixels to 3D points on the unit
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sphere. Since an image only captures the intensity infor-
mation of red, green, and blue colors, without any distance
information, it is theoretically impossible to obtain the exact
distance information of individual pixels from a single image.
Therefore, we map all pixels to a unit sphere with a radius
of 1. In the context of camera projection, the sphere’s radius
is only used as a mathematical tool to map 2D image pix-
els to the 3D surface of the sphere, and it does not have
any special meaning. Next, the transformation step applies
rotation and translation operations to the points on the unit
sphere, simulating the camera’s moving and rotating effect.
Finally, the transformed 3D points are projected back onto the
image plane, called reprojection. This three-step processing
is applied to both RGB and label images, with the only
difference being the interpolation method. By varying the
parameters of the transformation step, such as the rotation
angle and translation distance, we can artificially generate a
diverse dataset of fisheye images with varying viewpoints for
both RGB and label images.

1) UNPROJECTION

First, we map the pixels in a 2D image to a point on a 3D unit
sphere. The image pixels are represented by a pair of discrete
integers (u,v) in a u-v coordinate system with the image’s
top-left corner as the origin. We convert the pixel to an x-y
coordinate system with the principal point as the origin and
calculate the distance p from the origin:

U— Cy
X = ’y:
ay ay

0 =+/x% 4?2 Q)

where (cy, cy) is the principal point and (ay, ay) is the aspect
ratio. The calculated distance value p is used to find the
real root of 6 using a fourth-order polynomial projection
model as in (4). The incident angle € is the angle between
the light ray represented as a yellow dotted line and the
Z-axis of the camera coordinate system represented as a blue
arrow, as shown in Fig. 4(a). Since finding the real root
of a fourth-order polynomial for all pixels in an image is
time-consuming, we perform the computation in advance for
real-time augmentation and store it in a look-up table for
reference during model training to quickly retrieve the values.
Once we have obtained the value of 6, we can find out the
3D point P(X, Y, Z) on the unit sphere using the following
equation:

V—Cy

X = sin(8) cos(¢) = sin(@)%
Y = sin(8) sin(¢) = sin(G)%

Z = cos(h) (6)

where ¢ is the azimuth angle of the 3D point on a sphere
with respect to the X-axis of the camera coordinate system
represented as the red axis. This angle can be expressed as
the angle of the image point p(x, y) with respect to the x-axis
of the image coordinate system.
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FIGURE 4. Visualization of fisheye camera viewpoint augmentation methods: (a) Unprojection, (b) Transformation, (c) Reprojection. The x, y, and z axes of
the camera coordinate system are represented by red, green, and blue arrows, respectively. The yellow circle depicts the movement of image pixels. The
rainbow-colored sphere represents the result of applying a transformation to the RGB sphere.

2) TRANSFORMATION

By applying rotation and translation operations to a 3D
point P(X, Y, Z) in the unit sphere, a transformed 3D point
P'(X',Y',Z") can be obtained. The transformation of 3D
points can simulate the effect of rotating and moving the
camera in the opposite direction. The equation for this trans-
formation is as follows:

X’ X
Y| _[R t]|Y
z' Z[o 1] z ™
1 1

The transformation equation for a 3D point P(X,Y, Z)
involves a 4 x 4 transformation matrix, which combines the
rotation and translation matrices. The rotation matrix R is a
3 x 3 matrix representing the point’s rotation with respect to
the camera coordinate system. It can be described by an angle
of rotation and a unit vector representing the axis of rotation.
By adjusting the angle and the axis of rotation, various types
of rotation can be achieved. The translation matrix tis a 3 x
1 matrix representing the point’s displacement with respect
to the camera coordinate system. It contains the displacement
values along the x, y, and z axes, indicating the extent of the
point’s movement in each dimension. Fig. 4(b) shows the
results of applying rotation and translation operations to the
3D points. The original points before the rotation and trans-
lation operations are represented by the RGB color that the
image had, and the points after the operations are represented
by a rainbow-like color. The top three examples show the
result of the rotation operation, where the points have rotated
by +20° along the X, Y, and Z axes of the camera coordinate
system. The bottom three examples show the result of the
translation operation, where the points have been translated
by +0.3 along the X, Y, and Z axes of the camera coordinate
system.
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3) REPROJECTION
The reprojection process generates an image with a differ-
ent viewpoint by applying the projection function to the
transformed 3D point P'(X’, Y’, Z"). First, the transformed
incident angle 6’ and distance p’ are calculated from the trans-
formed 3D point P'(X’, Y’, Z’) using the following equations:
X")2 Y’)2
9/ — Mctan(w)
Z/
0 = k10 + k0 + k30" + k46" )

The values of the reprojected image point p’(x’, y') are calcu-
lated using the following equations:

x'=p'cos(¢) = p——x
(X/)2 + (Y/)Z

/

Y = p'sin(@) = p' —es
where ¢’ is the angle of the reprojected point p’(x’, y') with
respect to the x-axis of the image coordinate system. It can
be expressed as the azimuth angle of the transformed 3D
point P'(X’, Y’, Z'). The reprojected image point p/(x’, y') is
represented as a discrete pixel value in the u-v coordinate sys-
tem with the top-left corner as the origin, using the following
equations:

&)

u = ax + ¢y
V= ayy/ + ¢y (10)

Fig. 4(c) depicts the reprojection process. After the trans-
formation, only points with the same azimuth and elevation
angle as the original RGB points can be reprojected onto the
image, implying that they lie on the same ray. Points that
cannot enter the designated area disappear, and the parts that
do not intersect within the area are filled with empty values.
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FIGURE 5. Results of applying viewpoint augmentation to the WoodScape [7] dataset. (a)-(c) represent the results of rotating the camera
by (left)+20° and (right)—20° along the x, y, and z axes, respectively. (d)-(f) represent the results of moving the camera by (left)+0.3 and

(right)-0.3 along the x, y, and z axes, respectively.

Fig. 5 shows the results of the proposed viewpoint aug-
mentation applied to the WoodScape [7] dataset. The image
and its corresponding label image are augmented using the
same process while employing different interpolation meth-
ods. Bilinear interpolation is utilized for RGB images, which
fills in the missing pixels by using the pixel values of the four
adjacent pixels and their distance ratios. On the other hand,
since the label image is a grayscale image that stores label
values between 0 and 255 for each pixel, the nearest neighbors
interpolation is employed to assign the value of the closest
pixel without any changes in label values.

V. EXPERIMENTS

A. EXPERIMENTAL ENVIRONMENT

1) DATASET

We evaluated the effectiveness of our proposed viewpoint
augmentation using the WoodScape dataset [7]. WoodScape
was collected using saloon vehicles and sports utility vehi-
cles from the United States, Europe, and China. The driving
scenarios include highway, urban driving, and parking use
cases. The dataset was captured using a fisheye camera with
an FoV of 190° from the vehicle’s front, rear, left, and right
sides. WoodScape provides 8,234 annotated images with a
resolution of 1280 x 966 and 23 types of fourth-order poly-
nomial distortion parameters obtained through fisheye lens
calibration. The images are randomly split into 4,920 for
training, 854 for validation, and 2,460 for testing. The dataset
provides 9 classes for semantic segmentation, including road,
lane markings, curb, person, rider, vehicles, bicycle, motor-
cycle, and traffic signs. We trained the model on 10 classes,
including the background. Since the WoodScape is not a fully
annotated dataset that includes objects such as buildings or
the sky, it has a lot of background areas. If the background
class is not included in the model training, the model will miss
most of the image. Additionally, including the background
class enables the model to accurately distinguish the bound-
aries between the background and the other classes.

2) IMAGE SEGMENTATION MODELS AND TRAINING DETAILS
The experiments were conducted using various popu-
lar and contemporary semantic segmentation frameworks.
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We updated the weights of the pre-trained models with
ImageNet using the SGD optimizer and cross-entropy loss
for ICNet [22], PSPNet [23], and DeepLabV3+ [24]. For
BiseNetV2, we used online hard example mining (OHEM)
cross-entropy to calculate the loss and updated the pre-trained
model’s weights using the SGD optimizer [25]. For Swift-
Net, we used the Adam optimizer and cross-entropy loss
to update the weights of the pre-trained ResNet18 model
with ImageNet [26]. We adjusted the learning rate using
different techniques such as a poly learning rate scheduler
[22], [23], [24], warm-up poly learning rate scheduler [25],
and cosine annealing scheduler [26]. The initial learning rate
was determined to be 0.001, which was found to be the most
suitable value through our experiments. The batch size for all
experiments was set to 4, and we chose the parameters that
performed the best on the validation set during 100 epochs as
the final model.

3) EVALUATION METRICS
To evaluate the segmentation performance, we used the stan-
dard Jaccard index, also known as intersection over union
(IoU). The IoU is defined as follows:

TP,
" TP, + FP, + FN,

loU, 1D
where TP,, FP,, and FN, represent the true positive, false
positive, and false negative for the nth class. The mean IoU
(mIoU), which is the average of IoU for all classes, is formu-
lated as follows:

N
1
mioU = — ZIIOU,, (12)
n=

where N represents the number of classes.

B. PERFORMANCE DEGRADATION IN VIEWPOINT
CHANGE SITUATION

First, we created a test set to investigate the extent of model
performance degradation under various camera viewpoint
changes. The test set consists of four different scenarios:
original images with no changes, as well as small, middle,
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TABLE 2. Performance degradation of five benchmark models on various viewpoint change test sets. As the shade of red gets darker, it indicates poorer

performance.
| =
;\? ?w; % f’: 7 i g‘)
< 2 g = 2 = 2 o
2 5% ¢z % gt & 3§ 2 : : &%
Model Test set E ) 2 2 = 3 a £ B 5 E 5
Original 56.95 - 96.6 93.0 65.8 51.2 452 39.5 84.0 36.9 33.0 243
ICN Small change | 55.14 -3.18 | 96.1 91.8 64.3 48.9 44.1 36.8 81.2 34.7 31.8 21.7
et
Medium change 88.0 60.9 41.6 38.4 32.6 79.5 344 27.1 17.6
Large change 80.9 54.8 343 35.8 249 74.7 283 243 13.1
Original 94.1 71.5 58.9 60.7 53.9 88.9 49.0 55.8 383
PSPN Small change 93.8 70.8 57.6 58.7 50.2 87.0 457 51.6 373
et
Medium change 91.5 67.3 54.2 55.6 46.1 822 44.7 447 334
Large change 84.2 61.1 47.2 53.2 38.1 73.4 37.6 36.5 26.7
Original 94.5 76.8 61.7 58.9 53.3 89.2 46.7 51.3 36.1
Small change 94.2 75.8 60.4 57.5 51.8 87.8 46.2 50.6 36.5
DeepLabV3+ .
Medium change 92.7 73.3 56.3 53.4 49.3 85.6 45.7 47.1 33.2
Large change 89.1 68.3 49.4 50.6 39.8 81.0 403 44.6 27.4
Original 94.0 71.8 59.9 56.3 48.6 874 452 41.4 36.3
Small change 93.4 70.9 58.4 54.8 46.2 852 43.7 39.1 353
BiseNetV2 .
Medium change 89.8 65.7 52.8 50.7 42.8 80.9 414 349 303
Large change 81.6 58.8 44.8 459 32.8 75.2 35.6 333 22.6
Original 94.1 74.6 58.2 54.8 493 86.6 47.0 45.1 35.8
. Small change 93.7 73.9 57.8 54.4 46.9 84.8 459 43.4 35.6
SwiftNet .
Medium change 89.4 68.9 54.5 51.0 44.1 81.3 44.1 38.7 32.7
Large change 81.0 63.0 48.4 49.4 379 75.0 39.3 37.0 253

and large changes in viewpoint. We artificially generated data
with changes in camera orientation and position by applying
viewpoint augmentation methods to the same test image.
For the small change test set, rotations along the x, y, and
z axes were set within the range of [—10°, +10°], and the
translations along the x, y, and z axes were set within the
range of [—0.1, 40.1]. The six parameters were randomly
determined based on a uniform distribution within the set
range. Similarly, the middle change test set had ranges of
[—=20°, 4+20°] and [—0.3, +0.3] for rotation and translation,
and the large change test set had ranges of [—30°, +-30°] and
[—0.5, +0.5]. By measuring the model’s performance on the
test set with changes in viewpoint, we can quantify the extent
to which the model’s performance is degraded.

Table. 2 shows the quantitative results of various image
models [22], [23], [24], [25], [26] trained using the Wood-
Scape dataset [7]. No augmentation techniques were applied
during training to investigate the impact of viewpoint changes
on model performance. The table presents class-wise IoU,
mloU, and the degree of model performance degradation as
a percentage. In all segmentation models used in the experi-
ments, the degree of performance degradation increased sig-
nificantly as camera viewpoint changes became larger. Both
class-wise IoU and mloU consistently showed changes in
performance. When the viewpoint change with respect to the
training data was relatively small, a small decrease in perfor-
mance of about 1.17% to 3.18% was observed. On the other
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hand, when the viewpoint change was large, the segmentation
performance decreased significantly by as much as 12.06% to
18.75%. Specifically, we observed a notable decline in seg-
mentation performance for objects such as riders, motorcy-
cles, and traffic signs, which had fewer labeled data than other
objects. This performance degradation can be attributed to the
limited training data available for these objects, resulting in
the model being trained on a restricted set of similar data. As a
result, the performance of the model significantly declined
when presented with new data, particularly on the test set with
varying viewpoints. In real-world scenarios, camera view-
points can change due to several reasons such as long drives,
significant impacts from car accidents, and changes in cam-
era mounting positions. These changes in camera viewpoint
can lead to a decline in segmentation performance, making
it challenging to trust the perception results. Consequently,
there is a need to develop models that can handle viewpoint
changes robustly and improve the generalizability of the mod-
els to new, unseen data for practical applications.

C. EXPERIMENTAL RESULTS

1) EFFECT OF VIEWPOINT AUGMENTATION

We apply our viewpoint augmentation method to various
image segmentation models for training and verify its effec-
tiveness using viewpoint change test sets. Table. 3 shows
the experimental results for four cases for each model. The
first case is without augmentation, the same as Table. 2. The
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TABLE 3. Quantitative evaluation results of five benchmark models. Four different experiments were conducted for each model based on the presence of

augmentation. For simplicity, only the mloU averaged over all cl

loU is presented. The highest score achieved in the original test set is indicated in

bold. The values in parentheses represent the percentage decrease in performance compared to the original test set for each model. The color scheme
used to depict the degree of performance degradation ranges from dark blue indicating the least decrease to dark red indicating the greatest decrease.

Augmentation Test set
Model Base Viewpoint | Original Small change Medium change Large change
56.95 55.14 (-3.18%) 46.27 (-18.75%)
v 58.73 57.16 (-2.67%)  54.51 (-7.19%)_
ICNet
v | o DR o -
v v 60.19 _ 59.90 (-0.48%) 58.90 (-2.14%)
66.84 64.98 (—2.78%)_ 55.08 (-17.
v 67.70 66.80 (-1.33%)  64.46 (-4.79%)_
PSPNet
v 67.77 _ 67.45 (-0.47%)  66.10 (-2.46%)
v v 67.73 _ d 66.29 (-2.13%)
66.58 65.80 (-1.17%)_ 58.55 (-12.06%)
v 67.33 66.64 (-1.02%)  64.69 (—3.92%)_
DeepLabV3+
v | s | 21 (209%)
v v 67.70 (AERNCORIPAN  67.05 (-0.96%) 6542 (-3.37%)
63.80 62.38 (-2.23%)  58.43 (-8.42%)_
v 65.96 64.35 (-2.44%)
BiseNetV2
v 66.91
v v 67.08
64.26
v 66.00 65.43  (-0.86%)
SwiftNet
v 67.52 _ 65.46  (-3.05%)
v v 68.54 69.00 (+0. W 6797 (-0.83%) 66.72 (-2.66%)

second case is with base augmentation only, which includes
augmentation such as color jittering, gaussian blurring, and
horizontal flipping that can be applied regardless of the cam-
era type. Each component of base augmentation is randomly
determined. The third case is with viewpoint augmentation
only, where we applied our proposed method which includes
six parameters related to camera rotation and translation. The
rotation for each axis of the camera coordinate system is set
to [—30°, +30°], and the translation for each axis is set to
[—0.5, 4-0.5] as the maximum-minimum range. The augmen-
tation is randomly determined for each degree of freedom,
and a random value following the uniform distribution within
the range set during augmentation is used. The range is exper-
imentally set, considering that the rotation and translation
are in the unit sphere. Setting too large a value can cause
the augmentation effect to be worse by deforming the image
beyond recognition [8]. The fourth case is with both base and
viewpoint augmentation. Our proposed augmentation can be
performed in real-time during model training, providing the
model with diverse inputs using different parameters each
time. Applying the base augmentation increases the training
time by about 3.3%, while the viewpoint augmentation incurs
an additional training time of approximately 6.1%. Apply-
ing both augmentations results in a training time increase
of approximately 10.3% compared to the case without
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any augmentation. These additional costs are incurred
only during model training and do not affect inference
time.

The first column shows the evaluation results on the orig-
inal test set. The performance of all five semantic segmen-
tation models improved with augmentation applied. When
no augmentation techniques were applied, the performance
was the lowest. Applying base augmentation showed bet-
ter performance than not applying any augmentation, and
applying viewpoint augmentation showed even better per-
formance. The best performance was achieved when both
base and viewpoint augmentations were applied. The per-
formance improvement ranged from 1.33% to 6.66%. This
means that the applied augmentation methods provide the
model with sufficient and diverse training data by generating
different input images every time during the training pro-
cess, thereby improving the model’s generalization perfor-
mance. The second to fourth columns show the evaluation
results on the viewpoint change test sets. Without applying
augmentation techniques, there was a significant perfor-
mance decrease compared to the original performance on the
viewpoint change test set. When only base augmentation was
applied, it somewhat mitigated the performance degradation,
but the effect was minor. Base augmentation techniques such
as color jittering, gaussian blurring, and horizontal flipping
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Original test set

Middle change test set

Model w/0 aug

w/ aug

w/o aug w/ aug

ICNet

PSPNet

DeepLabV3+

BiseNetV2

SwiftNet

Ground Truth

® rad @ lanemarks @ curb @ person rider

vehicles bicycle motorcycle @ traffic sign

FIGURE 6. Qualitative evaluation results of five benchmark models. Accurately predicted results are represented in the green
circle, while inaccurate predictions are represented in the red circle.

are difficult to apply to address changes in camera view-
points. On the other hand, the third and fourth experimental
cases with viewpoint augmentation applied showed a sig-
nificant reduction in the model’s performance decline. The
first two experimental cases resulted in a significant drop
in performance, up to about 20%, compared to the original.
However, in the third and fourth cases with the proposed
viewpoint augmentation, the performance degradation was
minimal, within 4% relative to the original. In other words,
the proposed method not only has a positive impact on the
model’s generalization performance but also helps the model
operate robustly in camera viewpoint change situations.

We qualitatively evaluated the effectiveness of the pro-
posed augmentation methods for five different models,
as shown in Fig. 6. The inference results are compared
between a model without any augmentations (w/o aug) and
a model with both base and viewpoint augmentations applied
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(w/ aug). For simplicity, we only visualized the results of the
original test set and the middle change test set. The models’
incorrect predictions are marked red, while correct predic-
tions are green. We can qualitatively verify that applying the
viewpoint augmentation techniques generally results in fewer
misclassifications and unclassified objects in both test sets.

2) COMPARISON WITH OTHER AUGMENTATION METHOD

This experiment compared the proposed viewpoint augmen-
tation method with conventional augmentation methods such
as rotation, translation, and scale. Rotation is rotating an
image by a certain angle, usually around the center of the
image, and translation is shifting an image’s pixels in a hor-
izontal or vertical direction. Scaling is changing the size of
an image, either by stretching or compressing it. All three
of these transformations can be performed using affine trans-
formation. Each parameter is determined by a random value
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(@ (b) (©

FIGURE 7. The result of applying different augmentation methods.
(a) represents the original image, (b) represents the result of affine
augmentation, and (c) represents the result of viewpoint augmentation.

TABLE 4. Comparison of results between affine augmentation and
viewpoint augmentation. The highest performance for each test set is
shown in bold text.

Test set
' Original Small Medium Large
Augmentation change change change
None 63.80 62.38 58.43 52.23
Affine 66.60 66.18 65.52 62.45
Viewpoint 66.91 66.71 66.19 64.32

within the range of [—-30°, 30°], [—0.3, 4+0.3], and [0.5, 1.5],
respectively.

Fig. 7 illustrates the difference between the conventional
affine augmentation method and the proposed viewpoint aug-
mentation. The conventional method applies simple rotation,
translation, and scaling operations to image pixels, maintain-
ing a checkerboard’s square shape. In contrast, the proposed
method remaps image pixels by considering the distortion of
fisheye lenses and camera movements, resulting in varying
shapes. Table. 4 shows the results of applying two different
augmentation methods to the BiseNetV2 [25] model. Both
augmentation methods improve the model’s generalization
performance and greatly alleviate performance degradation in
the camera viewpoint change situation. However, the model
with the viewpoint augmentation method performs better on
all test sets. Since objects with the same semantic information
in fisheye images can appear in various shapes depending on
their location, viewpoint augmentation methods that consider
the spatially variant distortion characteristic of the fisheye
image have demonstrated superior performance.

3) COMPARISON WITH GEOMETRIC PROJECTION MODEL

In this experiment, we analyze the effect of the projec-
tion function applied during viewpoint augmentation on the
performance of the segmentation model. The fisheye pro-
jection function describes a method of mapping a part of a
spherical surface onto a flat image. Fig. 8 shows the map-
ping points on the 3D unit sphere that vary according to the
projection function. Fig. 8(a) shows the mapping result using
the equidistance projection model as in (2), an ideal geometric
model with a linear relationship between the projected radius
and the incident angle and is the most commonly used model
in fisheye cameras. Fig. 8(b) shows the mapping result using
the stereographic projection model as in (3), which maintains
the angle, unlike an equidistance model that maintains angu-
lar distances. The focal length is determined by the angular
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FIGURE 8. Results of unprojection using three different projection
functions: (a) equidistance projection model, (b) stereographic projection
model, and (c) fourth-order polynomial projection model.

TABLE 5. Comparison of results using three different projection models.
The highest performance for each test set is shown in bold text.

Test set
o Original Small Medium Large
Projection change change change
Equidistance 66.72 66.73 66.14 64.00
Stereographic 66.85 66.75 66.12 64.10
4™ polynomial 66.91 66.71 66.19 64.32
coverage and the dimensions of the image, as in:
fequidistance = g (13)
fstreographic = L (14)
2 tan(%)

Fig. 8(c) shows the mapping result of the fourth-order poly-
nomial projection model as in (4) provided in WoodScape [7],
which is a mathematical model obtained through calibration.
The images are mapped to the unit sphere in different forms,
which results in slightly different augmented images. Table.
5 shows the difference in segmentation model performance
according to the applied projection function. The fourth-order
polynomial projection model yielded the best performance in
most test sets, but the difference was negligible. This suggests
that a classical geometric model can produce similar results
even when an accurate distortion model cannot be obtained
through calibration.

VI. CONCLUSION
We proposed viewpoint augmentation for effective learning
of fisheye image semantic segmentation. First, we unpro-
jected the image into 3D space on a unit sphere using the
fisheye camera projection model. Second, we simulated the
change in camera orientation and position by applying trans-
formations to the 3D points on the unit sphere. Third, we gen-
erated an augmented image by reprojecting the transformed
3D points back to a 2D image using the fisheye camera
projection model. We evaluated the proposed method using
the WoodScape dataset and showed significant improvement
over existing augmentation methods. In summary,
1) Generalization performance improvement: The pro-
posed viewpoint augmentation method provided a
diverse set of training data to the segmentation model,
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resulting in a 1.33% to 6.66% improvement in gen-
eralization performance. This suggested that the data
generated by the proposed augmentation method pos-
itively impacted model training and could help with
fisheye semantic segmentation research that struggled
with limited datasets.

2) Mitigation of performance degradation in camera
viewpoint change situations: The proposed viewpoint
augmentation method helped the model learn the indi-
vidual object’s varying degrees of distortion can be rep-
resented in fisheye images. As a result, it significantly
mitigated the performance degradation in different test
sets with viewpoint changes. Without augmentation,
there was an up to about 20% performance drop, but
with the proposed method, it is reduced within 4%.

3) The generality of the viewpoint augmentation: We
conducted experiments using accurate projection mod-
els obtained through calibration and commonly used
geometric projection models. The results showed that
the proposed augmentation method positively impacted
semantic segmentation regardless of the accuracy of
the projection model. This suggested that the proposed
augmentation method could be applied generally, even
in cases where it was difficult to identify the accurate
distortion model.

The proposed method effectively considers the spa-
tially variant distortion characteristics of fisheye images,
which leads to improved performance compared to clas-
sical augmentation methods commonly used in pinhole
images. Although our proposed method successfully sim-
ulates changes in viewpoint for individual objects, it has
limitations when accurately simulating real-world changes,
such as occlusion caused by viewpoint change. Nonetheless,
experimental results demonstrate that our proposed method
can effectively simulate various degrees of distortion for indi-
vidual objects, which is a useful capability for many computer
vision applications.

In future work, we plan to explore methods for estimating
distance values more accurately, allowing us to generate more
realistic augmented images [27]. We will also analyze various
variables that can occur in test environments beyond changes
in camera viewpoint and develop augmentation methods that
can robustly handle such changes. Additionally, in practical
applications, the low-latency inference is just as important
as the robustness of the model to various environments [28].
Therefore, we plan to research reducing network size while
minimizing information loss to achieve real-time perfor-
mance [29].
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