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ABSTRACT The assessment of mental overload is essential as mental overload has been proved to be
a critical cause of many accidents. Mental overload is affected by various performance shaping factors
(PSFs), and harsh PSFs will either increase the task demand or decrease the overload threshold, which is
rarely considered in the current mental overload assessment method. This research proposes a VACP-based
mental overload assessment model which considers the effects of PSFs. In the VACPmodel, mental overload
can be identified when the sum of the task demand values of every unit task is greater than the given
threshold. In human reliability analysis, PSFs are mainly used as weighting factors to modify basic human
error probability. In our research, by virtue of the quantitative relationship between human error and mental
workload, the weighting factors of PSFs are converted to modify the task demand values and threshold
for VACP activities. Furthermore, Bayesian Network (BN) is used to model the influence of PSFs and to
calculate the probability of mental overload. The proposed method is applied to an accident involving a
helicopter crash that occurred in Maryland, and the results show that, in comparison with the VACP method,
the proposed method can more effectively identify the state of mental overload and provide a more rational
explanation of the process of the accident.

INDEX TERMS Mental overload, visual-auditory-cognitive-psychomotor (VACP), performance shaping
factors, Bayesian network.

I. INTRODUCTION
The safe and efficient performance of given tasks in a
human-machine system requires that the mental work-
load imposed on operators does not exceed their capacity.
An excessive mental workload will overwhelm an operator’s
information-processing, degrade an operator’s vigilance, and
eventually lead to ‘‘cognitive tunneling’’, which describes
the phenomenon in which an operator is unable to reallo-
cate his/her attention from one task to another [1], [2]. The
National Safety Council (NSC) reports 21% of all fatal acci-
dents are attributed to excessive mental workload [3]. It is
widely accepted that excessive mental workload, i.e., mental

The associate editor coordinating the review of this manuscript and
approving it for publication was Catherine Fang.

overload, is an important safety-related factor; furthermore,
the consensus is that mental overload assessments should be
taken into consideration in the design stage [4].

In essence, two elements are incorporated in assessments
of mental overload: the mental workload caused by task
demands and the operator’s mental workload capacity. The
mental workload caused by task demands (also known as
‘‘mental workload level’’) represents ‘‘how hard the brain is
working to meet task demands’’ [5]. Meanwhile, the oper-
ator’s mental workload capacity (also known as ‘‘the oper-
ator’s capacity’’) represents ‘‘the operator’s limited mental
resource in processing task demand’’ [6]. Mental overload
is considered to have occurred when the mental workload
level reaches beyond the level of operator’s capacity [7].
Researchers tend to use Cognitive Load Theory (CLT) to
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theoretically explain mental overload [8]. According to CLT,
an operator’s mental resources for handling task demands
are heavily constrained because new information should be
stored first in the working memory, and the working memory
is limited both in terms of storage length and duration. In this
sense, task demands can reflect the mental workload level,
and the working memory can reflect the operator’s capacity.

There are many researches about mental overload assess-
ment, and those researches can be categorized as experimen-
tal methods and simulation methods.

For experimental methods, by virtue of the high-fidelity
training device and virtual reality technology, mental over-
load can be assessed through man-in-loop experiment.
Researchers tend to use physiological parameters and sub-
jective assessment to reflect mental workload [9], [10], [11].
However, different experiments can only assess mental work-
load for a certain scenario, which means that with the change
of application scenario, the experimental environment must
be rebuilt to adapt it. In addition, the experimental method
is both time-consuming and costly, therefore, the results
obtained by such studies are not suitable for simple and quick
analysis [12].

For simulation methods, they can be categorized
as time-based and task-based. Time-based simulation
methods, such as cognitive architectures like Adap-
tive Control of Thought-Rational (ACT-R), Queuing
Network-Model Human Prcessor (QN-MHP) and Execu-
tive Process/Interactive Control (EPIC) [13], mainly use the
ratio of total time spent for production firing and chunk
exchanging in cognitive architecture to the available time as
a natural index of mental workload [14]. Task-based meth-
ods, such as W/INDEX, Task Analysis/Workload (TAWL)
model and Improved Performance Research Integration Tool
(IMPRINT) [15], mainly use a rating scale to determine
mental workload values based on different task type. Usually,
the rating scale of thesemethods is based onVisual-Auditory-
Cognitive-Psychomotor (VACP) method [16]. Compared
with time-based simulation methods, task-based simulation
methods are simple to implement and with higher versatil-
ity. Actually, VACP has shown its promising application in
mental overload assessment [17], [18]. For example, Wang
et al. used the VACP to assess the mental overload state of
train driver so as to optimize task flow, and the experimental
results proved that the optimized task flow balances the
relationship between mental workload and reaction time
well [19]. The VACP can provide a continuous prediction
of mental workload level (as reflected by ‘‘task demand’’ in
VACP), as well as a fixed value for the operator’s capacity
(as reflected by ‘‘threshold’’ in VACP), which is sufficient
for performing real-time mental overload assessments. The
VACP method has been applied to the study of many areas,
including manufacturing [20], the operation of unmanned
aviation vehicles [21], driving [22], and so on.

However, as with human error, mental overload is related
to the contextual factors attending the situation in which

the performance occurs [23], which is rarely considered in
application of the aforementioned methods. In fact, several
researchers have studied the influence of contextual factors
on mental workload level and operator’s capacity. In regard
to mental workload level, Tsao et al. proved that an improper
work/rest rhythm and adverse physical working environment
could significantly increase the mental workload level [24].
Kaptan et al. pointed out that the mental workload level,
whatever it be in a normal operation process or in an abnor-
mal operation process, decreases as the automation level
increases [25]. With respect to the operator’s capacity, Young
et al. noted that skill is a factor that can influence an operator’s
capacity [26] and Kim et al. used an experimental method to
show that skilled operators would have a higher capacity [27].
In actuality, all of these factors can be considered to be per-
formance shaping factors (PSFs). Therefore, the assessment
of mental overload should consider the influence of PSFs.

PSFs is often used in Human Reliability Analysis (HRA).
HRA is proposed to systematically incorporate human as a
part of a Probabilistic Risk Assessment (PRA) activity [28],
and PSFs are used to characterize the context of human
tasks, which is assumed to enhance or degrade human per-
formance [29]. The term ‘‘PSFs’’ varies from different HRA
methods, such as PSFs, error-producing conditions (EPCs),
common performance conditions (CPCs), and performance
influencing factors (PIFs). Despite their different forms,
the concepts are same. For the sake of consistence, they
are all called as PSFs. One of the most common appli-
cations of PSFs in HRA is to adjust Basic Human Error
Probability (BHEP) [30]. With the development of HRA
method, the PSFs also experience the evolution. In the first-
generation HRA methods, cognition is not particularly con-
sidered among the PSFs, which, to a certain degree, cannot
explain how PSFs exert influence on performance. While in
the second-generation, PSFs were derived by focusing on the
cognitive impacts on operators. Nowadays, the application of
PSFs has beyond the scope of HRA. There are several other
research topics addressing PSFs, including human behavior
models, human-related event analysis method and human
performance database [31].

In our methodology, PSFs were used to modify the task
demands and the threshold of VACP, so choosing the appro-
priate PSF set is necessary. Di Mascio et al. classified the
PSFs that affect mental overload into three categories: the
work environment in which the controller operates, some
variable personal factors and physical preconditions [32].
Azadeh et al. further extended the categories, describing them
as health-related PSFs, safety-related PSFs, environment-
related PSFs and ergonomics-related PSFs [33]. In our
research, Azadeh’s classification was applied because it cov-
ers more aspects of the relevant contextual factors. However,
in design stage, a designer must consider the diversity of
potential operators, and thus, individual differences are tem-
porarily set aside. As a result, all of the PSF categories should
be taken into consideration, apart from health-related PSFs.
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The introduction of PSFs poses a problem: the relationship
between PSFs and mental overload should be established.
The existing investigation have mainly employed experi-
ments to qualitatively test the effect of a particular PSF on
mental overload. For instance, Bhavsar et al. proposed a
qualitative methodology based on pupillometry (themeasure-
ment of pupil diameter) to noninvasively estimate the mental
overload of control room operators in real time during process
operations [34]. Casner tested the advanced cockpit system’s
effect on mental overload via an in-flight experiment, and the
results indicate that the use of the advanced cockpit helps
to relieve mental overload in some situations [35]. However,
in order to quantitatively assess mental overload, solely con-
sidering qualitative relationship is not enough. Thus, estab-
lishing quantitative relationship between PSFs and mental
overload is necessary.

Another problem introduced by including PSFs in the
model is that differing levels of probability distributions
exist for the various PSFs. To address this issue, employing
a Bayesian Network (BN) seems to be a viable approach.
BN has long been used to handle the probability distributions
of PSFs in HRA [36], [37], [38]. Furthermore, from the
perspective of modeling, BN also has many obvious advan-
tages such as stronger theoretical roots and lower levels of
computational complexity, as compared with other tools [39].

The present study, thus, aims to propose a method for
assessing mental overload with consideration given to PSFs.
In our research, by virtue of the quantitative relationship
between human error andmental workload, the PSFs’ weight-
ing factors have been converted to modify the task demand
value and threshold of VACP. Furthermore, BN is applied so
as to model the influence of each PSF and to calculate the
associated probability of mental overload.

The structure of this paper is as follows: The next sec-
tion provides information on the basic concepts related to
the proposed method. Section III describes the framework
of the proposed mental overload model and steps taken in
the construction of the mental overload assessment model.
In Section IV, the proposed method is demonstrated through
its application to an actual helicopter crash that occurred in
Maryland. Section V presents our conclusions.

II. PRELIMINARIES
A. VACP METHODS
The VACP method presents mental workload as relying on
four resource channels: visual, auditory, cognitive and psy-
chomotor. The amount of demand required of each channel
to perform tasks is estimated on McCracken and Aldrich’s
seven-point scale, as shown in TABLE 1. Mental workload
is defined as the sum of every channel’s task demand value,
and a score of 40 is regarded as the threshold [40]. When the
calculated mental workload value is greater than 40, mental
overload is assumed to occur. To perform tasks safely and
effectively in a dynamic complex environment, the mental

workload required of the operators should not exceed that
threshold.

TheVACPmethod has the following advantages: (1) VACP
provides amore objective assessment of mental workload and
can eliminate rater bias; (2) VACP uses verbal anchors to
provide an objective and consistent use of scale; (3) VACP
depicts mental workload as relying on resources from multi-
ple channels; (4) VACP can provide a unique workload value
for an interval time once the necessary information has been
determined [21].

B. PERFORMANCE SHAPING FACTORS (PSFS)
The PSFs that influence mental overload are attributed to
three categories: safety-related PSFs, environment-related
PSFs and ergonomics-related PSFs. The details of the influ-
ential factors of these categories are summarized in TABLE
2.

There are many suitable PSF sets that can cover the ele-
ments mentioned in TABLE 2, such as nine PSFs included
in the Cognitive Reliability and Error Analysis Method
(CREAM) [41], those being ‘‘Adequacy of organization’’,
‘‘Working conditions’’, ‘‘Adequacy of MMI and operational
support’’, ‘‘Availability of procedures/plans’’, ‘‘Number of
simultaneous goals’’, ‘‘Available time’’, ‘‘Time of day’’,
‘‘Adequacy of training and preparation’’ and ‘‘Crew collab-
oration quality’’. CREAM’s set of PSFs is widely accepted
and used in HRA [42], and we adopt it here to describe the
factors that influence mental overload.

Additionally, correlations exist between PSFs, and the
state of a specific PSF will be influenced by the correlated
PSFs. For example, researchers have found that the ‘‘Ade-
quacy of MMI and operation support’’ will significantly
affect task-related PSFs such as ‘‘Number of simultaneous
goals’’ [43]. This should also be considered in the modeling
process.

C. BAYESIAN NETWORK (BN)
BN, also known as Bayesian Belief Network, is a directed
acyclic graph that consists of two parts: the net structure and
the conditional probability table (CPT) [44]. Net structure
includes nodes and causalities. Nodes stand for random vari-
ables of interest, and causalities stand for the likely causal
relationships between nodes. Here if we use U to represent
the collection of all nodes, then U = {A1,A2, . . . ,An}. If a
directed arc exists between two nodesAi andAj, that meansAj
is the parent node of Ai, written as Pa(Ai). Correspondingly,
Ai is the child node of Aj. By assigning a CPT, according to
the chain rule, the joint probability can be given as (1):

P(U ) =

n∏
i=1

P(Ai|Pa(Ai)) (1)

where P(U ) is the joint probability of the whole BN.
It should be pointed out that once the evidence e of node

A emerges (some nodes are in a particular state), the BN
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TABLE 1. VACP scales [21].

TABLE 2. PSFs categories and related influential factors.

can update the probability; this evaluation process is often
referred to as ‘‘BN updating’’ [45]. The whole updating pro-
cess is based on (2):

P(A|e) =
P(e|A)P(A)

P(e)
=

P(e|A)P(A)∑n
i=1 P(e|Ai)P(Ai)

(2)

where P(A) is the prior probability of node A, P(e) is
the probability of evidence and can be replaced with

∑n
i=1 P(e|Ai)P(Ai), P(e|A) is the likelihood, and P(A|e) is

posterior probability.

III. MENTAL OVERLOAD ASSESSMENT AND PROCESS
A. MENTAL OVERLOAD ASSESSMENT MODEL
The development of a novel BN-based mental overload
assessment model with consideration given to PSFs is
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FIGURE 1. Framework of the proposed model.

presented in this section. FIGURE 1 shows the framework
of the proposed model. This research introduces PSFs as
weighting factors to modify the task demand and threshold
of VACP. The introduction of PSFs will contribute to two
improvements: First, the influences of various PSFs on task
demand and threshold are established. By virtue of the quan-
titative relationship between human error probability (HEP)
and mental workload level (MWL), the weighting factors
of the PSFs are converted to modify the task demand value
and threshold of VACP. Second, probability distributions
exist within PSF levels; therefore, BN is used to model the
influence of PSFs and to calculate the probability of mental
overload. A detailed description of this process is as follows.

1) DETERMINING THE TASK-DEMAND-RELATED AND
THRESHOLD-RELATED PSFS AND THEIR DISTRIBUTION
Generally speaking, PSFs affect mental overload in twoways:
modification of the task demand and modification of the
threshold. For example, considering the PSF ‘‘Adequacy of
MMI and operational support’’, if the interface layout is rea-
sonable, then the information displayed in the interface will
be easily identified, and the task demand that the task gen-
erates will be lower. In addition, when considering the PSF
‘‘Adequacy of training and preparation’’, operators with good
training and rich experience have higher mental overload
thresholds, i.e., they can performmore tasks at the same time.
This illustrates that the influence of PSFs can be categorized
into two groups: those factors influencing the threshold and
those factors influencing the task demand.

How should we further categorize PSFs? Generally, PSFs
such as ‘‘Adequacy of MMI and operational support’’, which
influence the task demand, are directly related to ongo-
ing tasks, and PSFs such as ‘‘Adequacy of training and
preparation’’, which influence threshold, are more related
to factors such as rhythm, working conditions, and so on,
which indirectly influence ongoing tasks. Based on this rule,
CREAM’s PSFs can be categorized into two classes, as shown
in TABLE 3.

Asmentioned earlier, distributions exist between PSFs. So,
the method by which to determine the distribution is another
important issue. We will introduce the principles governing
the distribution of PSFs in detail in the BNmodelling section.

2) THE PREDICTION APPROACH TO MENTAL WORKLOAD
LEVEL WITH THE INFLUENCE OF PSFS TAKEN INTO
CONSIDERATION
Existing studies show that, for a pilot’s aviation activities,
if HEP is less than 0.5, the relationship between human error
and mental workload is very close to a simple exponential
function [46], [47]. Therefore, the relationship between HEP
and MWL can be presented as (3):

HEP = BHEP ∗ exp((MWL − BMWL)/αMWL) (3)

where BHEP is basic human error probability, BMWL is
basic mental workload, and αMWL is the coefficient forMWL.

In HRA, a PSF is used to provide weighting factor (denoted
as WF) to modify BHEP, so HEP yields the following
expression:

HEP = BHEP ∗WF (4)

Based on (3) and (4), the influence of PSFs on mental
workload is derived as (5):

MWL = BMWL + αMWL ∗ lnWF (5)

BMWL can be regarded as the task demand value of differ-
ent channels estimated by VACP, and MWL can be regarded
as the modified task demand. If TDV , TDA, TDC , and TDP
represent the task demand value of the visual, auditory, cog-
nitive and psychomotor channels in VACP, TDMV , TDMA , TDMC ,
and TDMP represent the modified task demand values of the
visual, auditory, cognitive and psychomotor channels, then
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we can obtain:

TDMV = TDV + αMWL ∗ lnWFTDV (6)

TDMA = TDA + αMWL ∗ lnWFTDA (7)

TDMC = TDC + αMWL ∗ lnWFTDC (8)

TDMP = TDP + αMWL ∗ lnWFTDP (9)

where WFTDV , WFTDA , WFTDC , and WFTDP stand for PSFs’
WF of the visual, auditory, cognitive and psychomotor task
demand.

Therefore, the total modified task demand MWL is calcu-
lated using (10):

MWL =

V ,A,C,P∑
n

TDMn =

V ,A,C,P∑
n

TDn

+

V ,A,C,P∑
n

αMWL ∗ lnWFTDn (10)

where n stands for different channels in VACP, and TDMn ,
TDn, and WFTDn represent modified task demand, original
task demand, and the PSFs’ WF of different channels respec-
tively.

As for the calculation of WF, we can refer to CREAM.
In CREAM, each level of PSF has a multiplier θ . Once the
level of each PSF is determined, WF can be obtained by
multiplying these multipliers [42]. In our research, similarly,
WF in (6) – (9) is calculated by multiplying the multipliers of
these task-demand-related PSFs, denoted as (11):

WFTDn =

4∏
i=1

θni (11)

where θni represents the ith task-demand-related PSF’s mul-
tiplier of channel n. The multiplier value is shown in TABLE
4. It should be noted that in CREAM, the visual and auditory
channels are not distinguished, but are rather unified into
one perceptive channel. Thus, it is assumed that visual and
auditory channels share the same multiplier.

3) THE ADJUSTMENT APPROACH OF THRESHOLD
CONSIDERING THE INFLUENCE OF PSFS
Harsh PSFs will increase the task demand and lower the men-
tal overload threshold. So, the equation is similar in character,
and it can be expressed as (12):

Th = BTh− αTh ∗ lnWF (12)

where Th is the modified threshold, BTh is the basic thresh-
old, WF is the weighting factor provided by threshold-related
PSFs, and αTh is the coefficient for threshold.

In combination with VACP, the total modified threshold Th
is shown as (13):

Th =

V ,A,C,P∑
n

BThn −

V ,A,C,P∑
n

αTh ∗ lnWFThn (13)

where n stands for the different channels of VACP, BThnis
channel n’s basic threshold, and WFThn is threshold’s WF
of channel n. In VACP,

∑V ,A,C,P
n BThn is often regarded as

40. WFThn is calculated in a manner similar to (11), with
the exception that the task-demand-related PSFs are replaced
with threshold-related factors, as shown in (14). TABLE 5
represents the multipliers of the threshold-related PSFs.

WFThn =

5∏
i=1

θni (14)

Based on (10) and (13), mental overload can be judged using
(15):

Th < MWL (15)

4) MENTAL OVERLOAD ASSESSMENT MODEL BASED ON
BAYESIAN NETWORK
a: THE STRUCTURE OF THE BN-BASED MENTAL OVERLOAD
ASSESSMENT MODEL
In this section, we describe the construction of our BN-based
mental overload assessment model. Based on the discussions
in Section III-A2 and III-A3, (11) and (14) are the starting
points for all the calculation processes as they provide the
means by which to obtain weighting factors. Furthermore, the
correlation among PSFs will change the distribution of some
PSFs, so the PSF nodes should consist of the primary PSFs
nodes and the PSF nodes adjusted in consideration of the
correlations. For the sake of presentation alone, the primary
PSF nodes are denoted as PSFs, and the adjusted PSF nodes
are denoted as adjusted PSFs. The next step in the mental
overload assessment process is based on (10) and (13). The
causality described in (10) and (13) is clear, it derives from
weighting factor nodes, basic task demand nodes, threshold
nodes to modified task demand and threshold nodes. The
last step in the assessment process is (15), namely to make
the comparison between modified task demand and modi-
fied threshold so as to determine the mental overload state.
We will introduce the mental overload probability node to
display the mental overload assessment result.
In conclusion, there are six classes of nodes and four

classes of CPT that are used to build this BN-based mental
overload assessment model. The six classes of nodes are:

• PSFs;
• Adjusted PSFs;
• Weighting factors;
• Basic task demands and threshold;
• Modified task demands and threshold;
• Mental overload probability.

Four classes of CPT are:
• Those between PSFs and adjusted PSFs;
• Those between PSFs, adjusted PSFs and weighting fac-
tor;

• Those between basic task demand, basic threshold,
weighting factor and modified task demand, modified
threshold;
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TABLE 3. CREAM’s PSFs that related to task demand and threshold.

TABLE 4. Multipliers of task-demand-related PSFs [41].

TABLE 5. Multipliers of threshold-related PSFs [41].

• Those between modified task demand, modified thresh-
old and mental overload probability.

The BN-based mental overload assessment model is shown
in FIGURE 2. The BN for this work was constructed using
the commercially available software GeNIe 2.4 [48].

b: THE QUANTIFICATION OF ROOT NODES
i) TASK DEMAND AND THRESHOLD QUANTIFICATION

VACP uses verbal anchors to assess task demand levels
to aid in increasing consistency and reducing inter-rater

variability [21]. Verbal anchors provide key words that are
used to classify the unit tasks, and users are encouraged to
assess unit tasks by combining task background, task type,
and other task-related information rather than performing
the assessment mechanically by simply matching keywords.
For example, when a novice performs the same task as an
experienced operator, such as driving on the same road, the
cognitive task demands are significantly different. According
to TABLE 1, the novice may have a higher cognitive task
demand, perhaps rated at 6.8 out of 7.0, which has the verbal
anchor ‘‘evaluation/judgment consider several actions’, while
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for the experienced operator, the cognitive task demand is
rated at 1.0 out of 7.0, which has the verbal anchor ‘‘automatic
simple association’’. As for the threshold, it is considered to
be 40.

ii) DISTRIBUTION QUANTIFICATION OF PSFS
For PSFs nodes, with the support of data, the prior distri-
bution of PSFs can be determined. However, the data are
usually sparse, so we can assume that if the PSFs cannot
be determined, then, with the exclusion of the impossible
levels, the remaining levels are considered as having even
distribution. For example, in the area of aviation, all pilots
must be fully trained before obtaining permission to fly an air-
craft, so for the PSF ‘‘Adequacy of training and preparation’’,
the level ‘‘inadequate’’ is impossible. Then, the remaining
levels, ‘‘Adequate, high experience’’ and ‘‘Adequate, low
experience’’ are under an even distribution.

c: THE NODES AND CPT OF THE BN-BASED MENTAL
OVERLOAD ASSESSMENT MODEL

i) IDENTIFICATION OF THE NODES OF THE TARGET
MODEL
As discussed in previous section, we introduced CREAM’s
PSFs to describe the contextual conditions of the assessment,
so the nine PSFs are identified as root nodes of BN-based
model, as shown in FIGURE 2. Four PSFs, namely ‘‘working
conditions’’, ‘‘number of simultaneous goals’’, ‘‘available
time’’ and ‘‘crew collaboration quality’’, are prescribed in
CREAM such that they will be influenced by other PSFs,
so we added another four nodes to reflect that. Next, the
influence of each PSFs is represented by weighting factors,
according to (10) and (13); these weighting factors are clas-
sified into four groups: the threshold’s weighting factor, the
visual and auditory weighting factor, the cognitive weighting
factor, and the psychomotor weighting factor. Accordingly,
there are four nodes used to calculate the weighting factors.
As for the basic task demand and threshold, in accordance
with the weighting factor nodes, there are also four nodes.
Finally, two nodes are used to represent the modified task
demand and threshold, and one node is used to display the
mental overload result.

ii) ALLOCATION OF THE CPT TO THE NODES
• Between PSFs and adjusted PSFs

Theoretically, if the distributions of some PSFs are known,
the distributions of their correlated PSFs will be adjusted to
adapt them. For example, ‘‘Crew collaboration quality’’ has a
correlation with ‘‘Adequacy of organization’’ and ‘‘Adequacy
of training and preparation’’, when the states of ‘‘Adequacy
of organization’’ and ‘‘Adequacy of training and preparation’’
are at their highest level, ‘‘Crew collaboration quality’’ will
also have a higher probability at its best level rather than
continuing to with its prior values. In CREAM, the correla-
tion can be summarized as shown in TABLE 6. When the
levels of the PSFs in the left column can be determined, the

distributions will not be adjusted; if not, then the distribution
will be adjusted according to the states of the PSFs in the right
column.

Subsequently, we must determine the adjustment rule for
the adjusted PSFs nodes. In CREAM, every level of a PSF has
an effect on performance, namely ‘‘Improved’’, ‘‘Not signifi-
cant’’, and ‘‘Reduced’’, as shown in TABLE 7. If the majority
of the effects of the PSFs in the right column of TABLE 6
are the same, the state of the PSFs that have the same effect
in the left column will have a higher probability. TABLE 8
shows the adjustment rules and the adjusted distributions.
Let us take ‘‘Crew collaboration quality’’ as an example.
If all of the correlated PSFs’ effects are ‘‘Improved’’, then
the state of ‘‘Very efficient’’ which has the same effect, will
have a higher probability (3/4). Accordingly, the distribution
of ‘‘Crew collaboration quality’’ will be adjusted from an
even distribution to (3/4,1/4,0,0). Based on the above rules,
the CPT can be obtained. The CPT for the node ‘‘Crew
collaboration quality’’ is shown in TABLE 9.

• Between PSFs, adjusted PSFs and weighting factor
Unlike the adjusted PSF nodes, the weighting factor nodes

are complicated by the problem that the scale of CPT is
much bigger. Let us take the node ‘‘Visual and auditory
weighting factor’’ as an example. The scale of the CPT is
108∗54, which is difficult to calculate further. Fortunately,
in GeNIe, we can set the node’s type as ‘‘equation’’ to
solve this problem. Still using the node ‘‘Visual and auditory
weighting factor’’ as the example, the steps for setting the
node are shown in TABLE 10. First, the function ‘‘choose’’
is used to allocate the multiplier from TABLE 4; then (11)
can be directly input into the nodes, and the node can be
set to perform further calculations, which are much easier to
perform.

• Between weighting factors, basic task demands, basic
threshold and modified task demands, modified threshold

As with the earlier calculation, the type of node ‘‘Modified
task demand’’ and ‘‘Modified threshold’’ are set as ‘‘equa-
tion’’, and then the settings from TABLE 11 are input into the
nodes. In these equations, parameter αMWL and αTh is around
5 based on the regression analysis of the data [46].

• Between modified task demands, modified threshold and
mental overload probability

In the mental overload probability node, conditional func-
tions are used to calculate mental overload probability. The
function expression is shown in TABLE 12, and it takes on a
value of 1 when the operator is in a state of mental overload;
otherwise, it remains at a value of 0 otherwise. By calcu-
lating this expression, mental overload probability can be
obtained.

The complete BN-based mental overload assessment
model is shown in FIGURE 3.

B. MENTAL OVERLOAD ASSESSMENT PROCESS
The mental overload assessment process consists of four
steps. First, task analysis needs to be performed to gain
knowledge and insight of the target scenario. Next, the task
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TABLE 6. Correlation between PSFs in cream [41].

TABLE 7. PSFs and its expected effects.

TABLE 8. The adjustment of PSFs’ distribution.
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FIGURE 2. The structure of the BN-based mental overload assessment model.

TABLE 9. The CPT Of node ‘‘adjustment of crew collaboration quality’’ (I =improved, NS = not significant, R = reduced).

demands imposed by the task are determined so as to be used
as inputs. Then, the prior distribution of PSFs is determined
so as to assign the CPT to BN. Finally, the mental over-
load probability can be obtained through the mental overload
assessment of the scenario. If the predicted mental overload
probability cannot meet the needs of the designers, then the
design requires iteration until it satisfies the design index. The
following section elaborates upon these steps.

1) TASK ANALYSIS OF THE TARGET SCENARIO
To perform the task analysis, the target scenario must be
identified. Several rules must be obeyed. First, the scenario
must be an interactive scenario, meaning that the operator
must monitor the parameters, judge the state and react to it
if needed. If the scenario only requires that the pilot monitor
or judge or respond, the mental workload level will usually
remain in a normal state, and the designers are not encouraged
to pay more attention to it. Second, the operator should have
several unit tasks to address in the scenario. A single unit
task is not enough to cause the mental workload level to be
too high; thus, a multi-task state requires more concern from
the designers. Scenarios can be filtered by applying these
two rules, and preliminary scenario screening can identify
whether the scenario needs to be analyzed.

After the identification of the target scenario, task analysis
must be carried out. The purpose of the task analysis is to
divide the tasks into unit tasks. Here, to better perform task
analysis, hierarchical task analysis (HTA) is used. HTA is a
goal-oriented task model used to analyze the interactive pro-
cess of operators in complex socio-technical systems. Ideally,
the operating manual is the best place to obtain the informa-
tion required to perform the HTA. The opinions of experts
and interviews with operators can be used to supplement the
HTA’s details.

2) IDENTIFICATION OF THE TASK DEMAND VALUES
Sections III-A4.b, which treats the topic of task demand val-
ues, describes a more fully selection criteria and precaution
required for this step of process. In this section, we will
present the criteria and precautions required to identify the
task demand values of the operators under a specific scenario.
The selection of the task demand value determines whether
the assessment result will be correct, so it is of vital impor-
tance.

3) ALLOCATION OF THE PRIOR DISTRIBUTION TO THE PSFS
Relevant statistical reports are the best way to obtain the prior
distributions of the PSFs. In addition, expert evaluation is
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TABLE 10. The setting of node ‘‘visual and auditory weighting factor’’.

TABLE 11. The setting of nodes ‘‘modified task demand’’ and ‘‘modified threshold’’.

TABLE 12. The setting of node ‘‘mental overload probability’’.

FIGURE 3. The BN-based mental overload assessment model.

also a way determine prior distributions. Readers can refer
to Section III-A4.b and III-A4.c to obtain more information.

4) PERFORM MENTAL OVERLOAD ASSESSMENT OF THE
SCENARIO BASED ON BN
Based on the mental overload assessment model, the mental
overload assessment of the scenario can be performed. The
model can output some results to assist the further analysis,
including the mental overload probability, the distribution of
the mental workload level, the distribution of the threshold
level, and the influence of PSFs on mental overload probabil-
ity. The following section demonstrates this process in detail
in relation to an accident involving a helicopter crash.

IV. CASE STUDY
A. APPLICATION SCENARIO
In order to demonstrate the capacity of the proposed method,
we have applied it to a helicopter accident that occurred in

Maryland. On January 10, 2005, at approximately 23:11,
a helicopter crashed into the Potomac River during a low-
altitude cruising flight near Oxon Hill, Maryland [49]. The
pilot died, and other crew members sustained severe injuries.
According to the accident report, after taking off from the
Washington Hospital Center Helipad, the helicopter was en
route to the Stafford Regional Airport. Due to its prox-
imity to the target airport, the pilot chose to cruise at a
low altitude. During the flight, the helicopter needed to
cross over Woodrow Wilson Bridge. Hence, when helicopter
approached the bridge, the pilot first climbed to a higher
altitude and crossed over the bridge; then the helicopter
descended so as to continue cruising at a low altitude. How-
ever, when performing these tasks, the air traffic controller
informed the pilot that an Airbus craft was approaching.
To avoid a possible collision, the pilot searched for Airbus
visually and tried to maintain visual separation from the
Airbus. Subsequently, because the pilot directed most of his
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attention outside of the cockpit, ignoring the flight instrument
display, the helicopter crashed into the Potomac River during
the descent stage. The flight mission profile is shown in
FIGURE 4.

As for the cause of the accident, the root reason may be
that pilot has too many concurrent tasks to handle during
the descent stage, which may have led to mental overload.
As a result, the pilot abandoned the task of visually check-
ing the flight instrumentation, believing that, once the alti-
tude become too low, the ground proximity warning system
(GPWS) would sound an alert. However, a failure occurred
in the GWPS, such that it did not function to alert the pilot in
time. Thus, pilot did not have a correct situational awareness
of the flight parameters prior to the helicopter hitting the
water.

B. MENTAL OVERLOAD ASSESSMENT OF THE SCENARIO
1) TASK ANALYSIS
To assess the mental overload state of the pilot in this sce-
nario, we first need to conduct a HTA to divide the task
into unit tasks. As Che et al. conducted a detailed analysis
of this case, we will refer to their HTA results, as shown
in FIGURE 5 [50]. Obviously, there were four tasks in this
scenario: to climb, to cross over the bridge, to descend, and
to search for and avoid Airbus. For the task ‘‘climb’’, the
pilot needs to contact the air traffic controller to report the
climbing position. Once the permission has been obtained,
the pilot starts to adjust the throttle and pedals to change the
altitude, course, speed, and rate of climbing until reaching the
predetermined position. For the task ‘‘cross over the bridge’’,
the pilot needs to carefully manipulate the helicopter and
check the instruments to avoid approaching the bridge too
closely. For task ‘‘descend’’, the pilot needs to adjust the
collective pitch, throttle and pedals to return the helicopter
to its pre-climb altitude. For the task ‘‘search for and avoid
the Airbus craft’’, the pilot needs to contact the air traffic
controller to obtain information about the approachingAirbus
and then to search for the Airbus visually, maintaining visual
separation from the Airbus. The last task is a temporary task,
and the pilot is required to perform it while simultaneously
performing the first three tasks.

For the sake of simplicity, the following two assumptions
have been made:

• Only the pilot and air traffic controller are considered in
the process;

• The accident occurred while the pilot was handling the
third and fourth tasks simultaneously, so wemainly assess the
mental overload state of the pilot during this period.

Based on the HTA results and assumptions, we conducted
a further analysis.

2) IDENTIFICATION OF THE TASK DEMAND VALUES
To perform the VACP assessment, we need to determine the
task demands of different unit tasks. As shown in FIGURE 5,
among the unit tasks, 3.1.5 and 4.2 are visual tasks, task

FIGURE 4. Flight mission profile of the helicopter [50].

4.1 is an auditory task, task 3.2.1 is a cognitive task, and the
remaining unit tasks are psychomotor tasks. The results are
summarized as TABLE 13.

For the visual tasks, the task demand value of unit task
3.1.5 is 3.0 out of 7.0, with the verbal anchor ‘‘Visual
Inspect/Check’’ as the pilot needed to check the flight instru-
mentation; the task demand of unit task 4.2 is 6.0 out of 7.0,
with the verbal anchor ‘‘Visual Scan/Search/Monitor’’ as the
pilot needed to continuously search for the approaching Air-
bus. For the auditory task, the task demand of unit task 4.1 is
4.0 out of 7.0, with the verbal anchor ‘‘Complex speech’’
as the pilot and air traffic controller needed to communicate
with each other in sentences. For the cognitive task, the task
demand of unit task 3.2.1 is 4.6 out of 7.0, with the verbal
anchor ‘‘Evaluation/Judgement (consider several aspects)’’
as the pilot needed to judge the appropriate altitude. Those
psychomotor tasks have been treated as a whole and share a
common task demand value, which is 2.6 out of 7.0, with the
verbal anchor ‘‘Continuous Adjustive (flight controls, sensor
control)’’ because flight control is a continuous procedure
that consists of the adjustment of the cyclic stick, the collec-
tive pitch, the anti-torque pedal, and the throttle. If a change
occurs solely in the cyclic stick, the total thrust and lift ratio
will not change, thus requiring adjustment of the throttle
and collective pitch accordingly. As these manipulations are
always linked, they are seen as a whole task.

3) DETERMINATION OF THE PRIOR DISTRIBUTION OF THE
PSFS
According to the accident report, the communication between
the pilot and the air traffic controller was timely and accu-
rate; both sides strictly comply with the requirements in the
flight manual (Adequacy of organization: Very Efficient).
It was night-time during the flight (Time of day: Night-
time), and there was no outside visual reference, meaning
that once the pilot crossed the bridge, he was flying into a
black void (Working Conditions: Incompatible). As shown
in TABLE 14, when the pilot was required to handle several
tasks simultaneously, he actually abandoned the visual check
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FIGURE 5. HTA result of the scenario.

TABLE 13. Task demands of unit tasks in the scenario.

of the flight instruments, which proves that the number of
concurrent tasks was beyond his capacity (Number of simul-
taneous goals: More than capacity).

4) BN MODELING AND CALCULATION
The BN structure is similar to that shown in FIGURE 3, only
the adjusted nodes differs because ‘‘Working conditions’’
and ‘‘Number of simultaneous goals’’ can be determined
according to the report. Thus, there is no need to adjust their
distributions. Conversely, since ‘‘Available time’’ and ‘‘Crew

collaboration capacity’’ were subject to the assumed even
distribution, their prior distribution must be adjusted.

The results show that the mental overload probability in
this accident scenario is 68%.

C. ANALYSIS OF THE RESULTS
1) THE DISTRIBUTION OF THE MENTAL WORKLOAD LEVEL
As the assessment of VACP is a point estimation, and the
assessment of the proposed method is a probabilistic esti-
mation, we must determine where the assessment value of
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TABLE 14. Distribution of PSFs.

FIGURE 6. Assessment result of the proposed method.

TABLE 15. The comparison between VACP and the proposed method.

FIGURE 7. The distribution of mental workload level.

VACP falls within the probability distribution of the mental
workload level. The distribution of the mental workload level
is shown in FIGURE 7. We can analyze this result from two

FIGURE 8. The distribution of threshold.

perspectives: (1) According to the calculation, p(MWL <

20.2) = 0.1089, the assessment value of VACP falls within
the margins of the mental workload level distribution; (2)
the mean value of the mental workload distribution is about
49.94, this is almost double the value assessed by VACP.
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TABLE 16. Task demands of unit tasks in the scenario.

This actually shows the effect of PSFs: the degraded PSFs
shift the mean value of the mental workload and change the
distribution.

2) THE DISTRIBUTION OF THE THRESHOLD
As for the distribution of the threshold, reader can refer to
FIGURE 8. In the described scenario, the probability that
threshold is lower than 35 is almost 50%, meaning that the
pilot’s threshold witnessed a great drop under the impact of
the degraded PSFs. For normal tasks, the threshold may not
have an influence as the task demand is usually low. How-
ever, in emergency situations, the threshold can be influential
because the addition of instantaneous tasks will overwhelm
the threshold. The decrease in the threshold is one of the main
causes of the mental overload.

3) COMPARISON BETWEEN VACP AND THE PROPOSED
METHOD
VACP’s assessment result is 20.2, which means that in this
scenario, the pilot’s mental workload was lower than the
threshold (40). In contrast, our proposed method indicates
with a relatively high probability (68%) that the pilot was in
a stage of mental overload, as shown in TABLE 15. With the
support of VACP’s result, the designer may draw the wrong
inference that the scenario to be assessed is safe enough. This
incorrect inference would be caused by the absence of the
influence of PSFs influence on the task demand and thresh-
old. However, with the support of our proposed method’s
results, the designer’s attention would be drawn to the dis-
covery of the factors that influence mental workload, and the
designer would therefore advance targeted suggestions.

4) THE MOST INFLUENTIAL PSFS
To assess the influence of PSFs, ‘‘target sensitivity analysis’’
is applied. By setting the evidence of a specific node, a target
sensitivity analysis allows the user to investigate the changes
in the probability of mental overload, and the results are
shown in TABLE16. Among all of the PSFs determined in the
case, ‘‘Number of simultaneous goals’’ has been identified as
being the most influential. Thus, the most possible accident
chain is: the instant task of finding nearby Airbus → limited
outside reference and lack of altimeter altitude → visual

search for Airbus → too many unit tasks for pilot to per-
form → mental overload → ignorance of visual scan of
instruments → failure occurred in GPWS → accident.

5) SUGGESTION
The accident report describes the probable cause of the acci-
dent: ‘‘The probable cause of this accident was the pilot’s
failure to identify and arrest the helicopter’s descent, which
resulted in controlled flight into terrain. Contributing to
the accident were the dark night conditions, limited outside
visual references, and the lack of an operable radar altimeter
in the helicopter’’. We would like to point out that the exis-
tence of too many simultaneous goals is the most influential
factor, which is in accordance with the deduction in the report
that ‘‘the pilot was unable to perform complex tasks in the
helicopter or fly a compete mission involving several tasks in
a series’’ which validates the effectiveness of our proposed
method.

As for suggestions, there are actual two threads to follow:
improving the design and optimization of the task flow to
reduce the task demand; and improving PSF-related elements
so as to reduce their impact on the scenario. In this scenario,
visually searching for the approaching Airbus was not the
ideal way, so we recommend both the use of radar to detect
other aircraft and the integration of this function with the
flight instrumentation. In this way, at every fixation of the
flight instrument, the pilot will be able to obtain enough infor-
mation about the helicopter and the surrounding situation.
This suggestion is also consistent with the accident report:
‘‘If a functioning radar altimeter had been available to and
used by the pilot, it could have provided a constant altitude
cue, in the form of a digital readout of feet above the terrain,
to enhance his awareness of the helicopter’s height above the
water’’ [49].

V. CONCLUSION
Mental workload is one of the most concerning factors in
the aera of safety, and the assessment of mental overload is
essential to the design stage. The present study proposes a
mental overload assessment model that considers the effects
of PSFs. The proposed model has the following character-
istics: First, the proposed method considers the influence of
PSFs on mental overload, which extends the description of
the traditional mental overload assessment method. Second,
the relation between mental workload level and human error
probability was established by converting the PSFs’ weight-
ing factors. Finally, BN was used to model the influence
of PSFs and calculate the probability of mental overload.
The performance of the proposed method was demonstrated
through a case study of an accident involving a helicopter
crash. The results show that the proposed method can effi-
ciently determine the mental overload state of the pilot better
than the traditional VACP method can, and it provides a more
rational explanation of the accident’s evolution.
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