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ABSTRACT This paper concentrates on analyzing the stability problems of aperiodic sampled-data systems
with time delay. Based on Lyapunov theory, a new time-square-dependent two-side looped-functional
(TTLF) is proposed, which can take full advantage of the second order terms with respect to time. And
by using the intrinsic relationships of state vectors, a new zero equality is obtained. Then, a less conservative
stability condition is gained. In addition, the method proposed is applied to an electric power market (EPM)
to study the influence of market clearing time (MCT) and communication delay on system stability. Finally,
the effectiveness of the proposed stability criterion is verified based on numerical experiments.

INDEX TERMS Sampled-data system, electric power market, looped-functional, stability.

I. INTRODUCTION
With the rapid development of computer network technology
and modern communication technology, various digital
control systems have been studied [1], [2], [3], [4], [5], [6],
[7]. Furthermore, since sampled-data control reduce control
cost and improve control accuracy, it has been diffusely used
in various domains such as industrial production, scientific
research and national defense construction. In some complex
systems such as intelligent traffic, artificial intelligence and
the smart power grid, it need to use wide area network
to realize the collection of information, data exchange and
resource sharing. Although these information are collected
and sent in a fixed period, the sampling signal is actually
an aperiodic signal received by the controller because of the
communication delay of signal transmission in the network.
For sampled-data system, sampling period is an important
index to measure the performance of sampled-data system.
The larger the sampling period, the lower the operating
requirement for system communication rate, capacity and
bandwidth, the requirement on system hardware will be
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relaxed. Therefore, various methods have been used to obtain
a larger allowable sampling period under the premise of
ensuring the stability of sampled-data system [8], [9], [10],
[11], [12], [13].

At present, several methods have been proposed to
investigate the stability of aperiodic sampled-data system.
In [14] and [15], the stability condition is obtained by
the discrete-time approach, which converts the sampled-
data system into a discrete-time system. In [16], [17], [18],
and [19], in terms of the input delay method, sampled-data
system is treated as continuous-time system with a time-
delayed input, which is designed to study the stability of these
systems [20], [21], [22]. In [23], the stability condition is
obtained by the impulsive system approach, which converts a
sampled-data system to the modality of impulsive systems.

In fact, the conservativeness of the derived stability
conditions based on Lyapunov functional approach depends
on the construction of Lyapunov functionals [24], [25], [26],
[27], [28] and the bounding approach for the functional
derivative. In [29], a two-side looped-functional is proposed,
which relaxes the restrictive condition of conventional
Lyapunov functional and yields relaxed stability criterion.
To get a tight bound for the integral terms in the derivative
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TABLE 1. Notations.

of Lyapunov functional, several integral inequalities are
employed, such as Jensen inequality [30], Wirtinger-based
inequality [31], [32], Bessel-Legendre inequality [33] and
free-matrix-based inequalities [34], [35]. Lately, by using
a method that guarantees that the sum of several matrices
is positive definite instead of requiring each matrix to be
positive definite, relaxed stability condition are obtained
in [36]. Nevertheless, it only considers the first order terms
with respect to t. Whether the conservativeness of the derived
condition can be reduced by increasing the order of the terms
with respect to t motivate current research.

This paper concentrates on the stability problem of
aperiodic sampled-data systems with time delay. The main
contributions of this paper are concluded as follows:

1) Based on the Lyapunov theory, a time-square-dependent
two-side looped-functional (TTLF) is proposed, which intro-
duces the second order terms with respect to t.
2) In order to reduce conservativeness, a new zero equality

is established by using the intrinsic relationships of state
vectors. Based on the proposed TTLF and zero equality,
an improved stability condition is obtained.

3) To validate the practicability, the proposed method is
applied to the model of electric power market (EPM), and the
influence of market clearing time (MCT) and communication
delay on the stability of the power market is discussed, which
provides certain guiding significance to ensure the balance of
energy supply and demand.

II. PRELIMINARIES
Consider the linear system of the form:

ẋ(t) = Ax(t) + B̌u(t) (1)

where u(t) ∈ ℜ
m and x(t) ∈ ℜ

n are the control input and the
state vector, A ∈ ℜ

n×n and B̌ ∈ ℜ
n×m are system matrices,

respectively. sk (k = 0, 1, 2 · · · ) represent sampling instant
time of sampler. When the measurement and control signals
are transmitted through the network, communication delay
can not be avoided. Therefore, the u(t) is described as

u(t) = Kx(sk ), t ∈ [sk + τ, sk+1 + τ ) (2)

Then, let tk = sk + τ and u(t) is described as

u(t) = Kx(tk − τ ), t ∈ [tk , tk+1) (3)

where K is the state feedback matrix and tk means the
updating time instant of the system, which satisfy

hk = tk+1 − tk = sk+1 − sk , hk ∈ [h1, h2] (4)

where hk represents the sampling periods (update periods),
h1 and h2 represent the minimum and the maximum of the
sampling periods. The communication delay is denoted by τ
and it is assumed that τ < h2. At this point, the closed-loop
system is represented as

ẋ(t) = Ax(t) + Bx(tk − τ ), t ∈ [tk , tk+1) (5)

with B = B̌K . Let ϕk = hk + τ, and the maximum of ϕk
is indicated by ϕM = h2 + τ. Let dk (t) = t − tk and (5) is
indicated by

ẋ(t) = Ax(t) + Bx(t − dk (t) − τ ) (6)

where

dk (t) ∈ [0, hk ), ḋk (t) = 1 for t ̸= tk (7)

III. MAIN RESULTS
In order to simplify the description, we define

ζ1(β, α) = x(β) − x(α), ζ2(β, α) =
1

β − α

β∫
α

x(s)ds,

ζ3(β, α) =
2

(β − α)2

β∫
α

s∫
α

x(u)duds,

ζ4(β, α) =
2

(β − α)2

β∫
α

β∫
s

x(u)duds,

ψ1(t) = col{x(t), x(t − τ ), τζ2(t, t − τ ),

τ 2

2
ζ3(t, t − τ ),

τ 2

2
ζ4(t, t − τ )},

ψ2(t, s) = col{x(s), ẋ(s), x(t), x(t − τ ), τζ2(s, t − τ ),

τζ2(t, s)},

ψ3(t) = col{x(tk ), x(tk − τ ), x(tk+1), x(tk+1 − τ ),

τζ2(tk , tk − τ ), x(t), x(t − τ ), ζ2(tk+1, t),

ζ4(tk+1, t), ζ2(tk+1 − τ, t − τ ),

ζ4(tk+1 − τ, t − τ ), τζ2(t, t − τ ),

τ 2

2
ζ3(t, t − τ ),

τ 2

2
ζ4(t, t − τ )},

ψ4(t) = col{x(tk ), x(tk − τ ), x(tk+1), x(tk+1 − τ ),

τζ2(tk , tk − τ ), x(t), x(t − τ ), ζ2(t, tk ),

ζ3(t, tk ), ζ2(t − τ, tk − τ ), ζ3(t − τ, tk − τ ),

τζ2(t, t − τ ),
τ 2

2
ζ3(t, t − τ ),

τ 2

2
ζ4(t, t − τ )},

ψ5(t) = col{x(tk ), x(tk − τ ), x(tk+1), x(tk+1 − τ ),

τζ2(tk , tk − τ ), x(t), x(t − τ ), ζ2(t, tk ),

ζ3(t, tk ), ζ2(t − τ, tk − τ ), ζ3(t − τ, tk − τ ),
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ζ2(tk+1, t), ζ4(tk+1, t), ζ2(tk+1 − τ, t − τ ),

ζ4(tk+1 − τ, t − τ ), τζ2(t, t − τ ),

τ 2

2
ζ3(t, t − τ ),

τ 2

2
ζ4(t, t − τ )},

ψ6(t) = col{ζ1(t, tk ), ζ1(t − τ, tk − τ )},

ψ7(t) = col{ζ1(t, tk+1), ζ1(t − τ, tk+1 − τ )},

ψ8(t) = col{ζ2(t, t − τ ), ζ3(t, t − τ ), ζ2(t, tk ), ζ3(t, tk ),

ζ2(tk+1, t), ζ4(tk+1, t), ζ2(t − τ, tk − τ ),

ζ3(t − τ, tk − τ ), ζ2(tk+1 − τ, t − τ ),

ζ4(tk+1 − τ, t − τ ), ζ2(tk , tk − τ )},

ψ̆1(t) =col{x(t), x(tk ), x(tk+1), ζ2(tk+1, t), ζ4(tk+1, t)},

ψ̆2(t) = col{x(t), x(tk ), x(tk+1), ζ2(t, tk ), ζ3(t, tk )},

ψ̆3(t) = col{x(t), x(tk ), x(tk+1), ζ2(t, tk ), ζ3(t, tk ),

ζ2(tk+1, t), ζ4(tk+1, t)},

ψ(t) = col{xT (t), x(t − τ ), x(tk ), x(tk − τ ), x(tk+1),

x(tk+1 − τ ), x(t − ϕk ), ẋ(t − τ ), ψ8(t)},

ψ̆(t) = col{x(t), x(tk ), ζ2(t, tk ), ζ3(t, tk ), x(tk+1),

ζ2(tk+1, t), ζ4(tk+1, t)},

ej =
[
0n×(j−1)n In 0n×(19−j)n

]
, j = 1, 2, · · · , 19,

ĕj =
[
0n×(j−1)n In 0n×(7−j)n

]
, j = 1, 2, · · · , 7.

Now, the following theorem is presented.
Theorem 1: For given τ > 0 and h2 ≥ h1 ≥ 0, system (5)

with the control input (3) satisfying (4) is stable if there exist
matrices P > 0, S > 0, D1 > 0, D2 = DT2 , D3 > 0, Q1, Q2,
X , G = GT ,W1 > 0,W2 > 0,W3 > 0,W4 > 0, Ni,Mi,
Li, i = 1, 2, 3,Yj, j = 1, 2, · · · , 13, such that LMIs (8)-(14)
are satisfied.

D2 + D3 > 0 (8)

W1 + D3 > 0 (9)

W3 + D2 > 0 (10)31 91
√
τ92

∗ −51 0
∗ ∗ −52


hk∈[h1, h2]

< 0 (11)

[
31 + hk32 + h2k33 932

∗ −532

]
hk∈[h1, h2]

< 0 (12)[
31 +

hk
4
32 9132

∗ −5132

]
hk∈[h1, h2]

< 0 (13)

[
31 +

3
4hk32 +

1
2h

2
k33 9312

∗ −5312

]
hk∈[h1, h2]

< 0 (14)

where

31

= He{ρT1 Pρ2 + ρT32Xρ31 + ρT30Xρ32 +M1ρ11 +M2ρ12

+M3ρ13 +N1ρ14 +N2ρ15 +N3ρ16 + Y1ρ17 + Y2ρ36

+ Y3ρ37 + Y4ρ18 + Y5ρ38 + Y6ρ39 + L1ρ19 + L2ρ20

+ L3ρ21 + Y7ρ22 + Y8ρ42 + Y9ρ23 − Y10ρ11 − Y11ρ14

− Y12ρ28 − Y13ρ29 + ρT40Sρ41
+ hk (−2ρT30Q1ρ5 + ρT30Q1ρ8 + Y11ρ25 + Y13ρ27

+ ρT34Gρ6) + h2k (ρ
T
32Q1ρ5 + ρT30Q1ρ7)} + ρT3 Sρ3

− ρT4 Sρ4 + τηTD1η + h2ηTD2η + ϕMη
TD3η

+ hk (ρT6 Gρ6 + ηTW1η + eT8W3e8)

32

= He{Y10ρ24 + Y12ρ26 − (−2ρT30Q1ρ5 + ρT30Q1ρ8

+ Y11ρ25 + Y13ρ27) + 2ρT31Q2ρ9

+ ρT31Q2ρ10 + hkρT33Gρ6 + ρT35Gρ6 − ρT34Gρ6
− 2hk (ρT32Q1ρ5 + ρT30Q1ρ7)} − ρT6 Gρ6 + ηTW2η

+ eT8W4e8 − (ρT6 Gρ6 + ηTW1η + eT8W3e8)

33

= He{−ρT33Gρ6 + ρT32Q1ρ5 + ρT30Q1ρ7 + ρT32Q2ρ9

+ ρT31Q2ρ7}

with

91 = [hkN1 hkN2 hkN3 hkY4 hkY5 hkY6 hkY9]

92 = [L1 L2 L3 Y7 Y8]

93 = [hkM1 hkM2 hkM3 hkY1 hkY2 hkY3]

51 = diag{hkW2, 3hkW2, 5hkW2, hkW4, 3hkW4,

5hkW4, hk (D2 + D3)}

52 = diag{D1, 3D1, 5D1,D3, 3D3}

53 = diag{hk (W1 + D3), 3hk (W1 + D3), 5hk (W1 + D3),

hk (W3 + D2), 3hk (W3 + D2), 5hk (W3 + D2)}

932 =
[
93

√
τ92

]
, 532 = diag{53,52}

9132 =
[
91 93

√
τ92

]
5132 = diag{

4
3
51, 453,52}

9312 =
[
93 91

√
τ92

]
5312 = diag{

4
3
53, 451,52}

η = Ae1 + Be4

ρ1 = [eT1 e
T
2 τe

T
9
τ 2

2
eT10 τ

2eT9 −
τ 2

2
eT10]

T

ρ2 = [ηT eT8 e
T
1 − eT2 τ (e

T
9 − eT2 ) τ (e

T
1 − eT9 )]

T

ρ3 = [eT1 η
T eT1 e

T
2 τe

T
9 0]T

ρ4 = [eT2 e
T
8 e

T
1 e

T
2 0 τeT9 ]

T

ρ5 = [eT3 e
T
4 e

T
5 e

T
6 τe

T
19 e

T
1 e

T
2 e

T
13 e

T
14 e

T
17 e

T
18

τeT9
τ 2

2
eT10 τ

2eT9 −
τ 2

2
eT10]

T

ρ6 = [eT3 e
T
4 e

T
5 e

T
6 τe

T
19 e

T
1 e

T
2 e

T
11 e

T
12 e

T
15 e

T
16

eT13 e
T
14 e

T
17 e

T
18 τe

T
9
τ 2

2
eT10 τ

2eT9 −
τ 2

2
eT10]

T
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ρ7 = [0 0 0 0 0 ηT eT8 0 0 0 0 eT1 − eT2
τ (eT9 − eT2 ) τ (e

T
1 − eT9 )]

T

ρ8 = [0 0 0 0 0 0 0 eT13 − eT1 2(eT14 − eT13) e
T
17 − eT2

2(eT18 − eT17) 0 0 0]T

ρ9 = [eT3 e
T
4 e

T
5 e

T
6 τe

T
19 e

T
1 e

T
2 e

T
11 e

T
12 e

T
15 e

T
16

τeT9
τ 2

2
eT10 τ

2eT9 −
τ 2

2
eT10]

T

ρ10 = [0 0 0 0 0 0 0 eT1 − eT11 2(e
T
11 − eT12) e

T
2 − eT15

2(eT15 − eT16) 0 0 0]T

ρ11 = e1 − e3, ρ12 = e1 + e3 − 2e11
ρ13 = e1 − e3 − 6e11 + 6e12, ρ14 = e5 − e1
ρ15 = e5 + e1 − 2e13, ρ16 = e5 − e1 + 6e13 − 6e14
ρ17 = e2 − e4, ρ18 = e6 − e2, ρ19 = e1 − e2
ρ20 = e1 + e2 − 2e9, ρ21 = e1 − e2 − 6e9 + 6e10
ρ22 = e3 − e4, ρ23 = e4 − e7, ρ24 = Ae11 + Be4
ρ25 = Ae13+Be4, ρ26=Ae12 + Be4, ρ27 = Ae14 + Be4
ρ28 = 2e11 − 2e3, ρ29 = 2e5 − 2e13, ρ32 = [ηT eT8 ]

T

ρ30 = [eT1 − eT3 e
T
2 − eT4 ]

T , ρ31 = [eT1 − eT5 e
T
2 − eT6 ]

T

ρ33 = [0 0 0 0 0 ηT eT8 0 0 0 0 0 0 0 0

eT1 − eT2 τ (e
T
9 − eT2 ) τ (e

T
1 − eT9 )]

T

ρ34 = [0 0 0 0 0 0 0 eT1 − eT11 2(e
T
11 − eT12) e

T
2 − eT15

2(eT15 − eT16) 0 0 0 0 0 0 0]T

ρ35 = [0 0 0 0 0 0 0 0 0 0 0 eT13 − eT1
2(eT14 − eT13) e

T
17 − eT2 2(eT18 − eT17) 0 0 0]T

ρ36 = e2 + e4 − 2e15, ρ37 = e2 − e4 − 6e15 + 6e16
ρ38 = e6 + e2 − 2e17, ρ39 = e6 − e2 + 6e17 − 6e18

ρ40 = [τeT9 e
T
1 − eT2 τe

T
1 τe

T
2
τ 2

2
eT10 τ

2eT9 −
τ 2

2
eT10]

T

ρ41 = [0 0 ηT eT8 − eT2 e
T
1 ]
T , ρ42 = e3 + e4 − 2e19.

Proof: First we constract a new Lyapunov functional for
the system (5)

V (t) = Vc(t) + Vd (t) (15)

where Vc(t) =

5∑
j=1

Vcj(t) and Vd (t) =

8∑
j=1

Vdj(t) are as follows

Vc1(t) = ψT
1 (t)Pψ1(t),

Vc2(t) =

t∫
t−τ

ψT
2 (t, s)Sψ2(t, s)ds,

Vc3(t) =

0∫
−τ

t∫
t+θ

ẋT (u)D1ẋ(u)dudθ ,

Vc4(t) =

−τ∫
−ϕM

t∫
t+θ

ẋT (u)D2ẋ(u)dudθ ,

Vc5(t) =

0∫
−ϕM

t∫
t+θ

ẋT (u)D3ẋ(u)dudθ ,

Vd1(t) = 2(hk − dk (t))2ψT
6 (t)Q1ψ3(t),

Vd2(t) = 2d2k (t)ψ
T
7 (t)Q2ψ4(t),

Vd3(t) = (hk − dk (t))dk (t)ψT
5 (t)Gψ5(t),

Vd4(t) = 2ψT
6 (t)Xψ7(t),

Vd5(t) = (hk − dk (t))
t∫

tk

ẋT (s)W1ẋ(s)ds,

Vd6(t) = −dk (t)
tk+1∫
t

ẋT (s)W2ẋ(s)ds,

Vd7(t) = (hk − dk (t))
t−τ∫

tk−τ

ẋT (s)W3ẋ(s)ds,

Vd8(t) = −dk (t)
tk+1−τ∫
t−τ

ẋT (s)W4ẋ(s)ds.

Taking the derivative of V (t) along the trajectories of system
(5) yields

V̇c1(t) = 2ψT
1 (t)Pψ̇1(t),

V̇c2(t) = ψT
2 (t, t)Sψ2(t, t) − ψT

2 (t, t − τ )Sψ2(t, t − τ )

+ 2

t∫
t−τ

ψT
2 (t, s)S

∂ψ2(t, s)
∂t

ds,

V̇c3(t) = τ ẋT (t)D1ẋ(t) + ℘1,

V̇c4(t) = h2ẋT (t)D2ẋ(t) + ℘2,

V̇c5(t) = ϕM ẋT (t)D3ẋ(t) + ℘3,

V̇d1(t) = −4(hk − dk (t))ψT
6 (t)Q1ψ3(t) + 2(hk − dk (t))2

× ψ̇T
6 (t)Q1ψ3(t) + 2(hk − dk (t))2ψT

6 (t)Q1ψ̇3(t),

V̇d2(t) = 4dk (t)ψT
7 (t)Q2ψ4(t) + 2d2k (t)ψ̇

T
7 (t)Q2ψ4(t)

+ 2d2k (t)ψ
T
7 (t)Q2ψ̇4(t),

V̇d3(t) = −dk (t)ψT
5 (t)Gψ5(t) + (hk − dk (t))ψT

5 (t)Gψ5(t)

+ 2(hk − dk (t))dk (t)ψ̇T
5 (t)Gψ5(t),

V̇d4(t) = 2ψ̇T
6 (t)Xψ7(t) + 2ψT

6 (t)X ψ̇7(t),

V̇d5(t) = (hk − dk (t))ẋT (t)W1ẋ(t) + ℘4,

V̇d6(t) = dk (t)ẋT (t)W2ẋ(t) + ℘5,

V̇d7(t) = (hk − dk (t))ẋT (t − τ )W3ẋ(t − τ ) + ℘6,

V̇d8(t) = dk (t)ẋT (t − τ )W4ẋ(t − τ ) + ℘7.

with

℘1 = −

t∫
t−τ

ẋT (s)D1ẋ(s)ds,

℘2 = −

t−τ∫
t−ϕM

ẋT (s)D2ẋ(s)ds,

℘3 = −

t∫
t−ϕM

ẋT (s)D3ẋ(s)ds,

℘4 = −

t∫
tk

ẋT (s)W1ẋ(s)ds,

℘5 = −

tk+1∫
t

ẋT (s)W2ẋ(s)ds,

℘6 = −

t−τ∫
tk−τ

ẋT (s)W3ẋ(s)ds,

℘7 = −

tk+1−τ∫
t−τ

ẋT (s)W4ẋ(s)ds.
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For ϕM ≥ ϕk and D2 + D3 > 0, it follows that

℘2 + ℘3 = −

t−τ∫
t−ϕM

ẋT (s)D2ẋ(s)ds−

t∫
t−ϕM

ẋT (s)D3ẋ(s)ds

≤ −

t−τ∫
tk−τ

ẋT (s)D2ẋ(s)ds−

t∫
tk

ẋT (s)D3ẋ(s)ds

−

tk∫
tk−τ

ẋT (s)D3ẋ(s)ds

−

tk−τ∫
t−ϕk

ẋT (s)(D2 + D3)ẋ(s)ds

Then,we obtain

℘2 + ℘3 + ℘4 + ℘6 ≤ ℘̄2 + ℘̄3 + ℘̄4 + ℘̄6 (16)

where

℘̄2 = −

t∫
tk

ẋT (s)(W1 + D3)ẋ(s)ds,

℘̄3 = −

t−τ∫
tk−τ

ẋT (s)(W3 + D2)ẋ(s)ds,

℘̄4 = −

tk−τ∫
t−ϕk

ẋT (s)(D2 + D3)ẋ(s)ds,

℘̄6 = −

tk∫
tk−τ

ẋT (s)D3ẋ(s)ds.

Applying free-matrix-based integral inequality in [35],
it follows from (9) and (10) that

℘1 ≤ ψT (t)[τ
3∑
i=1

1
2i− 1

LiD−1
1 L

T
i

+ He{L1ρ19 + L2ρ20 + L3ρ21}]ψ(t), (17)

℘̄2 ≤ ψT (t)[dk (t)
3∑
i=1

1
2i− 1

Mi(W1 + D3)−1MT
i

+ He{M1ρ11 +M2ρ12 +M3ρ13}]ψ(t), (18)

℘̄3 ≤ψT (t)[dk (t)
3∑
i=1

1
2i− 1

Yi(W3 + D2)−1YTi

+ He{Y1ρ17 + Y2ρ36 + Y3ρ37}]ψ(t), (19)

℘̄4 ≤ψT (t)[(hk − dk (t))Y9D
−1
23 Y

T
9

+ He{Y9ρ23}]ψ(t), (20)

℘5 ≤ ψT (t)[(hk − dk (t))
3∑
i=1

1
2i− 1

NiW−1
2 N T

i

+ He{N1ρ14 +N2ρ15 +N3ρ16}]ψ(t), (21)

℘̄6 ≤ψT (t)[τ
2∑
i=1

1
2i− 1

Yi+6D
−1
3 Y

T
i+6

+ He{Y7ρ22 + Y8ρ42}]ψ(t), (22)

℘7 ≤ ψT (t)[(hk − dk (t))
3∑
i=1

1
2i− 1

Yi+3W−1
4 YTi+3

+ He{Y4ρ18 + Y5ρ38 + Y6ρ39}]ψ(t). (23)

Similar to arguments used in [29], we can gain

0 = 2ψT (t)Y10[dk (t)ρ24 − ρ11]ψ(t) (24)

0 = 2ψT (t)Y11[(hk − dk (t))ρ25 − ρ14]ψ(t) (25)

0 = 2ψT (t)Y12[dk (t)ρ26 − ρ28]ψ(t) (26)

0 = 2ψT (t)Y13[(hk − dk (t))ρ27 − ρ29]ψ(t) (27)

Then, we have

V̇ (t) ≤ ψT (t)4(dk (t))ψ(t) (28)

where

4(dk (t))

= d2k (t)33 + dk (t)32 +31 + ϒ,

ϒ

=

3∑
i=1

1
2i− 1

{τLiD−1
1 L

T
i + dk (t)[Mi(W1 + D3)−1MT

i

+ Yi(W3 + D2)−1YTi ] + (hk − dk (t))[NiW−1
2 N T

i

+ Yi+3W−1
4 YTi+3]} + (hk − dk (t))Y9(D2 + D3)−1YT9

+ τ

2∑
i=1

1
2i− 1

Yi+6D
−1
3 Y

T
i+6,

with 31,32 and 33 being defined in Theorem 1.
By using the Lemma 4 in [37] for N = 1, V̇ (t) < 0 for

dk (t) ∈ [0, hk ) is ensured by the following inequalities:

4dk (t)∈[0,hk ) < 0 (29)

4dk (t)= i−1
2 hk

+
1
4
hk4̇dk (t)= i−1

2 hk
< 0, i = 1, 2 (30)

Obviously, if (29) and (30) are satisfied, then
V̇ (t) ≤ −ℑ ∥x(t)∥2 for a sufficiently small ℑ > 0. Based
on Schur complement, it follows that (29) and (30) are equal
to (11)-(12) and (13)-(14), respectively. Therefore, if (11)-
(14) are satisfied, then system (5) with the control input (3)
satisfying (4) is asymptotically stable. This completes the
proof.
Remark 1: Inspired by the work [37], the TTLF (15)

is constructed, which take full advantage of the second
order terms with respect to t. It is made up of two
parts, Vc(t) and Vd (t), where Vd (t) satisfies the boundary
conditions of the two-side looped-functional obtained in [29],
Vdj(tk ) = Vdj(tk+1) = 0, j = 1, 2, · · · , 8.
Remark 2: Based on the condition given in Theorem 1, the

allowable upper bound of time delay and sampling periods
that the system keep to be stable can be obtained by using the
dichotomy method presented in [24].
Remark 3: Similar to arguments used in [29], four zero

equalities, (24)-(27) are introduced, which is helpful to
reduce the conservativeness of the derived stability condition.
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In addition, by using the intrinsic relationships of state

vectors,
t∫

tk

x(s)ds +

tk∫
tk−τ

x(s)ds =

t∫
t−τ

x(s)ds +

t−τ∫
tk−τ

x(s)ds,

a new zero equality (31) is obtained for any matrix Y14 with
appropriate dimensions.

0 = 2ψT (t)Y14[dk (t)ρ44 + ρ43]ψ(t) (31)

where, ρ43 = τ (e9 − e19), ρ44 = e15 − e11.
By adding the zero equality (31) to (28), the following

theorem is obtained.
Theorem 2: For given τ > 0 and h2 ≥ h1 ≥ 0, system (5)

with the control input (3) satisfying (4) is stable, if there exist
matrices P > 0, S > 0, D1 > 0, D2 = DT2 , D3 > 0, Q1,
Q2, X , G = GT ,W1 > 0,W2 > 0,W3 > 0,W4 > 0, Ni,
Mi, Li, i = 1, 2, 3, Yj, j = 1, 2, · · · , 14, such that LMIs
(8)-(10), (32)-(35) are satisfied.[

3̄1 91
√
τ92

∗ −51 0
∗ ∗ −52

]
hk∈[h1, h2]

< 0 (32)[
3̄1 + hk3̄2 + h2k33 932

∗ −532

]
hk∈[h1, h2]

< 0 (33)[
3̄1 +

hk
4 3̄2 9132

∗ −5132

]
hk∈[h1, h2]

< 0 (34)[
3̄1 +

3
4hk3̄2 +

1
2h

2
k33 9312

∗ −5312

]
hk∈[h1, h2]

< 0 (35)

where

3̄1 = 31 + He{Y14ρ43}

3̄2 = 32 + He{Y14ρ44}

with

ρ43 = τ (e9 − e19), ρ44 = e15 − e11.

and other notations are defined as the same in Theorem 1.
Based on the Theorem 1, the following corollary can be

easily obtained for sampled-data system without considering
communication delay.
Corollary 1: For given h2 ≥ h1 ≥ 0, system (5) with the

sampling periods satisfying (4) and τ = 0 is stable if there
exist matrices P̆ > 0, Q̆1, Q̆2, X̆ , Z̆ , W̆1 > 0, W̆2 > 0, N̆i,
M̆i, i = 1, 2, 3, Y̆j, j = 1, 2, 3, 4, such that LMIs (36)-(39)
are satisfied. [

3̆1 9̆2

∗ −5̆2

]
hk∈[h1, h2]

< 0

(36)[
3̆1 + hk3̆2 + h2k3̆3 9̆1

∗ −5̆1

]
hk∈[h1, h2]

< 0

(37)
3̆1 +

hk
4 3̆2 9̆2 9̆1

∗ −
4
3
5̆2 0

∗ ∗ −45̆1


hk∈[h1, h2]

< 0

(38)

3̆1 +
3
4hk3̆2 +

1
2h

2
k3̆3 9̆1 9̆2

∗ −
4
35̆1 0

∗ ∗ −45̆2


hk∈[h1, h2]

< 0

(39)

where

3̆1 = He{ĕT1 P̆η̆ + η̆T X̆ ρ̆5 − ρ̆T1 X̆ η̆ + M̆1ρ̆1 + M̆2ρ̆12

+ M̆3ρ̆13 + N̆1ρ̆5 + N̆2ρ̆14 + N̆3ρ̆15 − Y̆1ρ̆1 − Y̆2ρ̆5
− Y̆3ρ̆20 − Y̆4ρ̆21 + hk (−2ρ̆T1 Q̆1ρ̆2 + ρ̆T1 Q̆1ρ̆4

+ ρ̆T10Z̆ ρ̆8 + Y̆2ρ̆17 + Y̆4ρ̆19) + h2k (η̆
T Q̆1ρ̆2

+ ρ̆T1 Q̆1ρ̆3)} + hk (ρ̆T8 Z̆ ρ̆8 + η̆T W̆1η̆),

3̆2 = He{2ρ̆T5 Q̆2ρ̆6+ρ̆
T
5 Q̆2ρ̆7 + ρ̆T11Z̆ ρ̆8+Y̆1ρ̆16 + Y̆3ρ̆18

− (−2ρ̆T1 Q̆1ρ̆2+ρ̆
T
1 Q̆1ρ̆4+ρ̆

T
10Z̆ ρ̆8 + Y̆2ρ̆17 + Y̆4ρ̆19)

+ hk (ρ̆T9 Z̆ ρ̆8) − 2hk (η̆T Q̆1ρ̆2 + ρ̆T1 Q̆1ρ̆3)} − ρ̆T8 Z̆ ρ̆8
+ η̆T W̆2η̆ − (ρ̆T8 Z̆ ρ̆8 + η̆T W̆1η̆),

3̆3 = He{−η̆T Q̆2ρ̆6 + ρ̆T5 Q̆2ρ̆3 + η̆T Q̆1ρ̆2 + ρ̆T1 Q̆1ρ̆3

− ρ̆T9 Z̆ ρ̆8},

9̆1 =
[
hkM̆1 hkM̆2 hkM̆3

]
,

9̆2 =
[
hk N̆1 hk N̆2 hk N̆3

]
,

5̆1 = diag{hkW̆1, 3hkW̆1, 5hkW̆1},

5̆2 = diag{hkW̆2, 3hkW̆2, 5hkW̆2},

η̆ = Aĕ1 + Bĕ2, ρ̆1 = [ĕT1 − ĕT2 ]
T ,

ρ̆2 = [ĕT1 ĕ
T
2 ĕ

T
5 ĕ

T
6 ĕ

T
7 ]
T , ρ̆3 = [η̆T 0 0 0 0]T ,

ρ̆4 = [0 0 0 ĕT6 − ĕT1 2(ĕT7 − ĕT6 )]
T ,

ρ̆5 = [ĕT5 − ĕT1 ]
T , ρ̆6 = [ĕT1 ĕ

T
2 ĕ

T
5 ĕ

T
3 ĕ

T
4 ]
T ,

ρ̆7 = [0 0 0 ĕT1 − ĕT3 2(ĕT3 − ĕT4 )]
T ,

ρ̆8 = [ĕT1 ĕ
T
2 ĕ

T
5 ĕ

T
3 ĕ

T
4 ĕ

T
6 ĕ

T
7 ]
T ,

ρ̆9 = [η̆T 0 0 0 0 0 0]T ,

ρ̆10 = [0 0 0 ĕT1 − ĕT3 2(ĕT3 − ĕT4 ) 0 0]T ,

ρ̆11 = [0 0 0 0 0 ĕT6 − ĕT1 2(ĕT7 − ĕT6 )]
T ,

ρ̆12 = ĕ1 + ĕ2 − 2ĕ3, ρ̆13 = ĕ1 − ĕ2 − 6ĕ3 + 6ĕ4,

ρ̆14 = ĕ5 + ĕ1 − 2ĕ6, ρ̆15 = ĕ5 − ĕ1 + 6ĕ6 − 6ĕ7,

ρ̆16 = Aĕ3 + Bĕ2, ρ̆17 = Aĕ6 + Bĕ2,

ρ̆18 = Aĕ4 + Bĕ2, ρ̆19 = Aĕ7 + Bĕ2,

ρ̆20 = 2ĕ3 − 2ĕ2, ρ̆21 = 2ĕ5 − 2ĕ6.

IV. NUMERICAL EXAMPLES
In this section, a typical numerical example is used for
experimental simulation to verify the superiority of the
method.
Example 1: Consider system (5) with

A =

[
−2 0
0 −0.9

]
, B =

[
−1 0
−1 −1

]
.

In terms of different communication delay, the maximal
allowable sampling periods calculated by Theorem 1 and 2
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TABLE 2. Maximal value of h2 for h1 = 10−5 and different τ .

TABLE 3. Maximal value of h2 for h1 = h2 and different τ .

TABLE 4. Maximal value of h2 for h1 = 10−5 and τ = 0.

are listed in Table 2 and Table 3, respectively, for the cases of
aperiodic sampling and periodic sampling, which are along
with the results given in [36]. It is observed in Table 2 and
Table 3 that the results obtained by Theorem 1 and Theorem 2
are superior over that in [36]. In comparison with the results
obtained by Theorem 1 and Theorem 2, it is observed that
the results computed by Theorem 2 are much better than
that by Theorem 1, which indicate that the new zero equality
(31) in this paper play important role in the reduction of
conservatism.

Next, the proposed method is applied to system (5) without
time delay and the results obtained by Corollary 1 and other
methods are summarized in Table 4. Then, as can be seen
from the data in the table, the new TTLF and the zero equality
proposed in this paper can produce less conservative results
than [19] and [29] and even the sampling period reaches
3.2715 when h1 = h2. Thus, the superiority of the method
proposed is verified again.

Moreover, the state response of the system (5) in the cases
of τ = 4, h1 = h2 = 3.1191 and τ = 0, h1 = h2 =

3.2715 are, respectively, provided in Figure 1 and Figure 2
under the initial state x(0) = [2,−1.8]T . It is shown in
Figure 1 that the provided maximal allowable bound can
ensure the stability of the system with h1 = h2 = 3.1191 and
τ = 0.4. In addition, as shown in Figure 2, the results
obtained by our method make the system reach the critical
stable state in the case of h1 = h2 = 3.2715 and τ = 0.
Therefore, the effectiveness and superiority of the proposed
method are confirmed.

V. APPLICATION OF THE PROPOSED METHOD IN EPM
In this section, an electric power market (EPM) is studied
by the proposed method and a dynamic model of the EPM
models is constructed to analyze the influence of market
clearing time (MCT) and communication delay on the
stability of the system.

FIGURE 1. State response of the system (5) in the case of τ = 0.4 and
h1 = h2 = 3.1191.

FIGURE 2. State response of the system (5) in the case of τ = 0 and
h1 = h2 = 3.2715.

A. DYNAMICS OF THE EPM
The dynamic balance between power generation and load at
all time, which is an important index to measure the reliable
and stable operation of power grid. In order to realize the
balance of energy supply and demand, a method that measure
the balance of energy supply and demand by using prices
is proposed in recent years. This method can accurately
reflect the actual situation of regional energy supply and
demand, so as to provide effective means for formulating
corresponding countermeasures.

A simplified EPM is composed of electricity suppliers,
electricity consumers and real-time market.

1) SUPPLIER MODEL
The marginal production costs can be expressed as follows

χg = bg + cgPg (40)

where χg, bg, cg, and Pg are the marginal cost, the fixed cost,
the fixed coefficient, and the amount of the generated power,
respectively.

If power suppliers see that the market price of electricity
is higher than its production costs, the suppliers will
expand production. The expansion rate is proportional to
the difference between the observed price and the actual
production cost. In addition, if there is a glut in supply
and demand, the power suppliers must pay additional cost.
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Therefore, the dynamic of the supplier is described as

τgṖg = χ − bg − cgPg − kE (41)

where τg, χ , k , and E are the time constant that is described
as the rate of change of supply, the observed power price,
a constant gain, and the time integral of the difference
between supply and demand, respectively.

2) CONSUMER MODEL
The marginal benefit functions can be expressed as follows

χd = bd + cdPd (t) (42)

where χd , bd , cd , and Pd are the marginal benefit, the fixed
benefit, the fixed coefficient, and the amount of the consumed
power, respectively.

When the marginal benefit function in consumer demand
is greater than the marginal price, it will stimulate consumers
to expand consumption, and the speed of expansion depends
on consumers. The behavior of the consumer is defined by

τd Ṗd = bd + cdPd − χ (43)

where τd is the time constant that denote the rate of change
of demand.

3) ENERGY IMBALANCE AND PRICE RESPONSE
The imbalance between supply and demand is defined as the
integral of the difference between them over time,

Ė = Pg − Pd (44)

At the same time, the price of electricity is changed by the
observed electric grid supply and market demand,

τχ χ̇ = −E (45)

where τχ is the time constant representing the rate of change
of prices in response to market perturbations.

In the real market, the discrete price signal are received
by the participants that is actually equal to the MCT,
namely the updating period of electricity price. In addition,
when electricity price signals are sent through various
communication networks and equipment, it will introduce
communication delay. Combining those two aspects, the
following linear model that take into account sampling
periods and communication delay is obtained,

τgṖg(t) = χ (tk − τ ) − bg − cgPg(t) − kE(t),
τd Ṗd (t) = bd + cdPd (t) − χ (tk − τ ),
Ė(t) = Pg(t) − Pd (t),
τχ χ̇ (t) = −E(t)

(46)

where tk is the updating instants of the price satisfying

0 < tk+1 − tk = Tmctk ≤ Tmct

with Tmctk and Tmct being the MCT for k and its maximal
value, respectively, and τ being the communication delay.

B. STABILITY ANALYSIS OF THE EPM
The stability region of an EPM is analyzed in [38] and
the parameters of the system are given as τg = 0.2,
cg = 0.1, bg = 2, τd = 0.1, cd = −0.2, bd = 10,
τχ = 100 and k = 0.1.

1) STATE-SPACE EQUATIONS
Model (46) can be expressed as the following continuous-
time state equation form:

ż(t) = Az(t) + Bz(t − dk (t) − τ ) + C (47)

where 0 < tk+1 − tk = Tmctk ≤ Tmct and

z(t) =


Pg(t)
Pd (t)
E(t)
χ (t)

 ,

A =



−
cg
τg

0 −
k
τg

0

0
cd
τd

0 0

1 −1 0 0

0 0 −
1
τχ

0


,

B =


0 0 0

1
τg

0 0 0 −
1
τd

0 0 0 0
0 0 0 0

 , C =


−
bg
τg
bd
τd
0
0


The constant term C can be dealt with in the above system by
using the method in [39] and [40]. Suppose z∗ is the balance
point of system (47). By defining a new state x = z − z∗,
the stability of system (47) at its equilibrium point can be
mathematically equivalent to that of the following system at
zero-point:

ẋ(t) = Ax(t) + Bx(t − dk (t) − τ ) (48)

Notice that the above system is the closed-loop system (6)
described in the paper. And, the relevant parameters such
as A,B, dk (t), and τ in the system have the same physical
meaning as those in closed-loop system (6). Therefore, the
new stability criterion proposed in this paper can be used to
discuss the influence of communication delay τ and MCT
dk (t) on power market system.

2) ALGORITHM OF CALCULATION, CALCULATION RESULTS
AND DISCUSSION
Define the following functions

tan(θ) =
Tmct
τ
, θ ∈ [0◦, 90◦], h =

√
T 2
mct + τ 2 (49)

where θ is the polar angle, which represents all value ranges
corresponding to the possible proportion of MCT maximal
value Tmct to the communication delay τ ; h is the polar axis,
and when given different θ , its maximum value is defined as
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TABLE 5. hmax (θ) for h1 = h2 and different θ .

hmax(θ ). In terms of different θ , the values of hmax calculated
by Theorem 2 are listed in Table 5, which are along with
the results given in [7]. In Table 5, the method proposed in
this paper is obviously superior to the result in [7]. Thus,
this demonstrate that the method proposed in this paper is
effective in the application of EPM.

VI. CONCLUSION
This paper proposes a new method for stability analysis of
aperiodic sampled-data systems with communication delay.
A TTLF is proposed, which take full advantage of the
second order terms with respect to t. Improved stability
criteria are derived by employing the TTLF and introducing
some zero equalities with free matrices. The effectiveness
of the proposed method has been validated by a given
numerical example. In addition, the proposed method is
applied to the dynamic model of the EPM, and the influence
of MCT and communication delay on the stability of the
power market is discussed, which provide certain guiding
significance to ensure the balance of energy supply and
demand.
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