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ABSTRACT Protection of computer systems and networks against malicious attacks is particularly important
in industrial networked control systems. A successful cyber-attack may cause significant economic losses or
even destruction of controlled processes. Therefore, it is necessary to test the vulnerability of process control
industrial networks against possible cyber-attacks. Three approaches employing Generative Adversarial
Networks (GANS) to generate fake Modbus frames have been proposed in this work, tested for an industrial
process control network and compared with the classical approach known from the literature. In the first
approach, one GAN generates one byte of a message frame. In the next two approaches, expert knowledge
about frame structure is used to generate a part of a message frame, while the remaining parts are generated
using single or multiple GANs. The classical single-GAN approach is the worst one. The proposed one-
GAN-per-byte approach generates significantly more correct message frames than the classical method.
Moreover, all the generated fake frames have been correct in two of the proposed approaches, i.e., single
GAN for selected bytes and multiple GANSs for selected bytes methods. Finally, we describe the effect of
cyber-attacks on the operation of the controlled process.

INDEX TERMS GAN neural networks, cyber-security, cyber-attacks, industrial network.

I. INTRODUCTION

Cyber-security is increasingly important these days. Protec-
tion of computer systems and networks against malicious
attacks is important in all computer systems, particularly
in industrial networked control systems [1]. Such systems
are usually very complicated since they are composed of
many components, i.e., the controlled processes themselves,
Programmable Logic Controllers (PLCs) [2], Supervisory
Control and Data Acquisition Systems (SCADAs) [3]. A suc-
cessful cyber-attack may cause significant economic losses or
even destruction of controlled processes, e.g., power stations,
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refineries or waste-water treatment plants. Therefore, it is
necessary to test the vulnerability of process control industrial
networks against possible cyber-attacks.

One popular method of testing network and program
resilience is error injection [4], [5]. It involves intentionally
writing errors into the program code or sending messages
containing errors to the network. Errors can be injected into
the system, such as process malfunctions or valve failures.
A neural model may detect these errors [6]. A digital twin
approach is discussed in [7]; it is possible to observe the
influence of various errors. Let us note that in this approach,
the so-called error space grows exponentially as the system’s
complexity increases. The problem with a vast error space can
be solved using a testing technique called fuzzing, which is
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an automated or semi-automated software testing technique
that involves providing incorrect, unexpected or random data
as input to the system [8], [9], [10], [11]. An effective fuzzer
generates such input data that is sufficiently correct not to be
directly rejected by the parser but is at the same time suf-
ficiently incorrect to cause unexpected system behavior. The
fuzzer can generate valid queries and responses and then fuzz
them using mutations and permutations of messages from the
network [12]. Transformed messages are finally sent to the
system. The EtherCat protocol is considered in [13], [14].
A fuzzer for the Modbus protocol is presented in [15]. A new
approach to the vulnerability analysis of smart grid protocols
using fuzzing is presented in [16], focusing on inter-protocol
test generation. Before creating tests, protocols are classified
into three categories. Based on the classification, tests are
then created. A fuzzing method that uses both the input
grammar of the testing software and the information extracted
from the system is described in [14]; the Modbus protocol
and SCADA software have been used. An advanced mutation
method in the Modbus protocol is considered in [17].

Nowadays, neural networks [18], [19], [20], [21], [22]
can also be used for fuzz testing [23]. GANSs are of partic-
ular note [24]. GANs consist of two independently operat-
ing neural networks. The first one, called a discriminator,
learns to recognize certain entities. The second one, called
a generator, learns to generate these entities. The generator
tries to outsmart the discriminator. The discriminator tries
to prevent this with samples of true and false (generated)
entities. Finally, the discriminator is discarded and the trained
generator can be used to create synthetic entities, difficult
to distinguish from the real ones. GANs have found many
applications: recognition of facial expression [25], art gener-
ation [26], image transformation, e.g., aging or rejuvenating
faces on photos [27], image [28] and textures in video games
enhancement [29], traffic flow prediction [30], text to image
synthesis [31], melody generation [32], designing an urban
landscape [33].

GANSs can also find various applications in the cyber-
security field. They may be used for password genera-
tion [34], steganography [35] and malware generation [36].
GANSs can be successfully used to generate synthetic mes-
sages of industrial protocols for fuzzing. RapidFuzz [10]
is a model that employs both mutation-based fuzzing and
generative capabilities of GANs to test fuzz program code.
A Mask Fuzzer based on GANs [37] has been proposed
for testing Modbus TCP protocol. Authors of [38] use clas-
sic GANs and Wesserstein GANs (WGANSs) to find vul-
nerabilities in Modbus TCP and EtherCat protocols. Sim-
ilar work conducted for the DNP3 protocol resulted in
the development of CGFuzzer [39], which employs Long
Short-Term Memory (LSTM) neural networks-based gen-
eration of frames. It is important to note that in the
works presented in the literature, the emphasis is on find-
ing potential vulnerabilities and security holes in industrial
protocols.
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The classical approach to generating fake communication
frames, named the single-GAN method [38], has an essen-
tial disadvantage because it gives many formally incorrect
frames. Hence, we are motivated to develop new frame gen-
eration schemes that give formally correct frames but badly
affect the control system. Therefore, we test four approaches
to fuzz data collected from a laboratory process control net-
work to perform an attack that is not easily detectable. The
first one is the classical approach, whereas the authors pro-
pose three others. The first two approaches consist in generat-
ing a message frame using GANSs. The first one [38], in which
a single-GAN model is employed to generate one message
frame, is done for comparison. In the second approach, one
GAN generates one byte of a message frame. In the next two
approaches, expert knowledge about frame structure is used
to generate part of a message frame; in contrast, the remaining
parts are generated using a single (the third approach) or
multiple (the fourth approach) GANs. The article aims to
present the experiments conducted in an example complex
process control network, compare the tested approaches, and
describe the advantages of the mechanisms that work. It is
important to note that a cyber-attack may result in stopping
the controller (i.e., hanging up), which is simple to detect.
Moreover, a cyber-attack may lead to improper process oper-
ation that is difficult for the operator to identify. To sum up,
the contributions of this work are:

1) Three new GAN-based fake frame generation methods
for the Modbus protocol are presented. The detailed
structure of each GAN employed is presented.

2) Using a laboratory test bed, we perform experiments to
assess the effectiveness of new and classical methods.
The test bed uses hardware and software components
typical of industrial control systems.

3) We assess the effectiveness of all considered methods
considering the controlled system’s performance.

4) As discussed in this work, the developed methods per-
form differently but are much better than the classical
single-GAN method.

At first, Section II discusses the classical GAN-based
neural network architecture for testing industrial networks
against cyber-attacks and introduces three new GAN-based
structures. Next, Section III describes the experimental test
bed and Section IV presents the obtained results; the effi-
ciency of the classical structure and three new ones is com-
pared. Finally, Section V concludes this work.

Il. EMPLOYED GAN STRUCTURES

In this work, we consider the following scenario: the GAN
generates attacks that are not easily detected (they do not
cause the PLC controller to crash). Additionally, we use a
real-world example of a simple industrial network, where
the variety of messages sent between various devices is
limited. Most messages are either measurement requests or
commands with calculated values of manipulated signals.
Therefore, we have decided to modify the fuzzing method.
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We focus on an approach to data generation where expert
knowledge about network data is required. Thus, creating and
analyzing a training set for the GAN model requires expertise
and at least basic knowledge of the devices connected to the
network. We aim to design a tool to carry out cyber-attacks
on the network and manipulate the messages flowing in it so
that the controlled process connected to the network works
inefficiently. At the same time, there must be no obvious
error information that a SCADA operator could observe.
To develop a GAN that performs the task described above,
we perform the following steps:
1) Collecting the training data set for the GAN model.
2) Preprocessing of the data, i.e., message selection and
normalization.
3) Training GAN models in four different configurations
(the first one is taken from the literature while the fol-
lowing three original ones are proposed in this work):

a) a single-GAN model used to generate one mes-
sage frame [38],

b) one-GAN-per-one-byte model where one GAN is
used to generate one byte of a message frame,

¢) a single-GAN model for selected bytes; a GAN
is used to generate only a part of the network
message frame; the remaining parts of the frame
are generated based on expert knowledge,

d) multiple GAN models for selected bytes; multiple
GANSs are used to generate selected bytes of the
frame, and the remaining parts of the frame are
generated based on expert knowledge.

4) Testing the messages generated by the models in a
laboratory.

A large data set of messages flowing through the laboratory
network has been collected. For the data acquisition, an arti-
ficial data flow has been introduced. This network traffic
mainly consists of the following:
o communication between SCADA and PLCs using
SLMP protocol,

« communication between PLCs and HMIs using Melsec
Connection,

« communication between PLCs using PROFINET and
Modbus TCP,

« other communication, e.g., between GXWorks software

and PLC using Melsec Connection.

This traffic has been collected in the form of PCAP files.
The first step to creating a training data set for GAN is
to analyze the entire set of messages and select the most
interesting ones from the point of view of launching an
attack. We have decided that conducting the study for the
Modbus TCP network protocol would be worthwhile since it
is frequently used in industrial control networks [1]. In the
laboratory stand, communication via Modbus TCP is car-
ried out between two PLCs in master-slave configuration
and the controlled process. The master controller receives
measurements of the current state of the process from the
slave controller. Proportional-Integral-Derivative (PID) and
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Dynamic Matrix Control (DMC) controllers [40], [41] have
been implemented in the master controller, which calculates
the current values of the manipulated variables. These signals
are then sent to the slave controller, which finally sends them
to the controlled process. Therefore, the training data set has
been created with the message frames having the following
characteristics:

a) Modbus TCP protocol frames,

b) queries,

¢) containing the Write Multiple Registers function code,
as these are concerned with potentially sending the val-
ues of the manipulated variable to the controlled process.

To summarize, only frames with the structure shown in Fig. 1
remain in the training set. A typical message in the training
dataset has the following structure:

o Bytes 1 and 2 are the transaction ID number. The former
takes values from O to 255; the latter always takes the
value 1,

« Bytes 3 and 4 are the protocol ID number; they always
take the value 0,

« Bytes 5 and 6 are the length of the message frame; they
always take values 0 and 19,

« Byte 7 is the device ID number; it has the value 0,

« Byte 8 is the Write Multiple Registers function code,
which always takes the value 16,

o Bytes 9 and 10 are the initial number of registers where
new values are written; they have the value 0,

o Bytes 11 and 12 are the number of registers where new
values are to be written; they take values 0 and 6,

« Byte 13 is the doubled number of registers; it has the
value of 12,

o Bytes 14-25 are the values to be written to the registers;
they can take values from O to 255, while the values
of only the last four bytes are changed during system
operation.

After appropriate training using the available data set, the
GAN model is supposed to generate messages with similar
content. Then, those messages can be sent to the system,
replacing the signals of the manipulated variable generated
by the controller.

Before the models can be trained, the collected data set
has to be preprocessed. In order to complete this task, it is
necessary:

a) to convert the data from the hexadecimal numeric for-
mat to the decimal one,
b) to normalize the data to take values between —1 and 1.

Fig. 2 presents the general concept of using the GAN; its
top part shows the training of a GAN. Real Modbus protocol
messages, i.e., messages collected from the laboratory net-
work, are converted from hexadecimal to decimal number
format. In parallel, random numbers are sent to the gen-
erator’s input. The generator produces synthetic messages,
which, along with the real messages, are sent to the input
of the discriminator. The discriminator evaluates whether the
synthetic data are real or artificial, comparing them with
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FIGURE 1. The general form of a Modbus protocol message frame (top figure) and the structure of a typical

frame found in a training dataset (bottom figure).

real messages. The backpropagation algorithm is then used
to compute the gradients of the cost functions of both the
discriminator and generator with respect to the weights of
the network. The entire procedure is repeated many times
until optimal weight values are found, allowing the generator
to consistently synthesize messages indistinguishable from
the real ones. The operation of the trained neural model in
the process control network is shown in the lower part of
Fig. 2. The discriminator is discarded and not used. Random
numbers are fed into the generator and synthetic Modbus
protocol frames are produced. They are then converted from
decimal to hexadecimal format, scaled and finally sent to the
process control network, where they are transmitted to the
PLC.

A. STRUCTURE 1: SINGLE-GAN APPROACH

The first considered model has the structure shown in Fig. 3.
Five hidden layers for the generator and three hidden layers
of the discriminator have been chosen based on the work
presented in [38]. The number of weights in each layer is
denoted as a product of two numbers: the first represents
the number of inputs of the layer and the second represents
the number of its outputs. The number of weights has been
chosen experimentally; the best results have been achieved
for n§ =32, n§ = 64, n§ = 128, n§ = 64, n$ = 32 for the
generator and nllj = 128, n2D = 64 for the discriminator.

The generator receives as the input x random input sig-
nals previously normalized accordingly. These signals then
pass through a linear hidden layer and the ReLLU activation
function layer. This situation is repeated three more times.
Finally, the signals go to the last linear layer; its output y
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contains numbers corresponding to the values of 25 bytes of
the message frame. The last layer is an activation function
with a hyperbolic tangent to guarantee that the output values
are between —1 and 1.

The discriminator is a network that has fewer layers. Its
input receives 25 values produced by the generator. They
eventually pass through two pairs of hidden layers, i.e., linear
and ReLU ones, to reach the final fully connected layer. The
signal coming out of the final layer passes through the last
layer of activation, which is a sigmoidal function, to guaran-
tee that the discriminator’s output is between 0 and 1. This
number can be interpreted as the probability that the frame
that went to the input of the discriminator is correct.

B. STRUCTURE 2: ONE-GAN-PER-ONE-BYTE APPROACH
Next, we consider a multi-model neural structure. This con-
cept is as follows. A separate generator should produce each
byte of a Modbus frame. Thus, during training, the training
data set has been divided into 25 subsets; and each subset
is used to train a pair of submodels, i.e., a generator and a
discriminator.

We have noted that some submodels have a more difficult
task, as they are supposed to generate variable values within
specific ranges. In their case, the same complex generator
structure is used as described earlier, with only one difference.
Each generator takes one random number as the input and
has only one numerical value as the output. This structure is
named GAN Complex (GC). To make a comparison with a
single GAN structure fair, each generator has several weights

defined by n{ = 32, n§ = 64, n§ = 128, n§ = 64,
ng’ = 32. Other submodels, whose task is to match fixed
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FIGURE 3. Single-GAN model structure.

values, have a much simpler task. Therefore, we have decided
they would have a more straightforward structure, i.e., only
one pair of hidden layers (linear and ReLU). This structure
is named GAN Simple (GS). Each GS has the number of
neurons chosen experimentally; the best results achieved are
for n0S = 64. All discriminators have the same structure and
take a single numerical value as the input. The number of
weights is also the same, i.e., nll) = 128, nzD = 64. Fig. 4
shows the structure of individual models. On the other hand,
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FIGURE 4. One-GAN-per-one-byte model structure: the structure of
individual models.

Fig. 5 shows the concept of operation of the trained model by
sending synthetic messages to the PLC. The input vector x is
divided into 25 scalars, each containing a single byte in the
frame. Each of the scalars enters a GAN submodel. The GC
model is used for the Oth, 21st, 22nd, 23rd and 24th bytes.
On the other hand, for the 1st, 2nd, ..., 20th bytes, we use
less complex GS models. Each GAN submodel generates a
single scalar value. Those values are then combined into an
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FIGURE 5. One-GAN-per-one-byte model structure: the concept of
operation.

output vector y. Finally, the y vector values are transformed
from decimal to hexadecimal format and sent to PLC.

C. STRUCTURE 3: SINGLE-GAN FOR SELECTED BYTES
APPROACH

In this approach, we have assumed there is no need for their
generation when no changes in individual byte values are
observed in the network traffic. The GAN model is used only
to generate the last 4 bytes of the frame. The structure of
both the discriminator and the generator is the same as in the
approach with the GAN model presented in Fig. 3; it differs
only in the number of numerical values at the output of the
generator and the input to the discriminator. On the right side
of Fig. 6, one can see that the last four elements (related to
the 21st, 22nd, 23rd and 25 bytes of the frame) of the input
vector enter a single GC model. The GC model generates
a fragment of the synthetic Modbus frame. The network
message fragment generated in this way is then supplemented
by constant values shown on the left side of Fig. 6. Only the
first byte of the message is problematic here, which is the
Transaction ID of the message. This is a sequential number,
so we have increased it by 1 with each subsequent message
sent.

D. STRUCTURE 4: MULTIPLE GANs FOR SELECTED BYTES
APPROACH

The last developed structure is a combination of structures
2 and 3. In this case, four GAN models are used to generate
the four last message bytes, i.e., the control signal for heaters
HL and HR (two bytes each). On the right side of Fig. 1, one
can see that four scalar input values (related to the frame’s
21st, 2nd, 23rd and 24th bytes) enter four GC models. Each
model generates a scalar value. The whole synthetic frame
is created by appending the generated bytes to a part of the
frame, which can be seen on the left side of Fig. 7. Finally, the
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synthetic frame is transformed from decimal to hexadecimal
format and sent to PLC. This allows for both confidence about
the correctness of the frame and flexibility in terms of the
generated values of considered signals.

Ill. EXPERIMENTAL SETUP: STRUCTURE OF PROCESS
CONTROL INDUSTRIAL NETWORK USED FOR TESTS

A. PROCESS CONTROL INDUSTRIAL NETWORK TEST BED
The structure of a process control industrial network test bed
considered in our study is depicted in Fig. 8. Two Mitsubishi
Electric FX5U PLCs are used. The controlled process is
connected directly to one of the PLCs, serving as an inter-
face, while the other one contains the actual implementa-
tion of control algorithms. Two PLCs communicate using
the Modbus TCP protocol. Two Human Machine Interface
LCD panels are connected for on-site process visualization.
Additionally, the Adroit SCADA system gathers, manages
and visualizes information obtained from all PLCs included
in this industrial network.

The thermal process shown in Fig. 9 consists of two
heaters, four fans, and five thermal sensors. In this setup,
two control algorithms are implemented on the PLC. The
first one is a PID controller used to control the temperature
measured by the Temperature Left (TL) sensor by manipu-
lating the power of Heater Left (HL); the FLU fan makes
the controlled process equally fast to heat up and cool down.
The second control algorithm is a DMC controller, which
controls the temperature measured by the Temperature Right
(TR) sensor by manipulating the power of Heater Right (HR);
the FRU fan provides a constant airflow. A physical barrier
is placed between those two sets of elements to reduce the
cross-influence of airflow between those two control loops.
It is important to notice that the flow rates of FLU and FRU
fans are constant throughout all experiments. The considered
process is quite difficult to control since the two described
control loops are not separated, i.e., there still exists a cou-
pling between two control loops via the aluminum plate that
holds all elements mentioned above.

During the experiments, it is assumed that the attacker
obtains access to the communication between two PLCs used
to connect the thermal process to the SCADA system. The
Modbus TCP communication sends and receives four main
messages: Read Input Registers request and reply, and Write
Holding Registers request and reply. We have decided that
the only forged message type is the Write Holding Regis-
ters request, as it does not require low-level TCP message
injections that could be impossible to achieve because of
the network structure. Other Modbus messages sent in this
setup include Read Input Registers and responses to those
mentioned above. Only the selected Write Holding Registers
type of message allowed for independency on the current state
of communication and allowed to influence the actual state of
the control loop.

In addition, sending other types of messages to the network
defeats the purpose of the attack, as sending replies and read
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FIGURE 8. Structure of the subset of the considered experimental setup, including protocols used by

each device.

requests will not result in changes to the control system. This
injection can influence the control loops so that control qual-
ity is reduced or even the controlled process is destabilized.
Fig. 10 shows the considered example messages. In those
messages, the range of data changes is relatively low. Specif-
ically, out of 25 bytes of the message, 20 bytes are con-
stant. The first byte represents the transaction identifier and
increments for each message type separately; thus, its overall
spread is uniform. The last four bytes represent two heaters’
heating power (in percentiles) (stored as words). Considering
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that during the nominal operation of this setup, only values
of the manipulated variables are changing, i.e., the power of
heater HL. and HR, only the last 4 bytes and the transaction
identifier byte are not constant. When there is no interference,
the manipulated variables (MVs), controlled process vari-
ables (PVs) and setpoint values (SPs) are as shown in Fig. 11.
A SCADA system has been designed to collect and archive
data received from the laboratory stand to verify the effec-
tiveness of the attacks. The system has been created using
SCADA MAPS software distributed by Mitsubishi Electric.
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FIGURE 9. Benchmark thermal process used in the experimental setup.
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FIGURE 11. The nominal operating point of the controlled process, as seen on the SCADA screen.
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B. IMPLEMENTATION AND TRAINING OF NEURAL
STRUCTURES

GAN models have been trained using the Python language
with the PyTorch toolbox. A PC equipped with an Nvidia
Tesla T4 graphics card, 16 GB RAM and an Intel Xenon
2.20 GHz processor has been used. Various optimization
algorithms have been tested, such as Adam, Root Mean
Square Propagation (RMSProp) and Stochastic Gradient
Descent. The best results have been achieved when Adam and
RMSProp have been chosen to train generators and discrimi-
nators, respectively. Binary Cross Entropy has been chosen as
the cost function. The learning rate (LR) for optimization in
both algorithms has been chosen as equal to 0.0001. Larger
LR values cause the discriminator to learn too quickly and
outperform the generator. Lower values require significantly
higher numbers of training epochs. An approach in which
LRs of both networks are not equal has also been tested;
however, it proved unsuccessful. We obtain the following
results:

a) When the generator’s LR exceeds the discriminator’s
LR, the discriminator cannot consistently detect syn-
thetic data.

b) When the generator’s LR is lower than the discrimina-
tor’s LR, the generator cannot deceive the discriminator.

Having chosen the optimal LRs values, the appropriate num-
ber of training epochs has been selected. For the GANs
with GC type of generator, we have trained the model for
500 epochs. On the other hand, the much more shallow GANs
with GS generators have been trained only for 100 epochs.
In both cases, increasing those numbers of epochs has not
proven to result in more accurate models.

IV. RESULTS OF EXPERIMENTS

Each considered GAN-based structure has generated as many
as 10000 random messages and all approaches’ efficiency has
been evaluated. To do that, we have conducted experiments
in which we introduced artificial messages generated using
the approaches discussed in this Section. Messages have been
injected into the traffic via a custom Python script from the
newly connected PC; we assume that we have access to the
network, though obtaining this access is case-specific. It is
worth noting that no connection is broken or removed from
the network. Selected example results of experiments for
the tested approaches are described in Sections IV-A-IV-D
while Section IV-E contains a summary and a comparison of
obtained results.

A. EFFICIENCY OF STRUCTURE 1 (SINGLE-GAN
APPROACH)

In a single-GAN approach, some problems may be antici-
pated due to the randomness of the generated data, so there is
arisk that some messages would be rejected by the controller
for formal reasons, i.e., the message would not comply
with the Modbus protocol definition. However, in practice,
the FX5 Modbus implementation accepts some incorrect
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messages without raising any errors. Therefore, the
single-GAN approach can still be useful, despite its
inaccuracy.

The results of an example attack in the considered process
control network described in Section III are shown in Fig. 12.
The attack starts at 22:42. The attack causes a shift in the pro-
cess operating point. Due to the high inertia of the controlled
process, the control system does not destabilize, but only the
mentioned operating point shifts. At the same time, it can be
seen that both PID and DMC control algorithms react with
reasonable changes in the manipulated signals to compensate
for the shift in the operating point. Note that such operation
of control algorithms makes detecting attack attempts more
difficult.

B. EFFICIENCY OF STRUCTURE 2
(ONE-GAN-PER-ONE-BYTE APPROACH)

The second tested structure involves using the one-GAN-
per-one-byte approach to generate Modbus messages. From
the point of view of carrying out the attack, the scenario
is identical to the previous experiment; only the model is
changed. The messages are again filtered before being sent to
test the ability to generate malicious data rather than testing
the quality of the network for the generation of formally
correct data, which can be improved by increasing the quality
of training.

Fig. 13 shows an example results of the attack. The attack
starts around 21:32. Similarly to the results presented in
Fig. 12, we can see a shift in the operating point of the
processes other than expected. However, there is no destabi-
lization of the control system that could potentially damage
the process. It is worth noting that compared to the first
approach, this yields a higher rate of formally correct and is
thus accepted by the PLC, Modbus messages, as described in
Section I'V-E.

C. EFFICIENCY OF STRUCTURE 3 (SINGLE-GAN MODEL
FOR SELECTED BYTES APPROACH)

Next, we consider the single-GAN for selected bytes
approach. The network generates only selected Modbus mes-
sage elements in this structure, while the rest are created
directly based on the Modbus protocol. The attack has been
carried out similarly to the previously described attacks. The
difference is in the modification of the way the messages are
determined by swapping the model used.

Example results of the experiment are presented in Fig. 14.
The attack starts around 22.11. As with the previous attacks,
a shift in the operating point can be seen, once again, without
any clear system destabilization. However, it is worth noting
that, compared to previous approaches, the PID controller
has lost its ability to stabilize. At the same time, the DMC
controller generates a constant maximum manipulated vari-
able value. In this approach, the Modbus protocol message is
mostly constant (in the case of Transaction ID, it is continu-
ously and predictably incremented). At the same time, only
the last 4 bytes of the frame are randomized. The last 4 bytes
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FIGURE 12. Efficiency of structure 1 (a single-GAN model): the reaction of the controlled process to an attack.
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FIGURE 13. Efficiency of structure 2 (one-GAN-per-one-byte model): the reaction of the controlled process to an attack.

indicate the control of heater HL (the first two bytes listed)
and HR (the last two listed), affecting the individual control
loops. However, it is important that the values of the other
fields of the message are not changed, which translates into
its error-free formal form.

D. EFFICIENCY OF STRUCTURE 4 (MULTIPLE GAN
MODELS FOR SELECTED BYTES APPROACH)

The last described experiment utilizes a set of neural networks
to generate each previously selected bytes of the Modbus
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message. The selected bytes include two bytes for the control
signal of the heater HL and two bytes for the control signal
of the heater HR. Therefore, as in the third structure, there is
no possibility that the created message is faulty, i.e., it does
not comply with the specification of Modbus protocol.
Example results are shown in Fig. 15. They are similar
to the ones obtained in the case of the first and the second
GAN approaches, i.e., there is a significant change in the
operating point for the control loop with the DMC controller.
In contrast, the PID control loop is visibly disturbed but not
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so much it loses control over the process. In fact, the PID
controller loses any ability to control the process. The PLC is
flooded with Modbus messages generated by the neural net-
work, rendering messages from the PID controller impossible
to affect the process.

E. COMPARISON OF TESTED APPROACHES

The first two GAN approaches, i.e., structures 1 and 2, gen-
erate a full Modbus protocol frame. The last two approaches,
i.e., structures 3 and 4, combine a Modbus frame defined
explicitly according to the protocol specification, where
selected fields take random GAN-generated values. While the
first two approaches could potentially generate invalid data,
such as by drawing an invalid value for the Protocol ID field
or the length of the data being transmitted inside, this is not
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the case with the models for selected bytes, as the range of
values that can be sent to the process actuators is arbitrary
(provided it is within two bytes).

In order to test the ability of each GAN approach to
generate correct Modbus messages, numerous experiments
have been conducted. Random messages have been gener-
ated using each GAN approach and it has been tested how
many messages would be rejected. As a result of the exper-
iments in which 10000 random messages have been sent,
the single-GAN approach generates 4453 incorrect messages,
the one-GAN-per-byte approach generates 1592 incorrect
messages, while the other two approaches, i.e., a single-
GAN model for selected bytes and multiple GAN models for
selected bytes, have not generated any incorrect messages.
Hence, the efficiency of the single-GAN approach is the

49597



IEEE Access

K. Zarzycki et al.: GAN Neural Networks Architectures

TABLE 1. Results for GAN configurations considered.

GAN configuration Efficiency
Single-GAN model 55.47%
One-GAN-per-one-byte model 84.08%
Single-GAN model for selected bytes 100%
Multiple GAN models for selected bytes 100%

worst one (55.47%), the one-GAN-per-byte structure gives
better results (84.08%). In contrast, a single-GAN model for
selected bytes and multiple GAN models for selected bytes
give 100% efficiency. The efficiency of the obtained results
for different GAN configurations is compared in Table 1.
It should be noted, however, that the messages in the last
two approaches under consideration must explicitly take into
account the limitations and definition rules of the Modbus
protocol.

The attacks conducted by generating the whole Modbus
message (Fig. 12 and 13), are characterized by chaotic sig-
nals, whereas when only a part of this message is generated
(Fig. 14 and 15), the new operating point could be considered
stable. This results from including information about the
value of the control signals that drive fans FLU and FRU in
the first two approaches while setting those as constant in the
later attempts. Even though neural networks are trained to
generate constant values of FLU and FRU signals (as those
have been constant in the training and validation data), these
models struggle to generate constant, non-zero values in the
fields of the messages they are expected to. By modifying
the higher byte of the control signal word, even by 1, the fan
significantly changes the system’s airflow, thus changing its
cooling rate. In the approaches where only the selected set
of bytes is generated, the airflow is always constant. Thus,
the system’s operating point is changed to the one used while
collecting training and validation data.

It has to be underlined that the presented and described
process behavior is similar across multiple experiments for
each model configuration.

V. CONCLUSION
Three approaches employing GANs to generate fake Modbus
frames have been proposed in this work, tested in the example
industrial process control network and compared with the
classical approach that is known from the literature. The clas-
sical single-GAN approach is the worst one (it has 55.47%
efficiency). The one-GAN-per-byte approach generates sig-
nificantly more correct message frames than the classical
method (it has 84.08% efficiency). Moreover, all the gener-
ated fake frames have been correct in single-GAN model for
selected bytes and multiple GAN models for selected bytes
methods (they have 100% efficiency). However, in these two
approaches, only a part of the frame is generated by either one
or multiple GANs. The remaining part of the frame is gener-
ated using expert knowledge about the Modbus protocol.
The classical GAN approach is chosen to test machine
learning abilities regarding modeling communication
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protocols. Due to the generative character of this structure,
it should learn the definition of the protocol based on a
large number of data provided during the training phase. The
quality of generated messages should be similar regardless
of the communication protocol. Unfortunately, many of the
generated frames are incorrect. Motivated by the poor per-
formance of the classical approach, we designed three GAN-
based structures. In particular, two human-made approaches
give 100% efficiency. It is important to stress that these
structures use GANs to generate parts of the frames where
the data change, i.e., containing values of the manipulated and
controlled variables which occur in control systems. We take
advantage of GANs because they are able to generate data that
are similar to real data but are likely to cause a malfunction
of the control system and are intentionally introduced during
the cyber-attack. Therefore, our GAN-based approach makes
it possible to test the vulnerability of the network control
system.

Interestingly, the correct, fake frames do not cause unstable
control system operation during the tests. In the case of both
PID and DMC controllers, they manage to work reasonably.
However, the operating point shifts, sometimes significantly.
It means that the operation of the control system is not optimal
and the attack can cause economic losses. Moreover, as the
control system still works, it is more difficult to detect the
attack attempt than in the case when the operation of the
control system collapses.
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