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ABSTRACT The IIoT technologies, due to the widespread use of sensors, generate massive data that are
key in providing innovative and efficient industrial management, operation, and product quality control
processes. The significance of data has prompted relevant research communities and application developers
how to harness the values of these data in secure manufacturing. Critical data analysis, identification of
critical factors to improve the manufacturing process and critical data associated with product quality have
been investigated in the current literature. However, the current works on product quality control are mainly
based on static data analysis, where data may change, but there is no way to adjust them dynamically. Thus,
they are not applicable for product quality control, at which point their adjustment is instantly required.
However, many manufacturing systems exist, like beverages and food, where ingredients must be adjusted
instantaneously to maintain product quality. To address this research gap, we introduce a method that
identifies the critical data based on their ranking by exploiting three criticality assessment criteria that capture
the instantaneous product quality change during manufacturing. These three criteria are – (1) correlation,
(2) percentage quality change and (3) sensitivity for the assessment of data criticality. The product quality is
estimated using polynomial regression (POLY), SVM, and DNN. The proposed method is validated using
wine manufacturing data. Our proposed method accurately identifies critical data, where SVM produces the
lowest average production quality prediction error (10.40%) compared with that of POLY (11%) and DNN
(14.40%).

INDEX TERMS IIoT-enabled manufacturing, data criticality, criteria, product quality control, wine-quality.

I. INTRODUCTION
The Industrial Internet of Things (IIoT) is an integration of the
Internet of Things (IoT), intelligent computing, and big data
along with information technology (IT) and operation tech-
nology (OT). IIoT leverages modern industrial applications,
and production processes in manufacturing [1]. IIoT applica-
tions range from large national infrastructures such as power
and chemicals to food & beverage industries [2]. An intelli-
gent winemanufacturing system is a potential application that
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uses IIoT technologies to control wine quality using sensor
data. IIoT-based digital technologies are fuelling manufac-
turing and production systems more than ever. Therefore,
the efficiency and productivity of manufacturing systems
have increased to meet high expectations [3] and compete
with other industries. Subsequently, digital innovations will
advance the manufacturing process for secure production
quality.

Wine is one of the highly consumable alcoholic bever-
ages, the demand for which grew worldwide, even during the
Covid-19 pandemic situation [4]. The digitization of wine
manufacturing using IIoT technology would significantly
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contribute to its production process for secure product quality.
The factors that impact the quality of products are significant
for product quality to gain more market space. IoT sensors
in the IIoT instigated technology advantages in collecting
sensor data to analyze and detect data criticality. Due to
the digitization of industries, a substantial amount of data
are available related to the manufacturing and company core
processes towards model-based analysis [5].

Data-driven decision-making is growing more than ever
due to the enormous amount of data generated in the intel-
ligent modern industries, which need to be processed profes-
sionally [6]. It is a crucial and core challenge of managing
data quality towards context-specific utilization and decision
making [7]. Critical data has been analyzed for many IIoT
application areas. Some examples of these include - (1) anal-
ysis of data criticality for operation & production manage-
ment [8], (2) manufacturing performance improvement, and
(3) improving the overall productivity of the manufacturing
systems [9]. Shin et al. in [10] critically analyzed product
usage data and developed a method for decision support to
address product degradation status. Liu et al. [11] proposed a
system criticality analysis method to support safety-critical
complex systems by analyzing their reliability. Gupta and
Mishra analyzed the criticality of a conventional milling
machine to address the failure effect for selecting appropriate
maintenance strategies [12].

For predictive maintenance decision support, a critical
analysis of computer-based numerical lathe subsystems con-
trol has been studied in [13]. The critical data analysis in those
works mainly focuses on improving the manufacturing pro-
cesses and production management systems, which add value
to the intelligent technology-based manufacturing arena. The
main shortcoming of these critical analyses is that they are
mainly static value analyses of recorded data for production
management and operation.

Static value analysis is to analyse a component or part of a
product before its application; an example is a connecting rod
to move from a vehicle crankshaft’s piston rotating activity,
where the design and material of the rod need to be anal-
ysed before applying to the engine [14]. Besides, dynamic
value analysis has been well-studied in biomedicine [15],
statistics [16], [17], and other fields [18], [19]. Dynamic
value analysis uses the characteristics of ingredient com-
ponents during the process execution, and the components
are adjusted instantaneously. Here, the components instan-
taneously adjusted means the adjustment of the amount of
that component which is coupled with other components that
exist at a particular time during the manufacturing process.
For example, malware detection has become challenging
due to its rapid growth, and adversaries are devising new
techniques to evade detection methods. Dynamic analysis of
malware behaviour results inmore accurate detection than the
static method, which uses pre-defined signature-based detec-
tion [19]. Similarly, product quality needs to be optimised
in food and beverage by making instant adjustments to its

ingredient components. For example, in the case of cooking
sauce, if it tastes bitter, it needs an adjustment instantly with
sour and sweet. In the fast-growing use of sensors in indus-
trial process monitoring, data-driven information and process
values analyses have been studied widely and applied over
the past decades [20]. The dynamic value analysis of these
sensor data ensures product quality through instantaneous
monitoring to face the challenge of achieving goodwill in the
market.

In addition, product quality and production costs are also
required in the modern world to meet the increased global
competition [21]. Therefore, the demand for product quality
improvement is increasing to address this global competition
in the industrial sectors. As alluded before, many manufac-
turing systems, such as food and beverage, must adjust their
components dynamically to control the product quality. It is
necessary to adjust the product component(s) dynamically to
improve the quality of many products. Because changes in
the number of individual components or characteristic values
subsequently cause changes in the quality of the product.
Precisely when the quality of the product depends on the
individual component values.

Apart from operation and management, manufacturing
companies also critically monitor product quality. These crit-
ical monitoring systems become essential when the product
quality varies dynamically with the amount of individual
ingredient or component values. A possible example could
be the quality of wine; wine quality depends on its char-
acteristics or component values. The characteristics of wine
quality, such as acidity, density, taste, smell, and colour, are
the deciding factors for the quality of the wine. Those are
the possible reasons for monitoring and analyzing the compo-
nents. The effectiveness of these monitoring systems depends
on the accurate and instantaneous detection of critical data
related to the ingredients. Here, data represents the value
of ingredients over time and indicates the criticality of a
particular ingredient at a specific time.

Product quality indicators are a range of values. For wine,
product quality is represented between 1 and 10. There is
also a reference wine quality value (example 7.0). If the
components change the product quality value for the ref-
erence quality value, the component impacts the quality.
Product quality is measured by its taste, colour and so on.
In order to ensure the quality of wine, it requires instanta-
neous dynamic adjustment of components, where those are
co-related. Product components become critical when they
affect the product quality significantly. For example, suppose
the quality is affected by the excess amount of one component
at a particular production stage. In that case, the product
quality needs to be adjusted by adding an appropriate amount
of another component that negates the impact on product
quality. In the case of producing wine, if pH becomes higher,
it needs to increase the acidic components, such as volatile
acidity being the critical component at that production
stage.
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However, there exist approaches for critical data analy-
sis [22], identification of critical factors for improving man-
agement [23] and operation [24] of manufacturing plants,
and critical data detection associated with product quality
management & monitoring [25], [26]. To our knowledge, the
existing works on critical data detection for product quality
are based on static value analysis. This issue motivates us
to develop a method to detect critical data affecting product
quality and to control the product quality by dynamically
adjusting a set of mutually coupled data. However, to our
knowledge, such dynamic data value analysis in identify-
ing mutually coupled critical sensory data does not exist in
the current literature. The significant contributions of this
research project are as follows:

1. In this paper, for the first time, a theoretical model
to detect the critical data acquired from the sen-
sors of an IIoT-based manufacturing system has been
introduced.

2. Leveraging or developing the following data criticality
assessment criteria that are the bedrock of the proposed
model mentioned above.

(a) Correlation measures considering the impact on
an individual component of the product to the
respective estimated product quality.

(b) Percentage (%) of product quality change for a
particular component of the product.

(c) Sensitivity of the product quality for an individual
product component.

3. The proposed model is developed based on the pre-
dicted instantaneous product quality values. These pre-
dictions are performed using non-machine learning
and machine learning techniques such as polynomial
regression, SVM, and DNN.

4. The performance and validation of the proposed model
are conducted using wine manufacturing data avail-
able in [27]. The experimental results show the accu-
rate identification of critical data. In contrast, the
SVM-based predictionmodel shows fewer average pre-
diction errors (10.40%) than the other twomodels (11%
for POLY and 14.4% for DNN).

Even though the efficacy of our critical data detection
is assessed using the wine dataset, applying the proposed
approach has a broader scope, where the product quality can
be improved by adjusting the ingredient components. Exam-
ples of product manufacturing include food & beverages and
other manufacturing industries, such as steel manufactur-
ing, where components are required to adjust dynamically
to control the quality of the product. The method devel-
oped in this research can serve as a template for deploying
IIoT devices to gather additional data to help detect product
quality.

Notations and symbols used in this report are stipulated in
TABLE 1.

The rest of this article is structured as follows: Section II
discusses IIoT-based manufacturing preliminaries, which

TABLE 1. Symbols and notations with nomenclature.

include IIoT-based manufacturing processes, intelligent wine
manufacturing and its challenges. Section III discusses this
research related to currently available works focusing on
critical components in the manufacturing process, existing
methods of critical data detection, as well as intelligent wine
manufacturing and possible challenges, while Section IV
proposes a critical data detection method and that includes
critical data detection criteria and critical data detection
methodology. Section V presents the experiments and results,
while its subsections reflect the experimental setup and
dataset, results and findings, measured the performance, com-
pare different criteria adopted and provide an evaluation of
experiments. Finally, Section VI concludes this research arti-
cle by outlining a summary of the outcomes of the research
contribution.

II. IIoT-ENABLED MANUFACTURING PRELIMINARIES
A digital revolution has occurred in the industry with the
adoption of IIoT in manufacturing systems. Manufacturing
execution systems (MES) are designed to analyze IoT sensor
production data. The sensing of non-contact architectural
acquisition collects big data from the production process that
influences the product quality in the digital manufacturing
systems [28]. In this context, product quality control is con-
ducted to large extent through analyzing those functional
data [29], [30], [31], [32], [33].
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A. IIoT-ENABLED MANUFACTURING PROCESS
IIoT leverages digital manufacturing with the combina-
tion of IT and OT, on which physical objects along with
the manufacturing infrastructures are networked with wire-
less sensors [34]. Compared to traditional manufacturing,
IIoT-enabled digital manufacturing utilizes various types of
sensors ubiquitously in monitoring the performance of equip-
ment and machinery, managing the production process, and
even controlling the product quality [35]. This advance in
manufacturing has changed the work process of different
company sections, ranging from people management and
systems maintenance to product quality testing/control.

As such, enormous data growth in digital manufacturing
enables decision-making more efficiently than ever, resulting
in a faster production process, which not only expands the
production capacity but also saves costs and energy [36].
In the end, this data growth will create manufacturing intelli-
gence across the factory through the sensor-driven real-time
data analysis and communication within the production envi-
ronment [37]. As we know, the decision-making of traditional
manufacturing in both developed and developing countries
is mainly static and primarily based on staff experiences.
The IIoT-enabled manufacturing has a digitized production
process, which generates a large volume of data and makes
decision-making more reliant on data analytics [38].

For intelligent manufacturing, the data collected are used
to model dynamical functions of components and factors
for improving production processes [39]. Due to the data
growth in IIoT-enabled digital manufacturing technologies,
it has become necessary to analyze the criticality of product
components for leveraging data-driven decision-making to
develop predictive modelling and control the product qual-
ity [40]. Data-driven decision-making has become the highest
preference for controlling the manufacturing process proac-
tively to ensure better product quality in IIoT-enabled digital
manufacturing [41]. In the manufacturing industry processes
such as chemical or steel production, where components for
production require to adjust instantaneously, data analysis
for the criticality detection is a priority for controlling the
production process [41].

In the food and beverage industry, such as digitalized
wine manufacturing, the production control process needs to
be dynamically adjusted considering the variation of crucial
wine characteristics. Therefore, critically analyzed data will
anchorage the production of high-quality wine.

B. IIoT-ENABLED DIGITAL WINE MANUFACTURING
The traditional wine manufacturing process encompasses
steps ranging from grape crushing, pressing, fermentation,
and clarification to ageing and bottling. In the traditional
process, wine manufacturing is not automatic, production
stages are primarily human-controlled, and the wine quality,
in the end, is determined by staff experiences [42].

With IIoT implementation, digital transformations are con-
ducted over the wine manufacturing process. As a result,

FIGURE 1. An illustration of IIoT-enabled wine manufacturing process,
where data sensing is conducted in the respective process of different
production stages, and captured data are transferred to the data server
and processed in a separate engineering workstation.

sensors are deployed on a large scale to collect and validate
sensory data for production processmanagement. For product
quality control, wine characteristics such as aroma, sweet-
ness, bitterness, acidity, colour, and appearance [43] are under
monitoring as those measurements are evolving at different
stages of the production process.

For example, fermentation converts grape juices to wine
using yeast, glucose & fructose, and other components like
SO2. This stage produces ethanol and controls the alcohol
volume with the concentration of ethanol. Also, fermentation
manages the wine aroma in that sugar content increases with
fully ripe grapes, and less riped grapes result in acidity, and
the increased pH value [44], [45]. For wine quality control,
the above wine characteristics data need to be analyzed com-
prehensively to develop a generic working model that assists
in computing their impact on the wine quality.
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FIGURE 1 presents an IIoT-enabled digitized wine manu-
facturing process that represents different stages of wine pro-
duction. The stages include initial clarification, fermentation,
wine settling in cask/tanks, final clarification, filtering, and
bottling of the product after stabilizing/ageing. As seen from
the figure, during the manufacturing process, the deployed
large-scale IIoT sensors monitor the measurements of wine
components at different stages of production. The data are
used to adjust wine components instantaneously to control
the quality of the wine.

Sensors are placed in the different stages of the wine man-
ufacturing system; measured sensor data are used to monitor
the quality of the wine. Therefore, these sensor data play
a vital role in ensuring wine quality. The sensors used in
monitoring wine quality are acidity, sugar, chlorides, SO2,
density, pH , sulphates, and alcohol sensors. For example, one
of the sensors, like METTLER TOLEDO’s InLab Max Pro-
ISM sensor, is used to measure the pH of wine. Other sensors,
such as optical sensors, are used to determine the SO2, MQ3
alcohol sensor for measuring the level of alcohol, and DLO-
M2_ex density sensor for measuring density in wine. The
influences of some of these sensor data on thewine quality are
explained in Section III-C. ‘Acidity’ sensors are responsible
for measuring ‘Fixed Acidity’, ‘Volatile Acidity’, and ‘Citric
Acid’. As shown in TABLE 2, all three acidity characteristics
correlate with wine quality, and the correlation values are
0.11, -0.38 and 0.21, respectively, revealing their impact on
the quality of the wine.

Similarly, the sensors that measure sugar, chlorides, SO2,
density, pH , sulphates, and alcohol, are also quite influential
while ensuring the wine quality. TABLE 2 shows that alcohol,
sulphate, and volatile acidity have more impact on wine
quality than others. Their correlation values are 0.48, 0.38 and
-0.38, respectively.

III. RELATED WORKS
This section presents a review on data criticality detection
with a focus on quality production in IIoT-based manufactur-
ing systems. The review addresses firstly the critical compo-
nents of general digital manufacturing, followed by existing
methods for critical data detection in the manufacturing pro-
cess, and the critical components for wine manufacturing.

A. CRITICAL COMPONENTS OF DIGITAL
MANUFACTURING
In manufacturing processes, components including data, fac-
tors, and characteristics that may cause a deficit in produc-
tivity and business outcome would be considered critical.
Those components play an essential role in product quality
control. Compromised application of the components would
cause a catastrophic impact on the production outcome. The
success of IIoT-based smart manufacturing relies on how
smartly the industry can manage and analyse data. Critical
data monitoring enhances decision-making smartly [46] for
improving productivity and product quality. Therefore, input
and output are necessary to monitor and detect defects in

each production phase. For maintaining or improving a prod-
uct’s quality, many products whose component(s) need to be
adjusted dynamically.

For example, the pH value is such a dynamic compo-
nent of cheese that it affects the ageing process of Moz-
zarella. It influences the functional characteristics, including
differences in calcium and moisture contents [47]. There-
fore, the amount of pH needs to be controlled by adding
or reducing components (e.g., acidic components) that affect
the pH values. In another example, components such as
Ni-Cr alloys, iron-based powder, Ni-based wasp-alloy, and
low-carbon steel powder are used [48] in manufacturing
corrosion-resistant steel. These components can significantly
impact even minor changes of any of those for the product
quality [48]. Thus, in practice, it is necessary to carefully
manipulate the components that control the effect of another
component(s) to secure good quality production.

B. EXISTING METHODS OF DETECTING DATA CRITICALITY
Data criticality detection has previously been studied for
production process optimisation. For criticality assessment
of plant productivity in mechanical industries, Jasiulewicz-
Kaczmarek et al. [49] analysed production management, pro-
duction method planning and equipment maintenance and
machinery. They aimed at improving and maintaining the
productivity of manufacturing plants. However, they con-
sidered the criticality assessment criteria of a machine and
the interactions between them. This criticality assessment
focuses only on the machine and the devices but not the
critical factors associated with the product ingredients. Sim-
ilarly, Zheng et al. [50] analyses the production-dependent
data for improving the efficiency of themachinery production
process. Antosz and Ratnayake [51] analysed the classifi-
cation of machinery and their prioritisation for effectively
scheduling preventive maintenance. These factors support
decision-making for maintaining and improving plant pro-
ductivity, again, not securing product quality.

Maintenance is another critical factor for productivity.
Marquez et al. [52], and Singh et al. [53] analysed engi-
neering and operational data related to asset functional loss
and its frequency of occurrence to prioritise management
of maintenance works. In [54], Stadnicka et al. investigated
machine failures & costs due to the failures, machine up &
downtime as well as deterioration of product quality in order
to address environmental challenges, as well as mitigation of
health and safety issues. Bengtsson in [55] performed a clas-
sification of management and technical personnel, includ-
ing production management, production and maintenance
teams, to prioritise improvement activities and maintenance
programmes according to different machine types. Authors
in [56] assessed engineeringmanagement data for prioritising
assets (e.g., equipment and tools) to meet the business targets
by aligning actions for maintenance. Moore and Starr [57]
prioritised industrial maintenance jobs based on plant condi-
tions where they used a strategy on cost criticality, making
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TABLE 2. Correlations between wine characteristics and their estimated wine quality.

a trade-off between risks and costs. To prioritise spare parts
planning and maintenance scheduling, the research in [58]
examined the day-to-day priorities of the workforce and the
machinery settings.

In summary, most existing data criticality detection
research is from the mechanical industry for productiv-
ity improvement in operation, production management and
maintenance, in which maintenance and workforce manage-
ment are given priority. All these works have significantly
contributed to expediting manufacturing processes’ produc-
tivity. However, to our knowledge, thesemethods do not focus
on identifying critical dynamic value data associated with
product characteristics that affect product quality.

C. CRITICAL DATA COMPONENT IN WINE
MANUFACTURING
Wine manufacturing, like other industries, involves the pro-
duction management of equipment/machinery, operation,
maintenance, and personnel management. It is worth noting
that in an IIoT-enabled digital manufacturing platform, the
quality of wine, which accomplishes from its colour, flavour,
taste and smell, relies solely on how we capture those factors
and perform sensor data detection. Technically, the sensory
data of Fixed Acidity, Volatile Acidity, Citric Acid, Residual
Sugar, Chlorides, Free Sulpher Dioxide, Total Sulphur Diox-
ide, Density, pH, Sulphates, andAlcohol control the quality of
the wine while manufacturing. These components are inter-
related among themselves, as can be seen in TABLE 2. Due
to mutual coupling, some of those components significantly
contribute to the quality of the wine. A careful analysis of
their characteristics and respective criticality is necessary
to quantify the amount of impact on the wine quality. The
organic acids in grapes and the acid produced from alcoholic
fermentation influence the acidity in wines [59]. The organic
acid of grapes contains citric acid, malic acid and tartaric
acid, which contribute to titratable acidity in the wine signif-
icantly [59]. Volatile acidity, total acidity, and alcohol impact
the quality of wine; volatile acid at a higher level of pH affects
wine quality significantly [60].

The acidity components impact wine taste by inversely
affecting a potential wine component pH because if acidity

increases, pH decreases. The pH is an influential component
that has an equal or higher impact on wine quality, can affect
the taste and colour and could cause cloudiness in the wine
due to an increase of iron phosphate [61]. The pH plays
a vital role in oxidation phases. The advanced oxidation
processes of winery wastewater largely depend on pH [62].
SO2 is the component that improves the fermentation process
and prevents secondary fermentation [63]. This component
reduces acidity to some extent, and an increase of SO2 will
cause a decrease in alcohol in wine. Also, SO2 helps maintain
the quality of wine [63] for colour stabilization and inhibition
of biogenic amine synthesis.

The pH is inversely related to the acidity (i.e., higher
pH implies lower acidity and vice versa). The component
influences the quality of wine together with other components
such as volatile acidity, total acidity and alcohol. For example,
volatile acid at a higher level pH worsens the taste of wine
typically [60]. The pH value needs to be maintained between
3.2 and 4.0 to control the acidity and colour of the final
product [64], [65]. During the wine manufacturing process,
the pH values can be adjusted by adding or reducing the
acidity contents since we know the increase of acidity values
will bring down the pH .
Even though alcohol dominates the quality of wine, acidity

components appear to be more critical for wine manufactur-
ing. The criticality of a component varies over time and needs
to be determined for a particular component (e.g., alcohol).
The sugar components like residual sugar are produced dur-
ing the grape berry cultivation, which impacts the density
of wine [66]. The Chloride component controls the sodium
chloride (NaCl) in the wine and positively correlates to the
fixed acidity [58]. The correlation between the above wine
components and their quality values is regarded as the data
criticality for wine production. TABLE 2 presents the list of
particular wine characteristics and their correlation with the
estimated wine quality values in [67].

In securing product quality, those correlations are diffi-
cult to adjust appropriately because the correlation can not
be measured quantitatively, and estimating the correlation
requires considering the dynamic effect ofmultiple individual
components.
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FIGURE 2. Schematic diagram of how the proposed critical data detection
method works. This diagram is developed considering the wine
manufacturing context. However, this diagram applies to manufacturing
processes where product quality changes dynamically.

IV. PROPOSED CRITICAL DATA DETECTION METHOD
This section proposes a theoretical framework for detecting
data criticality in IIoT-based intelligent manufacturing sys-
tems. The theoretical framework defines the data criticality
detection criteria (metrics). And explains the details of assess-
ing the criticality based on ranking.

A. OUTLINE OF THE PROPOSED METHOD
The key method is to assess the product quality change by
computing the difference between predicted and reference
quality for the product component value changes. FIGURE 2
presents a schematic diagram of how the proposed method
uses three criticality detection criteria for detecting critical
data. Three criteria include - (1) Correlation, (2) Percentage
of quality changes, and (3) Sensitivity of components to
product quality and applies to rank the criticality of data in
an intelligent production system.

As stipulated from the schematic diagram in FIGURE 2,
the proposed method comprises the aspects outlined below:
(1) The sensor data of a particular product characteristics

are captured by the proposed method.
(2) The proposed method uses reference product quality.

Note that this reference product quality is usually deter-
mined intuitively.

(3) The three critical data detection criteria to assess data
criticality as mentioned above are leveraged in the
method.

(4) Machine learning and non-machine learning modelling
techniques are used to derive estimated product qual-
ity for each product characteristic. The non-machine
learning technique may include polynomial regression

(POLY), and machine learning techniques can be Sup-
port Vector Machine (SVM), deep learning algorithms
like DeepNeural Network (DNN), or any suitable ones.

(5) The data criticality criteria such as correlation, per-
centage of product quality change, and sensitivity
to product quality are calculated using the reference
and estimated values for each product characteristic.
As shown in FIGURE 2, the ranking of each of the
product characteristics is determined using relevant
data criticality value for each criterion.

(6) The rank numbers are equal to the number of product
characteristics, x ∈ {1, 2, 3, · · · n}, where ’1’ represents
the highest rank and ’n’ represents the lowest rank;
higher the rank higher the criticality of data.

B. CRITICAL DATA DETECTION CRITERIA
For critical data detection, we use three criteria - (1) Corre-
lation, (2) Percentage of quality change and (3) Sensitivity.
These three criticality detection criteria are defined and dis-
cussed below:

1) CORRELATION BETWEEN PRODUCT COMPONENT AND
ESTIMATED QUALITY
In practice, we calculate the correlation between ith compo-
nent values (νi) and their respective quality (Qi); a suitable
method is Spearman′s rank correlation [68], [69] as,

ϱ =
cov

(
R(νi),R(Qi)

)
σR(νi)σR(Qi)

= 1 −
6

∑
d2i

n(n2 − 1)
,

{
when all n rank values
are distinct integers

(4.1)

where,

ϱ = Spearman′s rank correlation coefficient
cov(.) = Covariance between elements in the bracket
R(νi) = Product component rank variables
R(Qi) = Product quality rank variables
σR(νi) = Standard deviation of rank variable,R(νi)
σR(Qi) = Standard deviation of rank variable,R(Qi)
di = Difference between rank variables of product

component and quality,
(
R(νi) −R(Qi)

)
n = Number of rank variables

The correlation formula defined in Equation 4.1 represents
linear relation between the product component and the refer-
ence quality. The correlation coefficients vary between 1 and
−1. The positive and negative values indicate the percentage
of increment and decrement for each other. The value of
correlation coefficient 0 indicates no correlation, 1 indicates
a perfect positive correlation, and that of −1 represents a
perfectly negative correlation.

For example, for the wine manufacturing process, 11 char-
acteristics (components are represented with characteristics
in this particular case) are typically monitored to secure
the quality of the wine. For the impact of a particular
characteristic, i, its correlation between νi and Qi will be
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FIGURE 3. The correlation between sulphates (a product component) and
the respective quality of the wine (product quality) has been presented.
A trend-line indicates how the correlation exponentially varies between
the component and the product quality values.

calculated without considering the impact of other character-
istics.

FIGURE 3 gives an example of such a correlation between
the sulphates values (ν10) and the respective quality of
wine Q10. As we can see, with the increased sulphate
values, respective wine quality increases, which is a non-
linear increase. FIGURE 3 demonstrates that the relationship
between the wine characteristics and its estimated wine qual-
ity is non-linear. However, in contrast, correlation represents
a linear relationship vindicating the unsuitability of applying
correlation in critical data detection. Therefore, it is neces-
sary to develop different metrics to estimate the criticality of
wine characteristics in terms of their impact on wine quality
change. Two of such metrics are presented in the following
section.

2) PERCENTAGE OF PRODUCT QUALITY CHANGE
For every component of the product and every data, we mon-
itor the product quality change with respect to the reference
product quality for that data. In doing that, for ith component,
we calculate the quality change per jth value of the quality
instances as,

1i =

m∑
j=1

∣∣∣Qij − Qj
∣∣∣

Qj
(4.2)

wherem represents the number of data instances or the quality
values sample size for the ith component.Qj indicates the ref-
erence quality values of jth data instance. Qij is the estimated
product quality of the ith product component for the jth data
instance.

Note that the reference product quality for each data is the
combined impact of all components. This combined impact
necessitates considering their overall impact irrespective of
whether individual component produces positive or negative
impacts on product quality. Leveraging this principle, the
percentage of the quality changes (Pi) for ith the product

components is defined as,

Pi =
1i

n∑
i=1

{1i}

× 100% (4.3)

where n is the number of components considered for the
product quality measurement.

Equation 4.3 reflects the relative impact of product qual-
ity change for a particular component over the total quality
change for all the components.

3) SENSITIVITY OF PRODUCT COMPONENTS TO THE
QUALITY
Sensitivity analysis is a usual approach to evaluate how a
production system is sensitive against changes in its control
parameters [70]. Here, for a manufacturing plant, the sensi-
tivity of individual components to quality change captures the
impact of product quality change for that product component.
Changes in the product components and subsequent changes
in the product quality can be calculated using Equations 4.4
and 4.5 to compute the sensitivity (ξi) for the ith product
component using Equation 4.6 [71].
(1) Product quality change between the predicted and ref-

erence quality for the jth data instance of the ith com-
ponent is 9j = |Qij − Qj|. Total changes (19j) in the
consecutive product quality value changes between jth

and (j+ 1)th data instances of a particular ith compo-
nent will be computed as,

19j =

n−1∑
j=1

|∂9j| (4.4)

where,
19j = Total changes in the product quality
|∂9j| = |9j − 9j+1|

j = Number of data instances (sample size)

(2) Total changes in the ith product component (18j) in
the product quality can be calculated as,

18j =

n−1∑
j=1

|∂8j| (4.5)

where,
18j = Total changes in the product component
|∂8j| = |8j − 8j+1|

j = Number of data instances (sample size)

Therefore, the sensitivity score ξi can be written as,

ξi =
1

n− 1

[
19j

18j

]
(4.6)

Further to the above discussion, there are more advantages
and disadvantages of the proposed criteria adopted, but not
limited to the following.
(1) The correlation method measures the relationship

between variables, which helps determine the possible
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impact of an independent variable on the dependent
variable. However, if multicollinearity exists among the
variables, it could be problematic to determine the exact
amount of impact of an independent variable on the
dependent variable.

(2) The advantage of the percentage of quality change
(PQC) is a measure of relative change for others which
yields comparative criticality. For the components with
different units of measurement, the loophole is that
those units are not considered in the calculation.

(3) The advantage of sensitivity is that it directly reflects
the impact of a particular component changes on the
quality of the product. Therefore, sensitivity is not a
relative measure like the PQC. The disadvantage is that
even though other components’ impact on the product
quality exists, it does not account for that.

V. EXPERIMENTS AND RESULTS
We have used wine quality monitoring sensory data sourced
from a database in [27] for experiments. The database con-
tains both red wine and white wine datasets, but we con-
sidered the red wine dataset for experiment and analysis in
this research. These data were collected from the production
process of Portuguese Vinho wine.

The red wine dataset contains 11 independent wine
characteristics and wine quality. The wine quality varies
with the changes in individual characteristics of wine.
The characteristics values, νi and the quality value, Q
represent the ith wine characteristics and the wine qual-
ity respectively. Here, i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
which represents the index of the set {‘‘Fixed Acidity
(FA)’’, ‘‘Volatile Acidity (VA)’’, ‘‘Citric Acid (CA)’’, ‘‘Resid-
ual Sugar (RS)’’, ‘‘Chlorides (CL)’’, ‘‘Free Sulpher Dioxide
(FSD)’’, ‘‘Total Sulpher Dioxide (TSD)’’, ‘‘Density (DT)’’,
‘‘pH (PH)’’, ‘‘Sulphates (SLP)’’, ‘‘Alcohol (ALC)’’}.

A human testing process determines wine quality; there-
fore, this wine quality is referred to as reference wine quality
in this paper. Each of the features (characteristics or quality)
has 1,599 samples of data which were split into two parts:
(a) training dataset and (b) test dataset. In the wine quality
estimation process, capturing a wine characteristic’s impact
requires considering its various instantaneous values while
keeping other characteristic values constant. This approach
generated 1000 training data and 599 testing data samples
for all eleven characteristics from the 1,599 data samples
provided in [72].

A. EXPERIMENTAL SETUP
To assess the performance of different models, both
non-machine learning and machine learning techniques -
POLY, SVM and DNN were developed. Linear and POLY
are two commonly used non-machine learning algorithms,
of which we have used the higher degree polynomial regres-
sion due to the nonlinearity of our dataset. Similarly, vari-
eties of machine-learning algorithms, where SVM and DNN
are prevalent due to their better performance. As mentioned

FIGURE 4. The MSE and the R2-Scores for different number of hidden
layers of DNN.

in [73], DNN and radial basis function (RBF) based SVM
perform better than similar modelling algorithms regarding
computational and prediction accuracy. We used the Python
Scikit-Learn library to develop the models in our experiment.
For DNN, one of the two architectures, the Multilayer Per-
ceptron (MLP) model, was used and fed with eleven inputs
to produce one output. The inputs include the wine character-
istics FA, VA, CA, RS, CL, FSD, TSD, DT, PH, SLP, and
ALC, where the output is the predicted wine quality. The
performance of the DNN model was evaluated by comput-
ing Mean Square Error (MSE) and the Regression Scores
(R2-Scores). The MSE and R2-Scores against different num-
bers of hidden layers are stipulated in FIGURE 4. In addi-
tion, we used the ’adam’ optimiser as the ’adam’ optimiser
is widely used as a solver for weight optimisation. ReLU
(rectified linear unit) was used as the activation function at the
hidden layers. We can see from the plot in FIGURE 4 that the
MSE reduces gradually with the hidden layer increase, and
the MSE reaches the lowest value of 0.019503 for the hidden
layer 3. On the other hand, respective R2-Scores remain
almost the same for hidden layers 3 to 5, and the highest
R2-Score, 0.971211, is achieved at hidden layer 3. Therefore,
the model with 3 (three) hidden layers has achieved the high-
est precision level since it shows the lowest error and highest
regression score. Therefore, we used three hidden layers in
our DNN model for the experiment.

We validated our DNN model using MSE as loss values
as a performance indicator for a different number of epochs
with a batch size of 200. The loss values are plotted against
epoch numbers shown in FIGURE 5. FIGURE 5 shows that
the loss value gradually decreases up to 500 epochs and then
increases again. The model obtained the highest precision for
500 epochs with a minimum loss value of 0.010727, which
motivated us to use 500 epochs in our experiment.

SVM uses several kernels, such as Linear, Polynomial,
and RBF. For our experiment’s better-performing kernel type,
we evaluated the performance of those kernels by computing
the MSE and R2-Scores during the training, which is plotted
in FIGURE 6. FIGURE 6 shows that RBF performs better
with the lowest MSE and highest R2-Score, 0.0296978 and
0.561627, respectively, indicating RBF kernel is the best one

49472 VOLUME 11, 2023



S. K. Sen et al.: Critical Data Detection for Dynamically Adjustable Product Quality

FIGURE 5. Loss values of the DNN training model for different number of
epochs.

FIGURE 6. The MSE and the R2-Scores for different Kernel Types of SVM.

for our dataset. As the better performer compared to the other
two kernels, we chose the RBF kernel to train the SVM
model. The regularisation parameter, C, plays a significant
role in the SVMwith RBF kernel. The regularisation strength
of the model optimisation is inversely proportional to the
C-Value. Too small C-Value results in a useless model, and
too high value obtains high estimation accuracy during train-
ing but low in the testing phase [74]; for theC-Value, we used
C=1 in our experiment.

For the POLY model, we considered the higher degree
polynomial regression as it performs better for non-linear
systems. In our experiment, we used the 3rd order polynomial
as existing research shows that the 3rd order polynomial
produces the best fit of the data for most applications [75],
[76]. The polynomial with more than 3rd order is more likely
to reach saturation and shows erratic behaviour [77].

Note that the MSE, R2-Score and loss values were calcu-
lated using validation dataset (20% of training data). Each
of the model output was cross-validated with 10-fold and
100-run settings. All hyperparameter settings used in our
experiment are presented in TABLE 3.

Using the wine quality values estimated by the three mod-
els mentioned above along with wine characteristics values,
we have computed three criteria (metrics) for detecting data
criticality (refer to the three data criticality assessment criteria
defined in Section IV-B), which are,
(1) The correlation between the instantaneous data values

of a wine characteristic and its estimated wine quality
values.

TABLE 3. Hyperparameters and their respective values were used for the
models POLY, SVM and DNN.

(2) The percentage of wine quality change for a particular
wine characteristic.

(3) The sensitivity of wine quality for a wine characteristic,
i.e., change in wine quality for a wine characteristic.

B. RESULTS AND DISCUSSION
In the wine quality estimation process, capturing a wine
characteristic’s impact requires considering its various instan-
taneous values while keeping other characteristic values con-
stant. In this wine quality estimation process, we use the three
models - POLY, SVM, and DNN. The output of the models
is used to develop the critical data detection criteria values.
The data criticality is ranked using each model’s computed
data criticality criteria values. The results (the values obtained
from three criteria) are also used to assess the performance of
all three data models to obtain the most suitable solution for
the targeted scheme of the critical data detection method.

The following three subsections discuss the values of data
criticality metrics developed for all 11 wine characteristics
based on the results from all three models - POLY, SVM, and
DNN. The values of three data criticality criteria metrics -
correlation, wine quality change in % and sensitivity are
shown in Figures 7, 8, and TABLE 4, respectively.
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FIGURE 7. Correlations between the characteristics of wine and its
respective estimated wine quality predicted by POLY, SVM and DNN.

1) CRITICALITY BASED ON CORRELATIONS
As explained in the critical data detection methodology,
Section (IV-B), the correlation between wine characteristics
and estimated wine quality is in [-1, 1]. Since both +ve and
-ve correlation values represent the impact on wine quality,
we have considered the absolute values of the correlation
coefficients. We calculated the impact of wine characteristics
on the quality of the wine based on the amount of impact
only. FIGURE 7 shows the correlation values resulting from
three models - POLY, SVM, and DNN. We compute the
correlation-based criticality criteria from the data plots by
assessing the amount of correlation.

The POLY model shows that the correlation value for
ALC (0.8147) is the highest, followed by VA (0.5821),
SLP(0.5005), and DT (0.4452). The rest of the correlation
values are below 0.3, which can be considered insignificant.
The prediction of SVM shows that the correlation value for
TSD (0.6279) is the highest, followed by ALC (0.608). The
remaining values are below 0.3, which also can be regarded
as insignificant. The DNN model shows that the correlation
value for ALC (0.7755) is at the top of this category. ALC
is followed by VA (0.6562), SLP (0.5452), CA (0.4715),
DT (0.3745) and CL (0.3437). The rest are less than 0.3,
indicating that these characteristics are non-significant. The
selection of correlation values below 0.3 to separate the unim-
portant characteristics is based on the fact that these values
indicate weak correlation [78]; as alluded before, we have
considered correlation values between 0 and 1.

The correlation measures show that the ALC values of
POLY and DNN are highly significant for their respective
categories; the VA values for DNN and POLY follow those
correlation measures. For SVM, TSD is the highest, followed
by ALC. Therefore, by applying the principle of our proposed
method, that the higher the correlation, the higher the criti-
cality is, we conclude that ALC, VA, and TSD are the most
critical wine characteristics for the correlation criteria.

2) CRITICALITY BASED ON PERCENTAGE CHANGES
OF WINE QUALITY
We compute the PQC as the ratio of the quality changes
for each characteristic to the changes of all 11 character-
istics. FIGURE 8 presents the PQC values for all 11 wine

FIGURE 8. The PQC for wine characteristics resulting from the models -
POLY, SVM and DNN.

characteristics computed from the results of all three models
- POLY, SVM and DNN.

The POLY model shows that the PQC for FSD (10.79%)
is at the top of the list, followed by CA (10.33%) and CL
(9.84%). The PQC for ALC (7.07%) is the lowest, and the
remaining values vary from 8.0% to 9.0%. For SVM, the
highest PQC is for FSD (10.04%), and the rest are in-between
9.11% and 9.21%, where ALC (8.51%) is an exception. For
DNN, the PQC for FSD (14.18%) is on the top compared to
the PQC values for TSD and ALC. The same as POLY, the
remaining varies between 8.0% and 9.0%.

The PQC value for FSD is the highest for POLY and
DNN in their respective category. The PQC values for CA
from POLY and FSD from SVM follow the FSD values from
the DNN and POLY. The predictions from POLY and SVM
are very similar for most of the characteristics. The PQC of
CA in POLY is the highest among others, almost the same
as others in SVM, and is lower than five components but
higher than the other five components in the DNN model.
The trend of the contribution in ordered categories indicates
that FSD contributes the highest amount, followed by CA.
Therefore, according to the principle of our proposedmethod,
the higher the PQC, the higher the criticality is, FSD and CA
are substantially more critical than the rest.

3) CRITICALITY BASED ON SENSITIVITY
The sensitivities between the wine characteristics and their
respective changes in wine qualities are shown in TABLE 4.
TABLE 4 displays the sensitivity of wine quality changes for
the changes in the wine characteristic values. The sensitivities
are computed using the results obtained from the prediction
models - POLY, SVM and DNN.

The results show that DT is the most sensitive among all
the three models. The sensitivity values for DT are 25.5%,
29.37% and 32.52% for DNN, SVM and POLY, respec-
tively. The CL, PH, CA, SLP, and VA sensitivities are almost
in descending order for all three models. The correspond-
ing sensitivity values of these wine characteristics are CL
(1.09%, 1.15% and 1.72%), PH (0.28%, 0.47% and 0.41%),
CA (0.30%, 0.28% and 0.41%), SLP (0.30%, 0.31% and
0.32%), VA (0.24%, 0.26% and 0.30%) for DNN, SVM and
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TABLE 4. The sensitivity values of wine characteristics to the changes of
estimated wine quality produced by the modeling techniques - POLY, SVM
and DNN.

POLY, respectively. The sensitivity values of the remaining
characteristics (FA, RS, FSD, TSD, and ALC) are very low
(less than 0.07%). The variations of the sensitivity values
produced by all three models are minimum, which conforms
to the consistent results produced by the three models for the
sensitivity criteria.

The results predicted by the three models - DNN, SVM and
POLY, show that the wine quality values are more-sensitive
to DT, CL, PH, CA, SLP, and VA than others. Based on the
principle ‘‘higher the sensitivity, higher the criticality is’’,
as laid out in Section IV-B, these sensitivity values indicate
that DT, CL, PH, CA, SLP, and VA are critical characteristics
of the red wine, where DT is the most critical.

C. SUMMARY OF RESULTS
The values of criticality criteria for wine characteristics are
ranked in TABLE 5. As shown in TABLE 5 and from the
above results and subsequent discussions, different prediction
models produce different impacts of wine characteristics on
the quality of wine that are reflected in their ranking.

According to the critical data detection criteria outlined in
Section IV-B, the higher the rank, the higher the criticality.
The ranking values are between 1 and 11, where 1 is for the
highest criticality and 11 for the lowest criticality. In TABLE
5 out of the 11 ranks, the top 6 (upper plane) ranked wine
characteristics are categorised below for comparison among
the criticality criteria developed from the results of our mod-
els - POLY, SVM and DNN. For POLY, the upper plane
ranking of wine characteristics for three criticality criteria are
as follows:

(1) Correlation: VA - rank 1, ALC - rank 2, SLP - rank 3,
CA - rank 4, CL - rank 5, and DT - rank 6.

(2) Percentage (%) of Quality Change: PH - rank 1, FSD
- rank 2, CA - rank 3, FA - rank 4, RS - rank 5, and
DT - rank 6.

(3) Sensitivity: DT - rank 1, CL - rank 2, CA - rank 3, PH -
rank 4, SLP - rank 5, and VA - rank 6.

The POLY result reveals some commonality among the
six critical wine characteristics. DT and CA are typical in all
three criteria, CL, SLP and VA are common in the Correlation
and Sensitivity. Between PQC and Sensitivity, the common
characteristics are CA, DT and PH. For SVM, the upper plane
ranking values are as follows:

(1) Correlation: ALC - rank 1, DT - rank 2, PH - rank 3,
TSD -rank 4, FA - rank 5, and CL - rank 6.

(2) Percentage (%) of Quality Change: FSD - rank 1, RS -
rank 2, DT - rank 3, CL - rank 4, PH - rank 5, and CA
- rank 6.

(3) Sensitivity: DT - rank 1, CL - rank 2, PH -rank 3, SLP
- rank 4, CA - rank 5, and VA - rank 6.

For the results predicted by SVM, DT, PH and CL are
typical in all the three critical data detection criteria, CA is
only common for the PQC and Sensitivity criteria. For the
DNN, the upper plane ranking values of wine characteristics
are ranked as follows:

(1) Correlation: ALC - rank 1, VA - rank 2, SLP - rank 3,
CA - rank 4, DT - rank 5, CL - rank 6.

(2) Percentage (%) of Quality Change: CA - rank 1, DT -
rank 2, PH - rank 3, CL - rank 4, FSD - rank 5, and
RS - rank 6.

(3) Sensitivity: DT - rank 1, CL - rank 2, CA - rank 3,
SLP - rank 4, PH - rank 5, and VA - rank 6.

For the results obtained from DNN, CA, CL, & DT
are common to all three criteria. VA, & SLP are common
between Correlation and Sensitivity, where only PH is com-
mon between PQC and Sensitivity criteria.
For next level of assessment, we develop a Power Grid for

the critical wine characteristics in the upper plane predicted
by our models - POLY, SVM & DNN, and detected by the
three criteria. The critical wine characteristics from the upper
plane placed in Power Grid for assessment, are shown in
TABLE 6.
As stipulated in TABLE 6, if we compare the ele-

ments of the power grid column-wise, we can see that DT &
CA for the POLY, DT, CL & PH for SVM, and DT, CL &
CA for the DNN model are common to all three criteria
respectively. On the other hand, if we compare the power
grid row-wise, it can be seen that only DT is common for
all three models - POLY, SVM and DNN, irrespective of
critical data detection criteria. For Correlation, DT, CL &
ALC are common among POLY, SVM and DNN, VA, SLP
& CA are common between POLY and DNN. For PQC, PH,
FSD, CA, RS & DT are common among POLY, SVM, and
DNN, only CL IS Common between SVM and DNN. For
Sensitivity, all the wine characteristics for from each of the
three models POLY, SVM, and DNN are common to each
other respectively.
We can see that the wine characteristics appear multiple

times in the power grid for different criteria (Correlation,
PQC and Sensitivity) across the models POLY, SVM and
DNN respectively. For example, the appearance frequencies
of DT, CA/CL, PH, VA/SLP, ALC/FSD/RS, FA are 9, 8, 7, 5,
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TABLE 5. The rank of wine characteristics produced by prediction models - POLY, SVM and DNN using the three critical data detection criterion:
(1) Correlation, (2) % of Wine Quality Change, and (3) Sensitivity.

TABLE 6. POWER GRID: Assessment of data criticality criteria as per the
results obtained from the models - POLY, SVM and DNN.

3, and 2, respectively. Here, if we assume the principle that the
higher the frequency of appearance, the higher the criticality
is, DT, CA/CL, PH, VA/SLP, ALC/FSD/RS, FA are critical
wine characteristics in the descending order.

However, since we consider the top six ranks, this principle
treats a characteristic appears six times with rank 1 as the
same as another characteristic appears six times with rank 6 in
the worst case. Therefore, we need to calculate the rank by
leveraging the rank value and the appearance frequency using
the concept, weighted average method of categorisation. But,
we can not use a weighted average using the frequency of
appearance because the weighted average will not consider a
characteristic appearing more frequently. This issue indicates
that we need to include relative appearance frequency in the
final ranking to ensure that the more frequently appearing
characteristic possesses a higher rank. For that reason, we cal-
culate the final rank termed normalized ranking, which is
defined as,

Ri =
Wi

Ai
(5.1)

where,

Ri = Normalised weighted average of ranking
Wi = Weighted average of ranking

=

∑
i=1(fi × Ri)∑

i=1 fi
Ai = Appearance frequency ratio

=
fa
fp

fi = Appearance frequency
Ri = Rank of characteristics
fa = Actual number of appearance frequency
fp = Possible number of appearance frequency

The rank calculated using Equation 5.1 are shown in
TABLE 7. TABLE 7 shows that DT, CA, PH, FSD, CL and
SLP possess the higher six ranks, and the rank values
are 1, 2, 3, 4, 5, and 6, respectively. These rank values
are more analogous with the ranking produced by SVM
predictions than those for DNN and POLY. The rationale
behind the normalised weighted average adopted in this paper
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TABLE 7. Normalised ranking using weighted average rank and
appearance frequency.

is that the weighted average ranking method is preferably
more precise than the categorical process [79]. Moreover,
in [80], the aggregated index score values for multi-objective
decision-making are obtained considering weighted averages
of respective parameters and the normalisation process is
used to compare the criteria.

We conclude critical data detection methodology in
another way by assessing the performance of the modelling
techniques. For the performance assessment of our models -
POLY, SVM, and DNN, we have performed an error calcu-
lation between the reference wine quality (Qj) and estimated
wine quality (Qij) in the following section.

D. ERROR CALCULATION FOR ESTIMATED WINE QUALITY
IN RESPECT OF REFERENCE VALUES
We perform the error calculation for estimated wine quali-
ties for their respective reference values using widely used
error calculation metrics, namely Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE). MAE performs
better capturing model performance by reflecting the actual
situation of the prediction error, and the RMSE measure the
model prediction quality by selecting model error evaluation
metrics [81].

1) RMSE FOR ESTIMATED WINE QUALITIES
In FIGURE 9, we have shown the differences between the
average reference quality (Q) value and that of respective
estimated quality (Qi) values, which are computed using the
prediction results of POLY, SVM and DNN.

There is a slight difference between errors produced by
SVM and POLY. In contrast, the error difference between
the SVM and DNN is quite significant, and the difference is
consistent except for two closer points for TSD and the ALC.
The DNN result has not overlapped at any point with SVM,
but POLY overlaps in most points. Since the prediction error
produced by SVM is the lowest for all 11 wine characteristics
except ALC and VA, the data criticality ranking based on
SVM is a better solution.

FIGURE 9. RMSE for estimated wine quality in respect of reference wine
quality using POLY, SVM and DNN models.

FIGURE 10. MAE for estimated wine quality in respect of reference wine
quality using POLY, SVM and DNN based models.

We calculate MAE next to assess further the performance
of the models - POLY, SVM, and DNN by capturing their
prediction errors.

2) MAE FOR ESTIMATED WINE QUALITIES
We have also computed MAE between the average reference
quality (Q) values and that of respective estimated quality
(Qi) values. FIGURE 10 shows the computed MAE results
of POLY, SVM, and DNN models. The results of SVM
are very similar to POLY, with slightly higher values for
POLY at some points. However, the error values for DNN are
significantly higher than those of SVM and POLY at most
points.

There is a slight difference between errors produced by
SVM and POLY for MAE and RMSE. In contrast, the error
difference between the SVM and DNN is quite significant,
and the difference is consistent except for two closer points
for TSD and the ALC. The DNN result has not overlapped
at any point with SVM, but POLY overlaps in most points.
Since the prediction error produced by SVM is the lowest
for all 11 wine characteristics except ALC and VA, the data
criticality ranking based on SVM can be regarded as a better
solution. Moreover, the average error values of both MAE
(0.6266) and RMSE (0.8397) for the SVM model are lower
than those of MAE (0.6480) and RMSE (0.8666) for POLY,
respectively. The MAE and RMSE error values computed
for DNN are higher, as seen in FIGURE10 and FIGURE9,
respectively. Therefore, the SVMmodelling technique would
be a better solution.
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VI. CONCLUSION
This paper’s research work deals with a critical issue in the
IIoT-enabled digital manufacturing process. Identifying criti-
cal data in the modern IT/OT integrated intelligent industrial
production system is of utmost critical to protect secure pro-
duction. This work addresses this crucial issue by introducing
a method for identifying critical data for product quality con-
trol. We have analysed and assessed our method using a wine
data set. In our method, we have estimated the data criticality
using three assessment criteria - (1) correlation, (2) percent-
age of quality changes and (3) sensitivity. The estimated
product quality for each wine characteristic is predicted using
the models – POLY, SVM and DNN. We compute critical
data using the three criteria, and subsequently, the most
critical wine characteristics are determined by ranking them
according to their influence to control the product quality. The
ranking is influenced by the prediction error of POLY, SVM
andDNNmodels. Themodel performance has been evaluated
by prediction error computation using RMSE and MAE. The
prediction error of the models is less than 14.5%, where SVM
produces the minimum error (10.40%). This error indicates
that the criticality ranking of wine characteristics has been
performed reliably. Though the ranking is performed for all
three criteria, the correlation is not a good choice because
of its linear relationship between independent and dependent
variables, which indicates that the other two criteria PQC and
sensitivity, are more acceptable.

The conceptual framework developed in this work can be
extended to other manufacturing areas, where product quality
needs instantaneous adjustment of ingredient components.
In future, we aim to evaluate the system using data from other
relevant industries like food.
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