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ABSTRACT Software-Defined Networking (SDN) is an emerging architecture that enables flexible and easy
management and communication of large-scale networks. It offers programmable and centralized interfaces
for making complex network decisions dynamically and seamlessly. However, SDN provides opportunities
for businesses and individuals to build network applications based on their demands and improve their
services. In contrast, it started to face a new array of security and privacy challenges and simultaneously
introduced the threats of a single point of failure. Usually, attackers launch malicious attacks such as botnets
and Distributed Denial of Service (DDoS) to the controller through OpenFlow switches. Deep learning
(DL)-based security applications are trending, effectively detecting and mitigating potential threats with fast
response. In this article, we analyze and show the performance of the DL methods to detect botnet-based
DDoS attacks in an SDN-supported environment. A newly self-generated dataset is used for the evaluation.
We also used feature weighting and tuning methods to select the best subset of features. We verify the
measurements and simulation outcomes over a self-generated dataset and real testbed settings. The main
aim of this study is to find a lightweight DL method with baseline hyper-parameters to detect botnet-based
DDoS attacks with features and data that can be easily acquired. We observed that the best subset of features
influences the performance of the DL method, and the prediction accuracy of the same method could be
variated with a different set of features. Finally, based on empirical results, we found that the CNN method
outperforms the dataset and real testbed settings. The detection rate of CNN reaches 99% for normal flows
and 97% for attack flows.

INDEX TERMS Botnet attack, convolutional neural network, deep learning, distributed denial-of-service
attack, network security, software-defined networking.

I. INTRODUCTION
The development of the internet is rapidly growing; the
limitations of traditional networks have been explored. The
emerging issues of the conventional networks can be solved
by patching the network, which makes the network more
bloated and the control ability of the network becomes
weaker. The invention of Software-Defined Networking
(SDN) [1], [2] has resolved these problems by decoupling
the data and control planes. SDN became famous among the
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network community due to its novel architecture and can
fulfill the demands of fast-growing networks. SDN has a
centralized control architecture, so the SDN controllers can
access all the OpenFlow switches in their range and control
the entire network through the open south API interfaces [3],
[4]. It is also known as the three-layer network architecture,
application, control, and data layers. The application layer
runs all the policies and rules the network administrator
defines, and the SDN controller can adopt these rules dynam-
ically. Any modification in the application layer may change
the behavior of the whole network. The application layer
is an excellent development by the open-source platform,
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which does not force the administrator to entirely relies on
vendors [5]. Positively, the SDN allows administrators to
eliminate license constraints and cloud-develop customized
network applications over general-purpose hardware. The
control layer is known as the brain of the architecture, and
SDN controllers run in this layer. The controllers receive the
rules from the application layer, decode them into readable
messages, and forward them to the underlying data layer;
after that, they collect the feedback from the data layer and
pass it back to the application layer. Moreover, a decision is
made on the control layer, and the rules are implemented in
the data layer. The data layer is non-intelligent, and different
hardware devices, such as routers, OpenFlow switches, etc.,
exist in this layer, and instructions are passed by the control
layer [6].

Furthermore, it simplifies and eases the network’s develop-
ment, deployment, and maintenance. The network functions
and features can be easily enhanced by updating and intro-
ducing new applications. Besides being cost-effective, SDN-
based networks require simple hardware devices and have
almost no compatibility issues [7]. Network access is allowed
without revealing the details of the different underlying
layers.

Although SDN is an inordinate invention that can improve
the network’s flexibility and controllability and is considered
a double-edged sword due to central control, a single con-
troller can easily manage the network. SDN also helps to
improve traditional networks’ security measures, but SDN
has yet to be extensively trustworthy security measures to
support the vision of next-generation networking [8]. Due
to its centralized control nature and innovative architecture,
it may introduce new security threats and can lead toward
a single point of failure. Furthermore, the centralized nature
of SDN architecture unlocks the way for attackers to launch
different attacks such as botnets, DDoS [6], saturation, and
other types.

Botnet attacks are considered malicious attacks that
become a critical threat in the next generation of networking
[9]. The botnet is a network-based attack that breaches multi-
ple computers into ‘‘bots’’ to launch malicious activities such
as DDoS, identifying theft, domain name system spoofing,
spamming, phishing, etc. In a botnet attack, a malicious actor,
‘‘Bot master,’’ tries to get unauthorized access to a single
device and then implements botnet malware to take control of
the device without alienating its legitimate users. After that,
establish a connection of bots with a Command and Control
(C&C) center owned by the attacker, and the bots remain
ready to launch malicious activities under the instructions
of C&C.

Currently, botnet technology is typically used to launch
the most sophisticated DDoS attacks in SDN and Internet
of Things (IoT) based networks. The power and flexibility
of the technology enable the botnet technology to generate
several types of DDoS attacks. There are four main reasons
to use advanced technology by the attackers: (i) a powerful
flooding attack can be quickly generated with a large number
of bots, (ii) there is difficulty in finding the actual attacker,

(iii) they can use different protocols to dodge the security
mechanism (iv) the attack and normal traffic have similarity,
so, the real-time detection is difficult. With the advancement
in technology, the attacker becomes more competent, and
they know the structure of the SDN-based networks. They
know they can control the whole network if they access the
controller. The attackers can easily breach multiple comput-
ers into bots and make a member of the botnet force perform
malicious actions on the SDN controller. So, the botnets have
resulted in the progress of severe and massive DDoS attacks
against the SDN and may cause a single failure point.

Positively, deep learning-based applications are widely
used for the detection of intrusion in various fields of net-
working. Examining the behavior in SDN becomes a new
research area because using deep learning to study the behav-
ior could be a first attempt for early detection [10], [11],
as machines can respond faster than humans. Deep learning
techniques allow machines to make decisions through train-
ing, features, trial, and error methods. DL approaches use
historical data to realize the network behavior and predict
upcoming traffic flows. The DL techniques proved excellent
performance in classifying normal and attack traffic flows.
These techniques do not rely on packet payload and take
a set of a particular set of features to make predictions.
DL techniques could help the SDN controllers to realize
the network’s current status. In existing solutions [12], [13],
most researchers try to detect the simple DDoS attack in the
SDN using machine learning and deep learning approaches.
Moreover, the botnet-based DDoS attack potentially affects
the SDN due to its centralized nature, so we need to focus on
botnet-based DDoS. In most studies [8], [14], the researchers
used many traffic features to train ML/DL methods. Extract-
ing and collecting significant features from a real traffic flow
is challenging and time-consuming due to authorization or
accessibility. Furthermore, most existing methods are veri-
fied by simulations or experimental datasets only; real-time
testbed validation is intermittent.

A. MOTIVATION AND CONTRIBUTION
This work aims to conduct a comparative study on deep
learning methods with optimized feature selection from net-
work traffic flow to detect the botnet-based DDoS attack in
an SDN environment. The selection of optimal features can
improve DL methods’ detection performance and accuracy
and can help to reduce the SDN controller’s overhead. As we
know, botnet attacks can hijack the controller and launch
malicious activities. So, DL-based techniques and dedicated
bot management are optimal solutions for SDN to deal with
botnet traffic. The progressive development in security mea-
sures of SDN has motivated us to develop a DL method
named ‘‘DepBot’’ to detect and mitigate botnet-based DDoS.
In short, our contributions are as follows:
• Optimal Features: Compressing multiple features and

identifying the most optimal features is our one con-
tribution. In this, a comparison of DL methods is per-
formed to detect the botnet-based DDoS. The methods
have experimented on a custom-developed dataset.
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• Factor Analysis: We select and retrieve the optimal
features into different subsets. We use feature weight-
ing and threshold tuning-based evaluation techniques
to choose the best feature subset. Based on this, we have
identified optimal features and converted them into five
subsets.

• DL Analysis: We select and use the five DL methods,
such as Recurrent Neural Network (RNN), Convolu-
tional Neural Network (CNN), Multilayer Perception
(MLP), Long Short Term Memory (LSTM), and Deep
Neural Network (DNN), that mostly appears in net-
work intrusion detection-based applications. We use
time-series-based techniques in RNN and LSTM to
develop the detection methods.

• Performance: The performance of the DL methods is
evaluated using accuracy, precision, detection rate, and
F1-score metrics. These methods build a relationship
with raw data through multiple levels of abstraction.
We observed that the DLmethods produce good results
on subset 3. This study would help to select the optimal
features and best DL method for botnet-based DDoS
attack detection in SDN.

• Mitigation: We used graph theory and dynamic flow
deletion concepts to adopt a more targeted flow-
dropping strategy.

II. RELATED WORK
This section discusses the recently developed network intru-
sion methods for SDN. Researchers have recently proposed
various ML and DL-based methods for detecting botnet
attacks. Some appropriate research works have been done in
DDoS and botnet attack detection. [15] proposed ‘‘high-level
PSI-rooted subgraph-based features’’ to detect the botnets in
IoT, and they also used a hybrid combination of machine
learning and deep learning methods. Their main aim was to
detect the attack with a minimum number of features that can
help to reduce the space and faster the detection speed. Ref-
erence [16] developed an IoT botnet sensor system based on
unsupervised learning. They do the hyper parameterization
of SVM using the ‘‘Grey Wolf Optimization (GWO) algo-
rithm’’ to determine the critical features for a botnet attack.
The suggested technique helps to detect IoT botnet attacks
launched from intelligent, vulnerable nodes. We observed
another network-based anomaly detection approach called
N-BaIoT in [17], which takes snapshots of the network
behavior and employs deep autoencoders to detect the attack
traffic. Reference [18] proposed a hybrid method of PSO
algorithms with a voting mechanism to detect botnet attacks
in IoT. In this method, the PSO is used to pick the critical and
remarkable features, and the election process is performed
using DNN, Decision Tree (DT) C4.5, and SVM to detect the
botnet attacks. In another research [19], the authors proposed
a CNN-based method named BoTIDS. They observed that
this method produced good results on a complete dataset and
a predefined subset of 10 features compared to LSTM and
RNN. However, the evaluation results on a subset are com-
paratively better than the full dataset. We observed another

CNN-based Anomaly Intrusion Detection System (AIDS)
[20]. This system is tested on BoT-IoT and Network Intrusion
Detection (NID) datasets. The proposed system produced
effective results on the NID dataset compared to BoT-IoT.

In [8], we observed a two-level DDoS attack detection
method based on DL and Information Entropy (IE). First,
they used information entropy to detect the suspicious port
and components in coarse granularity. Then, they executed
a CNN-based fine-grained detection mechanism to classify
the attack and normal traffic. Reference [21] developed a
DNN-based network intrusion detection system to show the
potential of DL methods for malicious traffic detection.
A combinedmethod of Autoencoder and RNN namedDDoS-
Net has been proposed by [22] to detect DDoS attacks in SDN
environments. Reference [23] proposed an LSTM-based
DDoS detection method and compared the performance of
this method with Random-Forest (RF) based approach, and
it reduced the error rate from 7.517% to 2.103%. Reference
[24] present a deep learning-based lightweight and practical
DDoS detection system called LUCID, which shows the
capabilities of CNN to classify traffic flows as normal or
malicious. Reference [25] proposed a method based on SVM,
assisted by Genetic Algorithm (GA) and Kernel Principle
Component Analysis (KPCA). In this method, the authors
used the KPCA to reduce the dimensions of the features, and
GA was used to tune the hyperparameters of the SVM. They
introduce an improved Kernel Function (N-RBF) to reduce
the noise caused by feature differences. Reference [26] used
Particle Swarm Optimization(PSO)-BP neural networks and
normal entropy metrics in their research to detect the DDoS
attack.

Reference [27] improved the DDoS attack detection per-
formance using a trigger mechanism for the first time. This
method helps reduce the overhead of the switches and con-
troller. Another hybrid method based on Artificial Neural
Networks (ANNs) andDNNwas proposed in [28]. To classify
the major bot attacks as Emotet, Zbot, Dridex, and Sality,
the authors used a combined method of RNN and LSTM
[29]. Another hybrid method based on LSTM and CNN
was proposed in [30]. They deployed this method in a real
testbed which used data gathered from nine commercial IoT
devices to detect the attack. In [31], the authors proposed a
distributed method based on CNN and LSTM with an addi-
tional cloud-based component for detecting DDoS and phish-
ing attacks. Reference [32] introduced a method combining
Fuzzy and Taylor-Elephant Herd Optimization (F-TEHO)
inspired by Deep Belief Network (DBN) to detect DDoS
attacks. This method compromises three modules: feature
extraction, selection, and classification. The feature extrac-
tion module extracts feature from raw packet data, and then
the Holo-entropy method is used to select essential features.
Finally, the classification process is performed using the FT-
EHO method. Another method based on cognitive-inspired
computing with dual address entropy is proposed in [33].
In this method, the dual address entropy is first used to extract
the features from the flow table, and then SVM classifies the
traffic as normal or attack. This method helps to detect the
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TABLE 1. Summary of recent deep learning development for intrusion detection and their limitations.

attack at the preliminary stage and restore the usual communi-
cation in time. We summarize the recent deep learning-based
intrusion detection development in TABLE 1.

III. OVERVIEW OF THE PROPOSED METHOD
To successfully protect the SDN against botnet-based DDoS
attacks, detecting and blocking attack flows from the attack-
ers is significant. A flow comprises several packets with the
same information (source and destination IP address, source
and destination port number, protocol, and other features
are listed in TABLE 3). In an attack flow, the source IP
address belongs to the attacker. Assume we have N number
of flow samples and y classes. Let the flow samples are X =
{F1,F2,F3, . . . . . . . . . ,FN } εRd×N , where Fi represents
the ith flow, d is the number of original features in a flow,
and N represents the total number of flows. In a Fi flow, the
actual tables are defined as yi = {0, 1}. We aim to develop
an end-to-end method to predict a label as an actual label
(ypred(i) = yi).
This section discusses a feature selection and deep

learning-based comparative study for flow classification.
It would help classify the normal and attack flows and
improve efficiency and accuracy. Fig.1 shows the operation
phases of the proposed research. First, the incoming packets
are placed into a pretty table. Second, the features according
to TABLE 3 are computed and extracted for each packet flow

individually. Third, the optimal features are selected based on
the optimal threshold values of the feature weights. Finally,
the selected features are combined into a subset, passing this
subset as input to the DL classifiers (e.g., RNN, CNN, MLP,
LSTM, and DNN) for flow classification.

A. BRIEF DESCRIPTION OF DL METHODS AND
HYPER-PARAMETERS SETTING
This section gives an overview of deep learning methods.

1) RECURRENT NEURAL NETWORK (RNN)
RNNs [34] are known as a dynamic type of feed-forward
neural network. This network can learn the sequential data
overtime-steps. In conventional networks, each unit output
depends on the current input with no dependency between
the previous or output of the same unit. However, time-
series-based applications rely on sequential data; each current
sample depends on the last sample. Therefore, more conven-
tional networks are needed for these applications. RNNs use a
time series mechanism to handle these issues. The sequential
process for each time step is computed as follows:

St = f
(
Wsx,xt +Wys,st−1 + bs

)
Yt = g

(
Wys,st−1 + by

)
(1)

where f and g represent the encoder and decoder functions,
Wsx,xt are current inputs, and Wys,st−1 is the output of the
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FIGURE 1. Flow diagram of the proposed method. Phase 1 converts the packet data into flows. Phase 2 computes and extracts the features from each
flow. Phase 3 selects the optimal features subset using feature weighting and tuning methods. Phase 4 trains the DL methods with optimal feature
subsets and classifies the flow as normal or attack.

previous layer at time-step t , bs, and by are bias. The param-
eter setting is given in TABLE 2.

2) CONVOLUTIONAL NEURAL NETWORKS (CNNS)
CNNs were introduced to handle the intensive connections
between the DNN layers. CNNs use nonlinear mappings to
train their layers and can classify high-dimensional input
data into multiple classes at the output layers. A simple
CNN consists of an input layer, convolutional layers, pool-
ing layers, and an activation function. Convolutional layers
contain different filters, which decompose the input data into
smaller dimensional slices, and feature maps are also pro-
duced by the filters. The pooling layer performs subsampling
over the feature maps and reduces the dimensions of the
maps [35]. The convolutional layers of the CNNs can receive
multi-dimensional input data. The convolutional calculation
process is formulated as follows:

f
(∑m

α=1
wj

α,krl−1,ji+(k−1)×s+α−1
+ bj

)
(2)

where X i,ji,k is one of ith unit of feature map j of kth section
of layer lth, s represents the range of that section, and f is
non-linear mapping function.

Furthermore, CNNs are suitable for multi-dimensional
data problems. CNNs need fewer parameters than other deep
networks, which speeds up the learning process and reduces
complexity. CNNs’ use for intrusion detection is enhanced
due to their capability to covenant with complex data [36].
The CNN’s hyper-parameters setting for our experiments is
given in TABLE 2.

3) MULTI-LAYER PERCEPTRON
In MLP [37], the feed-forward maps the input data to the
corresponding output. In our experiments, a fully connected
network connects each layer with the next and previous lay-
ers. To reduce the difference between the actual and obtained
outputs, the connection weights are used during the training
of MLP. Each node’s output is considered a weighted unit
followed by an activation function that discriminates the lin-
ear and nonlinearly separable data. Generally, the following
mathematical expression is used to obtain the output activa-
tion α(l+1) at layer l + 1.

α(l+1)
= σ

(
w(l)α(l)

+ b(l)
)

(3)

Here, l represents the layer number, w(l) and b(l) are weights
and biases at a particular layer. Where σ is an activation
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function (hyperbolic tangent, sigmoid, rectified linear units,
etc.). The hyper-parameter setting is given in TABLE 2.

4) DEEP NEURAL NETWORKS (DNNS)
DNN is an advanced variant of MLP, a Feed Forward Neural
Network (FNN) type with two or more layers [12]. It consists
of one input and output layer and more than one hidden
layer. Every layer in the network has multiple neurons fully
connected with other neurons in a forward direction. Mathe-
matically DNN method is defined as Q : Rm

×Rn. The input
vector x = x1, x2, x3 . . . . . . . . . xm with sizem, and the output
vector is Q(x) with size n. The computational process on a
hidden layer can be defined as follows:

hj
(
x l+1j

)
= f

(
Zij + b

l+1
j

)
Zij = x liw

(l.l+1)
ij (4)

In Eq. (4), x li is a current neuron at layer l with activation
function i, and Zij is a contribution of neuron i at layer l
to the activation neuron j at layer l + 1. The w(l.l+1)

ij , bl+1j

are the weights and bias of a neuron j respectively, where f
is a non-linear activation function. For our experiments, the
hyper-parameters setting of the DNN is given in TABLE 2.

5) LONG SHORT-TERM MEMORY (LSTM)
The network traffic’s nature is sequential, making the LSTM
suitable for network intrusion detection problems [38]. In our
experiments, the records or adjacent flows of the dataset have
been grouped to make input sequences for the LSTMmethod
because they occur in a temporal sequence. The method’s
output is a label sequence, one label of each flow in an
input sequence. The expectation from an LSTM network is
that it will learn the temporal relationship among adjacent
flows. The hyper-parameter setting of the LSTM is given in
TABLE 2. The training process of the deep learning methods
for the detection of botnet-based DDoS attacks is shown in
Algorithm 1.

B. FEATURE EXTRACTION AND LABELING
The dataset is captured in a pcap format in the
software-defined network environment. We used the CIC
Flow Meter V4 (version 4) [39], [40] to convert the dataset
from pcap format to CSV to train deep learning methods. CIC
Flow Meter V4 takes the captured file and outputs bidirec-
tional network flow statistics with 83 features. A network
flow is a unidirectional sequence of packets traveling from
source to destination with a specific protocol over a period.
The converted dataset has a total of 89,632 flow records
with 83 features. Furthermore, the dataset has 48,390 normal
flows and 41,242 attack flows with the same 83 features.
The descriptions of all the extracted features are given in
TABLE 3.

C. DATA PRE-PROCESSING
The features flow ID, source and destination IPs, source
and destination ports, protocol, and timestamp are removed

TABLE 2. Hyper-parameters settings of DL methods.

Algorithm 1 Training of Deep Learning Methods for Attack
Detection
Input: dataset: data-subsets, learning rate: learning_rate(p), opti-
mizer: adam, training rounds: epochs
Output: accuracy: acc
1: Set the parameters of the DL classifiers according to TABLE 2.
2: Initialize a parameter matrix using random values
3: for each training round, do
4: select a subset from the dataset to form a batch for the
training
5: if the number of training rounds%100=0then
6: return acc
7: end if
8: input batch and calculate predicted value y
9: Calculate the loss value between the actual value of the label y
and the predicted value y
10: Calculate loss value for gradient descent directionwith optimizer
adam
11: Update the parameter matrix with the gradient descent direction
and learning rate (p)
12: if training rounds reach the epochs, then
13: stop training of DL classifier
14: end if
15: end for

from the dataset to generalize it. Removing the features
above-mentioned precludes the DL methods from attributing
specific IPs, ports, and protocols as attack nodes, thereby
adopting the generalized DL methods’. After that, the dataset
is appraised for infinite and missing values. After normaliza-
tion, the dataset is encoded (the normal and attack flows were
labeled as 0 and 1, respectively). As mentioned in the above
section, the dataset has 48,390 normal and 41,242 attack
flows. The imbalance is retained in the dataset to imitate the

49158 VOLUME 11, 2023



M. W. Nadeem et al.: Detecting and Mitigating Botnet Attacks in Software-Defined Networks Using DL Techniques

TABLE 3. List of extracted features and their weights.
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TABLE 3. (Continued.) List of extracted features and their weights.

real-time scenarios for the DL methods, where the number of
normal flows is always greater than attack flows.

D. FEATURE SELECTION
Although some of the features mentioned above are important
for detecting attack flows, and some may have little effect
on the classification results, they upsurge the computational
cost and time. We must select the optimal features that can
discriminate the normal, and attack flows to boost and be
accurate in classification. In our experiments, we use a feature
selection method that does not change the original features
but selects an optimal subset of features from a given set of
features. Let {F1,F2,F3, . . . . . . . . .Fd are d features of X ,
where d represents the high-dimension features. So, to select
the optimal flow features for attack recognition, we assume
a method that can convert the high-dimension features d to
low-dimension features r(r < d). In our experiments, the fea-
ture selection method is based on two principles: (i) Feature
Weighting and (ii) Threshold Tuning. The feature selection
procedure is shown in Algorithm 2.

Algorithm 2 Procedure of Feature Selection
Input: Feature Set F= {F1, F2, F3, F4, . . . . . . . . . . Fd}, the threshold
of weight α, and the number of selected features r;
Output: Selected feature set F’
// Calculate the weights of the features
1: F’ Ø
2: for (

←−−−−−−
i = 0; i < d; i++) do

3: r(i) compute weights (Fi)
4: if (|r(i)|

←−−
< α) then

5: remove feature Fi;
6: else
7: FA [] = Fi
8: end if
9: end for
10: F’ store (FA [])
11: return

←−
F′

E. FEATURE WEIGHTING
Our experiments used iterative wrapper-based feature selec-
tion with SVM to convert the whole dataset into five subsets

with optimal features. The SVM assigns the weights of all the
features based on their importance in predicting the output.
The features with higher weights are considered important
for detecting the attack. The assigned absolute value of the
weights by the SVM for distinct features is given in TABLE 3.
A threshold value derived from the threshold tuning method
for the weights is set for selecting features during each iter-
ation. The features with weights greater than or equal to the
threshold (Fn (wn) ≥ α) were selected and converted into
a subset. Then, subsets with optimal features were given as
input to the DL classifiers.

F. THRESHOLD TUNING
A simple threshold tuning method determines the optimal
threshold value based on feature weights. The tuning method
takes the feature weights from minimum to maximum and
returns a threshold value between the range. The optimal
threshold values can be computed as the threshold that can
reduce the dimension of the features.

IV. EXPERIMENTAL ENVIRONMENT
The experiments are conducted in the Mininet virtual envi-
ronment [41] with a POX controller [42]. We used Mininet
version 2.3.2 in our experiments, which supports Open Vir-
tual Switches (OVS) [43]. Usually, the SDN-based net-
work emulations are performed in Mininet, and OVS is an
open-source virtual machine that supports OpenFlow pro-
tocols. The POX is an interface-rich SDN controller that
authorizes the network and research community to cultivate
control and network applications using Python.

The operating system and hardware settings are Intel Core
i7, 8GB RAM, and Windows 10 operating system. The
deep learning classifiers are implemented in Python language
with the Keras framework. A customized centralized network
topology based on SDN is built in Mininet to conduct exper-
iments. A complex tree network structure is adopted in this
topology, and the SDN controller is installed in the control
layer that centrally controls the hosts and switches at the
data layer. The application layer consists of four modules:
flow statistics collector, feature extractor, DL classifier, and
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FIGURE 2. SDN-based experimental network topology.

mitigator. Furthermore, the network topology consists of a
controller and seven OpenFlow switches. The switch S1 is
connected to six hosts, and all the other switches with three
hosts. The experimental network topology is shown in Fig. 2.

After the successful development of the topology, we exe-
cute the ‘‘ping’’ command on all hosts to verify the access
of all hosts to each other. We select H2 as a bot master,
and H3, H4, H5, and H6 are bots, while H13 is our target
server. The other hosts are used to generate legitimate or
background traffic. The controller controls the whole network
and detects the attack, while the switches are used to forward
the traffic. The relevant settings related to topology are given
in TABLE 4.

A. DESIGN OF ATTACK AND BACKGROUND TRAFFIC
Our experiments used Python scripts to launch botnet-based
DDoS attacks in an SDN environment. Once the topology
is set up, we execute ‘‘target.py’’ on the host H13 to set it
as a target server. After that, ‘‘botmaster.py’’ is executed on
H2, and ‘‘bot.py’’ is run on H3, H4, H5, and H6. Specific
ports for the bots were created using the concept of socket
programming. The bots wait on their designated ports for the

instructions of the botmaster. The botmaster sends the date
and time for the attack to all the bots and instructs them to be
ready. Once the date and time of all bots are matched with the
botmaster’s instructed time, they send the attack traffic to the
target server. The duration of the attack was 14.26 minutes.

We used a Distributed Internet Traffic Generator
(D-ITG) [44] to generate normal or background traffic.
The ITGSend command on each host is executed to send
traffic and ITGRecv to accept traffic. We used the D-ITG-
2.8.1-r1023 version of D-ITG in our experiments. To make
the background traffic near to real traffic, we inject more
than 200 flows into the network as background flows. The
transmission rate of each flow follows constant, uniform,
exponential, Poisson, and gamma distributions with TCP
protocol. We also variate the packet size for each flow
through constant, uniform, exponential, Poisson, and gamma
distributions. An example of flow rules to generate normal
traffic by the D-ITG is shown in Fig. 3. In Fig. 3, each row
has a flow rule to generate the background traffic, and these
rules are executed on different hosts to generate and accept
traffic. For instance, taking the red box, the third background
flow follows the second background flow, and so on. The
destination host is H13 (IP address 10.0.0.13 with port 5000).
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TABLE 4. The setting of addresses and device ports.

FIGURE 3. An example of flow rules to generate normal traffic.

FIGURE 4. Partial screenshot of the flow table of an OpenFlow switch during normal traffic.

The number of packets sent is uniformly distributed
from 500 to 1000, and the size of transmitted packets is
512 bytes. This is a TCP protocol-based flow, and the duration

of the traffic is 12000 milliseconds. A partial snapshot of the
flow table in the OpenFlow switch is shown in Fig. 4. Fig. 4
shows the screenshot when the background traffic runs and
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highlights it with the red box. In Fig. 4, the red box shows
a flow entry of H1 (IP address 10.0.0.1) to H13 (IP address
10.0.0.13) with destination port 5000. It is observed that the
background traffic has been successfully inoculated into the
network.

B. MITIGATION STRATEGY
The controller is responsible for regularly analyzing the traf-
fic flows to protect itself frommalicious attacks. For instance,
when the controller detects any attack, it quickly needs to
activate the defense shield to reduce the possible impact
of the attack and ensure the network’s normal operations.
In previous studies [1], [6], the authors commonly use modify
or block attack traffic concepts in their mitigation meth-
ods. However, many malicious flow entries remain in the
switches after blocking the attack flows, which affects the
normal forwarding process of the network and the resources
of the controller and switches. So, we adopted a graph theory
and dynamic flow deletion-based mitigation strategy. In our
mitigation strategy, first, the controller requests correspond-
ing OpenFlow switches for the flow statistics in every 1T
(e.g., 5 sec). After receiving the flow statistics, the controller
passes the features information shown in Fig.5 to the already
trained DL classifier (e.g., CNN) to predict whether the flow
is normal or attacked. Once the classifier inside the controller
detects any attack flow, it informs the controller. Then the
controller creates a gray list Sg in the database and puts the
incoming flows of the switches with attack flows for further
analysis to reduce the chance of killing the normal packet
and continue the normal operation of the remaining network.
After that, the controller redirects the Sg flows to the classifier
to detect the attack. Here we set a counter that starts calculat-
ing the number of attack flows labeled by the classifier and
set a limit for attack flows (e.g., c≥10). Simultaneously, the
controller creates two new lists: delete Sd and block Sb in
the database. The delete list contains the attack flows that
need to be deleted from the switches with the same attack
flows, and the block list maintains a list of hosts involved in
the attack for future use. The controller uses its host tracker
features to fetch the attacking hosts’ information (e.g., MAC
or IP address, TCP or UDP port number, entry port, etc.).
When the counter reaches its set limit, we use the graph theory
concept derived from [45] to discover the attacking path in the
network. Here, finding the network path that passes the attack
flow and locating the switches through which the attack flows
enter the network is important. The attacking path using the
concept of graph theory can be formulated as follows:

Ei,j =
∑

(si, ri)→
(
sj, rj

)
,where si, sjε Sattack (5)

In the above equation, the Ei,j is the edge (e.g., the attacking
path), and Sattack is a set of switches through botnet-based
DDoS attack pass. When the botnet-based DDoS attack
passes through both si and sj switches and the forwarding
rules are met, we can say that the edge between the (si, sj) hop
in the attack path. So, the main aim of our mitigation strategy
is to find the attack path to adopt a more targeted dropping

strategy for malicious flows and not kill the normal flows by
mistake.

According to the network traffic characteristics, we make
an assumption (e.g., the closer the hop is to the attack source
on an attack path, the greater the proportion of the attack
traffic in the link traffic). After successfully finding the attack
path, there is now a need to adopt an effective dropping
strategy for attack flows. Generally, most attack flows exit
in that switches from where the attack flows enter, so their
dropping rate must be larger to mitigate the attack effectively.
For instance, we can be called these edge switches and other
intermediate switches. The dropping rate at intermediate
switches keeps smaller than at edge switches to avoid killing
normal flows. Different indicators can be used to calculate
dropping rates for switches. As the switch has only normal
flows, there is no need to set the dropping rate. So, we can
use the following formula derived from [45] to calculate the
dropping rate for a switch:

redge = k(1H , 1N ) (6)

where 1H is the difference in entropy of source IP addresses
of packets per unit of time, and 1N is the difference in the
number of packets passing through a switch per unit of time.
Finally, after finding the switch closer to the attacking source,
the controller sends the ‘‘OFPFC_ADD’’ message to that
switch and inserts new flow entries in the switch flow table.
The corresponding starts to drop the attack flows according
to the delete list Sd based on the calculated drop rates. If the
dropping rate for any host reaches 100%, then the information
of that host is placed in the backlist, and the host is blocked.

V. EXPERIMENTAL RESULTS
A. EVALUATION METRICS
The following evaluation metrics are commonly used to
demonstrate the effectiveness and performance of the
DL-based IDS. The performance measures include accuracy,
Detection Rate (DR), False Positive Rate (FPR), F1 score,
specificity, and precision. The confusion matrix of network
anomaly classification is used to compute these metrics. The
efficiency of any implemented method can be assessed using
these performance measures. In the confusion matrix, True
Negatives (TN) are the number of normal records that are
accurately detected as normal, True Positives (TP) are the
number of attack records that are accurately detected as
attacks, False Positives (FP) are normal records which are
inaccurately detected as attacks, and False Negatives (FN) are
attack records which are inaccurately detected as normal.

All these evaluation metrics can be quantified as follows:
Accuracy: Accuracy is the proportion of the precisely

detected number of normal and attack records to all records,
which is formulated as follows:

Accuracy =
TN + TP

TN + FP+ FN + TP
(7)

Detection Rate: DR is a ratio of accurately detected true
attack records. It is also known as Sensitivity or recall and
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FIGURE 5. List of optimal features in subset-3.

True Positive Rate (TPR). It is computed as:

DetectionRate = recall = TPR =
TP

FN + TP
(8)

False Positive Rate: FPR is a ratio of inaccurately identified
number of normal records as attack records.

FPR =
FP

TN + FP
(9)

Precision: Precision is a ratio of all accurately detected attack
records that are really attack records.

Precision =
TP

FP+ TP
(10)

F1 Score: It is a harmonic mean of both precision and recall.
It is consideredmore efficient than accuracywhen themethod
is trained on an imbalanced dataset. The F1 score for a DL
method is computed as follows:

F1score = 2×
Recall × Precision
Recall × Precision

(11)

If the accuracy, DR, precision, and F1 score of any imple-
mented DL method is high, and the same way, If the FPR is
low, then that method is regarded as the best method.

B. FEATURE SELECTION RESULTS
Wecalculated the importance of each feature and split them

into five subsets based on feature weighting and threshold
tuningmethods. The threshold tuningmethod used the weight
values of all features to determine an optimal threshold value.
Features with equal or higher weights than the threshold value
was selected and placed in a subset. Subset-1 includes all

features. For subset-2, the tuning method returns an optimal
value of ‘‘1.8’’, selecting 43 features with weights α ≥ 1.80
to be included in the subset. Subset-3 consists of 30 fea-
tures with weights α ≥ 2.70, which was determined as the
optimal threshold value. Similarly, for subset-4, 23 features
were selected based on α ≥ 3.15. Lastly, subset-5 includes
15 selected features based on a threshold value of α ≥ 4.90.
For example, Fig. 5 shows the selected features for subset-3.

C. EFFICIENCY OF DL METHODS FOR ATTACK DETECTION
This section aims to verify the efficiency of the DL methods
for botnet-based DDoS attack detection in an SDN environ-
ment. We simulated and overserved the different classifica-
tion algorithms’ performance with almost identical method
structures.We used a confusionmatrix to calculate the perfor-
mance indicators explained in the above section. Fig. 6 shows
the general structure of the confusion matrix.

D. STRUCTURAL PERFORMANCE OF METHODS
We compared the performance of five different DL methods
to detect the attack traffic. The training set is divided into
five subsets based on the optimal features. We adopt almost
the same structures (number of hidden layers, number of
neurons at hidden layer, activation functions on both hidden
and output layer, learning rate, optimizer, and batch size)
for all the methods. We observed that the methods produced
different results with the same structure and on the same
subset of features. The main aim of evaluating the structural
performance of the methods is to select the best method
without increasing the complexity of the methods.
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FIGURE 6. The general structure of a confusion matrix for anomaly
detection.

E. CLASSIFICATION PERFORMANCE OF METHODS
The evaluation metrics defined in the above section have
been used to successfully measure the prediction rate for both
attack and normal states. For most of the DL methods we
analyzed, the fluctuations in the output of DL methods are
caused by the number of features, which means the prediction
becomes effective with optimal features. This paper used
five DL algorithms for traffic classification: RNN, CNN,
MLP, LSTM, and DNN. These algorithms have different
classification capabilities, and we compared their prediction
performances. The confusion matrices of all five algorithms
for subset-3 features are in Fig. 7. It is observed that all
the algorithms RNN, CNN, MLP, LSTM, and DNN shows
good abilities for identifying attacks whose underreporting
rate (FNR) are 0.78%, 0.40%, 0.59%, 0.87%, and 0.89%,
respectively. The recognition ability of all the algorithms to
the normal and attack data is about 99%, with a slight dif-
ference. The detection methods need high sensitivity because
the attack traffic can harm the SDN controller.

Then, we compare the validation accuracy and loss curves
of all the algorithms for subset-3, as shown in Fig. 8. In Fig. 8,
it is observed that the accuracy curve of DNN and CNN
is more stable and steeper than the other algorithms, which
indicates that the performance of DNN and CNN methods is
comparatively superior. The validation accuracy of DNN is
99.30%, CNN is 99.37%, MLP is 99.33%, RNN is 99.25%,
and LSTM is 99.16%. The Loss curve of all algorithms is
shown in Fig. 9. The CNN and DNN have low loss ratio than
others. The CNN shows the minimum fluctuation in the loss
curve. Comparing the accuracy and loss curves proves that the
CNN method is more stable for attack detection than others.

F. COMPARATIVE ANALYSIS OF METHODS PERFORMANCE
This section compares the performance results of all meth-
ods regarding Computational time (training time), accuracy,
and detection rate. The performance comparison results are
shown in TABLE 5. Regarding the overall trends, the clas-
sification performance is improved by reducing the num-
ber of features at a certain level. It has been observed in

TABLE 5 that the CNN and DNN have the trend to achieve
a maximum of 99.43% and 99.53% on subset-2, while the
LSTM has minimum accuracy of 97.60% on subset-5. The
maximum detection rate achieved by the CNN is 99.60% on
subset-3, while the MLP’s minimum detection rate is 89.99%
on subset-1. For example, we take subset-3 and analyze the
accuracy rate, detection rate, and computational time. The
accuracy of CNN is 0.12%, 0.04%, 0.07%, and 0.21% higher
than that of the other four classifiers (RNN, MLP, DNN,
LSTM), respectively. Similarly, the detection rate of CNN is
0.39%, 0.19%, 0.49%, and 0.47% higher than other classi-
fiers. In addition, the computational time of CNN is 39.51s
higher than that of MLP, 27.75s higher than that of DNN,
81.29s lower than that of RNN, and 29.85s lower than that
of LSTM, but the accuracy is increased by nearly 0.04%-
0.21%, and detection rate is improved from 0.19%-0.49%.
Since the classifiers are trained offline and are not frequently
updated, ensuring an effective detection rate and accuracy, the
high training time can be accepted. It means that the detection
methods require high accuracy with reasonable training time.
We also observed that the CNN method performed better
on subset-3 with 30 features than on subset-4 and subset-5.
The accuracy of CNN is 99.29% with subset-4 features and
99.26% with subset-5 features. Although these subsets have
minimum features compared to subset-3, the training time of
CNN with subset-3 is 3.98s and 20.53s lower than others, the
accuracy of CNN is 0.08%, 0.11%, and the detection rate
is 0.25% and 0.53% higher. Furthermore, the performance
results of all classifiers with all five subsets in terms of other
parameters such as precision, F1 score, True Positive Rate
(TPR), and False Positive Rate (FPR) are shown in Fig. 10.
RNN achieves maximum precision rate with all features set
which are 99.29%. The minimum is 99.11% on subset-5,
CNN attained a maximum of 99.37% with all features, and
a minimum is 99.03% with subset-3, MLP achieved a maxi-
mum of 99.94% with all features and a minimum is 98.98%
with subset-5, DNN achieved maximum 99.75% with all fea-
tures and minimum is 99.16% with subset-5. LSTM attained
a maximum of 99.37% with all features, and a minimum is
97.36% with subset-5. The maximum F1 score of RNN is
99.22% with subset-2 features and 98.57% with all features;
CNN achieved a maximum F1 score of 99.37% with subset-2
and a minimum of 98.61%with all features set, MLP attained
a maximum of 99.34% with subset-2 and minimum 94.70%
with all features, DNN achieved maximum 99.48% with
subset-2 and minimum 98.50% with all features, LSTM has
maximum 99.09% with subset-3 and minimum 97.40% with
subset-5. Hence, the RNN has a maximum TPR of 99.21%
with subset-3 features and a minimum of 97.86%with all fea-
tures, CNN achieved amaximumTPR of 99.60%with subset-
3 features and a minimum of 97.87 with all features set, MLP
has maximum 99.45%with subset2 and minimum 89.99 with
all features, DNN has maximum 99.49% with subset-2 and
minimum 97.29%with all features, and LSTM has maximum
99.31% with subset-2 and minimum 97.44% with subset-
5. Based on the above results, we can conclude that all the
classifiers produce good results using subset3 features. The
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FIGURE 7. Comparison of confusion matrix between RNN, CNN, MLP, LSTM, and DNN for subset-3.
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TABLE 5. Comparison of performance results with all five sets of features.

FIGURE 8. Accuracy curve between all algorithms with subset-3.

CNNmethod is a top performerwithmore stable and effective
results than other classifiers in a specific scenario adopted in
this paper. Thus, there are some advantages of this outcome:
(i) the training sets are collected easily without knowing the
details of traffic flows; (ii) with optimal features, the training
phase becomes simple; (iii) the resource consumption and
complexity of the methods is reduced due to training set with
optimal features.

FIGURE 9. Loss curve between all algorithms with subset-3.

G. IMPLEMENTATION AND EVALUATION IN REAL
TESTBED
To evaluate and verify the performance of DLmethods on the
real testbed, we select the methods that have been trained and
validated with subset-3 features. The same network topology
shown in Fig. 2. is used for the real testbed. The same
way used to generate the training data (e.g., explained in
section IV-A) has been followed to create/collect the flow
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FIGURE 10. Comparison of performance results between all algorithms in terms of precision, f1-score, true positive rate, and false positive rate.

statistics for predicting normal or attack traffic flows in a real
testbed environment. Each trained DL method is individually
deployed in the controller. Then the method classifies the
incoming flow with the number ‘‘0’’ or’’1’’ (e.g., all methods
have only two options in our test, so each method defines
the normal flow as ‘‘0’’ and attack flow as ‘‘1’’). To verify
the overall performance during real-time traffic, we used
50 consecutive decisions, which every method individually

makes under two network states (normal or attack). The
correct detection rate of each method during real-time traffic
is shown in Fig. 11. We observed that the output predictions
of all the methods for normal flows are better than the attack
flows. All methods achieved more than a 90% detection
rate, especially with CNN, which reaches 99% in predicting
normal flows. Similarly, the detection rate of methods reaches
87%, 97%, 85%, 93%, and 85% for attack flows, respectively.
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Comparing the training time (e.g., in seconds) of DL
methods for subset-3 features, RNN took more time to get
trained than other methods. CNN took a reasonable time to
get trained. The detection time (in microseconds (µs)) per
flow for CNN is also slightly low than in other methods.
In contrast, the detection time of LSTM is significantly higher
than other methods, which indicates that the LSTM for attack
detection can handle a few flows per second. Taking the
detection rate, training, and detection times as evaluation
parameters, we can conclude that CNN is the best method for
detecting botnet-basedDDoS attacks in an SDNenvironment.
A visual representation of training and detection times is
shown in Fig. 12 and Fig. 13, respectively.

FIGURE 11. The correct detection rate of each algorithm during real-time
traffic.

FIGURE 12. Comparison of training time with subset-3.

VI. DISCUSSION AND FUTURE WORK
In this paper, we study and employ DL methods to con-
tribute to the detection of botnet-based DDoS attacks in an

FIGURE 13. Comparison of detection time during real traffic.

SDN-supported environment. We explore the efficiency of
the DL methods with baseline hyper-parameters and optimal
features to detect the attack. We evaluate the performance of
the DLmethods using different evaluationmetrics (e.g., accu-
racy, detection rate, training, detection time, etc.). A core
contributing factor of this study is the generation and col-
lection of the training dataset, which is purely developed in
an SDN environment instead of relying on old or traditional
datasets. In most studies [17], [20], the researchers used
traditional datasets (e.g., Na-BaIoT, NSL-KDD, CIC-DDoS
2019, DARPA, etc.), which are not suitable for SDN due its
flow based nature, and also these datasets suffer imbalanced
problems. In addition, we do not rely on a dataset with many
features but divide the whole dataset into subsets (e.g., opti-
mal features) based on the feature’s importance; then, these
subsets have been tested to observe the impact of optimal
features on the method performance. Simulation results show
a variation in the performance of each DL method on the
same subset of features, so we can conclude that the optimal
features could improve the detection rate. Based on the exper-
imental results and discussion above, we conclude that CNN
is the best method for the proposed study and the adopted
scene. Its accuracy reaches 99.37% with subset-3 features
using generated dataset. During real testbed traffic, the detec-
tion rate of CNN for normal flows is 99% and 97% for attack
flows. We also considered timing metrics (e.g., training and
detection times) and observed that CNN took reasonable time
during training and detection. Consequently, CNN shows an
acceptable detection rate or accuracy during real-time botnet-
based DDoS attack detection in an SDN environment. A final
key advantage of this study is that the defensemethod protects
the SDN from botnet-based DDoS attacks.

The limitation of this study is that it is only valid for
botnet-based flooding DDoS attacks in SDN environments.
It cannot accurately detect non-volumetric attacks, such as
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low-rate DDoS or other malicious attacks. Additionally,
we focused on a single SDN controller-based environment.

We plan to extend this study to investigate the low-rate,
spoofed DDoS and other malicious attacks with real SDN
traffic using hybrid DL techniques. Training the real-time
methods to keep the IDS systems updated is also good.

VII. CONCLUSION
SDN redefines the network’s management and communica-
tions and leads to reforms. Although SDN has vast capabil-
ities, it also introduced new emerging security challenges,
which need the great attention of both the network and
research community. The botnet attacks target the devices in
the data plane or the controller in the control plane. Detecting
the botnet and DDoS attacks in SDN becomes more chal-
lenging than in traditional networks due to the sophistication
of traffic flow features. The SDN’s decoupled architecture
would help to build and deploy a method that flexibly detects
the botnet-based DDoS attack. Nevertheless, the new net-
work environments shall be adopted to provide a reliable
definition and behavior of botnet-based DDoS attacks in
SDN. Nowadays, deep learning-based network applications
are trending and could be utilized to secure the SDN. The DL
methods use the historical training sets in predicting real-time
network state and inform the controller. In our study, first,
we produced a dataset in a pure SDN-supported environment
and then used DL techniques to predict the botnet-based
DDoS attack to resolve these issues. The DL procedures,
from dataset generation to attack detection, are done over
a single controller and gratitude to the SDN’s centralized
control. In real-time, the controller sends a packet-In request
to all the OpenFlow switches to collect the flow statistics, and
then these flow statistics are used by the DL module inside
the controller to detect the attacks. The real-time detection
rate of CNN with 30 features reaches 99% for normal flows
and 97% for attack flows, a remarkable contribution of this
study to secure the SDN from botnet-based DDoS attacks.
We named the CNN-based method ‘‘DepBot,’’ simplifying
the data preparation in the DL training phase. Although the
DL methods achieved reasonable detection rates and accu-
racies with 30 features in the adopted network scenario, it is
suggested to use advanced feature selection methods to better
the prediction accuracy further.

DATA AVAILABILITY
The source code to generate the botnet attack and the nor-
mal and attack traffic dataset utilized to conduct this study
is available at: https://github.com/Waqas-Nadeem/Botnet-
based-DDoS-attack-in-an-SDN-Environment.
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