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ABSTRACT Knee osteoarthritis is a common form of arthritis, a chronic and progressive disease recognized
by joint space narrowing, osteophyte formation, sclerosis, and bone deformity that can be observed using
radiographs. Radiography is regarded as the gold standard and is the cheapest and most readily available
modality. X-ray images are graded using Kellgren and Lawrence’s (KL) grading scheme according to the
order of severity of osteoarthritis from normal to severe. Early detection can help early treatment and hence
slows down knee osteoarthritis degeneration. Unfortunately, most of the existing approaches either merge
or exclude perplexing grades to improve the performance of their models. This study aims to automatically
detect and classify knee osteoarthritis according to the KL grading system for radiographs. We have proposed
an automated deep learning-based ordinal classification approach for early diagnosis and grading knee
osteoarthritis using a single posteroanterior standing knee x-ray image. An Osteoarthritis Initiative(OAI)
based dataset of knee joint X-ray images is chosen for this study. The dataset was split into the training,
testing, and validation set with a 7: 2: 1 ratio. We took advantage of transfer learning and fine-tuned
ResNet-34, VGG-19, DenseNet 121, and DenseNet 161 and joined them in an ensemble to improve the
model’s overall performance. Our method has shown promising results by obtaining 98% overall accuracy
and 0.99 Quadratic Weighted Kappa with a 95% confidence interval. Also, accuracy per KL grade is
significantly improved. Furthermore, our methods outperform state-of-the-art automated methods.

INDEX TERMS Detection and classification, knee osteoarthritis, ordinal classification, X-rays.

I. INTRODUCTION it affects people over 60 worldwide [1]. Knee osteoarthritis

Osteoarthritis (OA) is a disease with multiple factors, mak-
ing it difficult to diagnose, detect and treat [1], [2]. It is
a chronic degenerative disorder characterized by cartilage
deterioration, eventually leading to bone deterioration. Knee
osteoarthritis (KOA) is one type of osteoarthritis that affects
the knee joint. Physical symptoms include pain, stiffness,
swelling, and limited joint movements. Risk factors are age,
gender, genetics, race, obesity, injury, vitamin D deficiency,
and lifestyle [1], [2], [3], [4]. It is a progressive disease
and has different stages of severity. According to a recent
study [5], the global KOA prevalence is 16%. As reported
by World Health Organization (WHO), this disease is more
prevalent in women, i.e., 18.0%, than in men, i.e., 9.6%, and
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diagnosis is usually based on symptoms, arthroscopy, X-rays,
and Magnetic Resonance Imaging (MRI). However, the early
stages of OA are often hidden. In addition, there is a weak
relationship between the degree of pain and dysfunction and
the severity level of OA represented by the image. Thus, there
is a need for a better diagnostic technique to detect OA in
the initial stages. OA-related bio-markers can help in this
situation [1].

Radiographs or X-rays to assess pain and restlessness are
the foundation for detecting and diagnosing KOA [1], [3].
Key features that can be observed using X-rays are Joint
Space Narrowing (JSN), osteophytes, cyst formation, and
subchondral sclerosis. JSN refers to the loss of protective car-
tilage between knee joints. Osteophyte is a bony lump formed
on bones or joints, while subchondral sclerosis is the abnor-
mal thickening of the bone [3]. Kellgren and Lawrence’s (KL)
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TABLE 1. Kellgren and Lawrence’s grading (KL) grading scheme.

Grade Description

Image

Grade 0 (Normal) is assigned to normal bones and no symptoms on X-rays.

Grade 1 (Doubtful) depicts doubtful JSN and the possibility of osteophytes.

Grade 2 (Mild) specifies definite osteophytes and possible JSN.

Grade 3 (Moderate) indicates multiple osteophytes with possible bone deformity.

Grade 4 (Severe) shows large osteophytes, definite JSN, and severe sclerosis.

grading system is a semiquantitative method to assign grades
to radiographs(x-rays) for KOA severity [6], [7]. According
to this system, ordinal numbers are assigned according to the
severity level for classification. KL grades are described in
Table 1.

For computer-aided diagnosis and classification, images
obtained from imaging modalities are processed using image
processing and computer vision-based techniques. These
techniques include image enhancement, segmentation, tex-
ture, and shape analysis [3], [8], [9]. Image segmentation
approaches are applied to detect and localize knees in an
image. Texture and shape features are then fed into the
machine learning classifiers.

Recently, Deep Learning (DL) based Convolutional Neural
Networks (CNN) have gained tremendous attention for com-
puter vision and image analysis tasks. Several studies apply
popular CNN architectures such as ResNet [10], VGG [11],
and DenseNet [12] for various classification tasks. Transfer
learning can pull off the benefits of existing architecture
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and its learned weights to save computation power and
resources [13]. In this scenario, an ImageNet pre-trained
deep learning network is only implemented as a feature
extractor. The other method is fine-tuning this network to
specialize for a particular dataset [11]. These networks are
also applied for KOA classification.

Many automated methods and physician’s grading systems
are less reliable as they misclassify a KL grade to its nearby
grade. In addition, since there are very few morphological and
feature changes in successive KL grades, it becomes difficult
to differentiate different grades [14].

The mainstream studies treat it as a multi-class classifica-
tion task and ignore the inherent ordinal nature within KL
grades [14]. Ordinal regression means that input values are
continuous, and there is some order between the classes.
Image ordinal classification uses handcrafted features passed
to some regressor or classifier [15]. KOA severity level
prediction is also an image classification task in which
each KL grade is assigned a distinct category. KL grades
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maintain ordering information about the severity level of
OA [14], [16], [17].

The KL grading is subjective. This depends on the exper-
tise of the radiologist or radiograph reader. Inter-observer and
Intra-observer reading reliability of quadratic Kappa can vary
from 0.56 to 0.67 [18]. Therefore, it is challenging to build a
consensus on the grade of a radiograph, specifically in the
earlier stages of KOA.

In most studies, the initial stages of KOA have little accu-
racy [8], [19], [20], [21], [22] while, in some studies, the most
difficult stages are merged for classification [23]. At the same
time, some methods try combining X-ray features with other
clinical data to improve performance [24]. As a result, the
earlier it can be diagnosed, the earlier it can be treated, and
knee degeneration leading to total knee replacement can be
avoided. We need an assisting tool to prevent the development
and worsen the disease.

In this study, we have attempted to resolve this gap by
improving prediction accuracies for all KL grades.

The Osteoarthritis Initiative (OAI) is a multi-centric, ten-
year, prospective observational study of KOA. They recruited
4796 men and women, sponsored by the National Institute
of Health (part of the Department of Health and Human
Services), with data from over 431,000 clinical and imaging
visits and almost 26,626,000 images in this archive [25]. Knee
X-ray images used in our study are based on this dataset [26].

1) Our method works on unilateral posteroanterior knee
X-rays and does not require images from multiple
angles or other clinical data.

2) Four ImageNet-based pre-trained models were fine-
tuned. State-of-the-art results are achieved by each of
these models individually.

3) An ensemble model is developed by combining pre-
dictions from the above-mentioned base models to
improve overall performance.

4) Ordinal classification is considered using a customized
ordinal loss function.

5) Finally, significant features identified by the model are
visualized using class-specific heatmaps.

We focused on early diagnosis of KOA and improved the
model’s performance for all grades. Early diagnosis and the
correct prediction of KOA grade will help physicians devise
a better strategy for treating KOA at the early stages and
will reduce the cost borne by the patients due to delayed
detection [1]. Our model outperforms all existing methods to
the best of our knowledge.

Il. RELATED WORK
Anifah et al. [8] have used Contrast Limited Adaptive His-
togram Equalization and Template matching for KOA grad-
ing. Their classification accuracy for KL grade 0 is 93.8%,
for KL grade 1 is 70%, KL grade 2 is 4%, KL grade 3 is 10%,
and KL grade 4 is 88.9%.

Chen et al. [19] have used YOLO2 Network for fully
automated knee joint detection. They have tested multiple
fine-tuned networks for classification, e.g., ResNet, VGG,
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and DenseNet. Their best-attained accuracy is 69.7%, and the
Mean Absolute Error is 0.344.

Thomas et al. [27] developed an automated CNN-based
model for knee osteoarthritis severity grading from radio-
graphs. They had 32116 training images, 4074 for tuning, and
4090 for testing. Their reported accuracy is 0.71, and their
obtained F1 score is 0.70 for the test set.

In another work, ResNet with Convolution Block attention
Module (CBAM) has been implemented [20]. They used the
Osteoarthritis Initiative (OAI) X-ray dataset for training and
testing. Their obtained accuracy is 74.81%, Mean Squared
Error (MSE) is 0.36, and Quadratic kappa score is 0.88. The
accuracy for KL grade 0 is 83.81%, KL grade 1 is 48.66%,
KL grade 2 is 65.68%, KL grade 3 is 85.67%, and KL grade
415 90.21%.

Another work is done [18] for classification to evaluate the
effect of additional patient information on the prediction of
the DL model for KOA severity. Two types of experiments
were performed. First, only imaging information was used;
in the second experiment, image data and clinical informa-
tion were input. They used a private dataset of 3464 train-
ing images, 386 validation images, and 516 testing images.
A CNN was developed with the six Squeeze and Excitation
ResNet (SE-ResNet) modules. Their obtained AUCs with
only image data for KL grades 0-4 are 0.91, 0.80, 0.69, 0.86,
and 0.96. For DL with image data and patient information
obtained, AUCs for KL grades 0-4 are 0.97, 0.85, 0.75, 0.86,
and 0.95. It has been reported that KL grade 2 is the most
complex and confusing to predict for the DL model. They
observed that patient information improved the AUC for each
stage.

In another study, [23], 25873 training images, 7779 valida-
tion images, and 5941 testing images are taken from the OAI
dataset. Left and right Knee joints are localized using U-Net.
Demographic information, i.e., age, gender, BMI, is fed to the
DenseNet. Their method achieved sensitivity results for four
levels of OA are normal 83.7%, mild 70.2%, moderate 68.9%
Severe 86.0%, and Specificity normal 86.1%, mild 83.8%
moderate 97.1%, and severe 99.1%. They have eliminated
the KL 1 doubtful grade. Moreover, their internal radiologists
highlight the inter-observer reliability of KL classification
varies from 0.51 to 0.89. It has also been observed that
these wrong classifications are mainly made for adjacent KL
grades.

A transfer learning-based approach was applied using pre-
trained ResNet-34 architecture [24]. They used the OAI data
of 728 participants. Knee radiographs and other clinical
assessments, e.g., age, gender, ethnicity, and BMI, are fed
to the model for possible KL grade and OA progression
prediction. Using transfer learning, their achieved AUCs for
KL grade prediction are 0.93, 0.80, 0.88, 0.96, and 0.99.

Ill. METHODOLOGY

In the following section, we have described the complete
methodology to achieve the objectives mentioned above in
this study. First, section III-A describes the dataset. Then,
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section III-B narrates the pre-trained deep learning networks
used in our experiments. Finally, in section III-C, experimen-
tal settings and the training process are explained. Figure 1
depicts the overall methodology.

A. DATASET DESCRIPTION

The dataset used for this study is based on the Osteoarthritis
Initiative dataset [9]. There are 9786 X-ray images graded
according to the KL grading scheme. In grade O, there are
3857 images, 1770 in grade 1, 2578 in grade 2, 1286 in
grade 3, and 295 in grade 4. The size of each image is
224 x 224.

Data is highly unbalanced; hence, data has been split into
the train, test, and validation classes considering the number
of available samples for each category. Figure 2 reflects data
distribution between training, testing, and validation. The
same partitioning is used by [19] and [28]

B. NETWORKS

1) VISUAL GEOMETRIC GROUP NET (VGG)

VGG [11], winner of ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRSC) 2014, for localization and
classification task, is based on multiple minute convolution
filters and max pooling layer. On the other hand, VGG-19
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is significantly deeper, with 144 million parameters, and is
a variant of the VGG model that comprises 16 convolutional
layers, three fully connected layers, five max pool layers, and
one softmax layer. Max pool layers are crucial for spatial sub-
sampling and generic feature extraction.

2) RESIDUAL NETWORK (ResNet)

ResNet, [10] that is comparatively shallow, has proven to
perform better for image recognition tasks and won ILSVRC
2015. The ResNet-34 involves over 21 million trainable
parameters and overcomes the problem of vanishing or
exploding gradients by adding auxiliary connections. These
connections help maintain a constant flow of information
throughout the network and reduce computational costs.

3) DENSELY CONNECTED CONVOLUTIONAL NEURAL
NETWORK (DenseNet)
DenseNet [12] that connects each layer to each layer in a feed-
forward way makes it dense, promotes feature reuse, reduces
the number of parameters, and improves learning. DenseNets
are based on auxiliary connections of ResNets and impose
long-chained additional links to form dense blocks. The basic
architectures of these four networks are compared in Figure 3.
The ensemble model joins predictions of divergent inde-
pendently trained machine learning models, also called base
classifiers, to reduce generalization error and improve per-
formance. One of the different forms of the ensemble is
the stacking ensemble, where outputs of base classifiers are
combined and passed to another model for final predic-
tion. We have separately fine-tuned VGG-19, ResNet-34,
DenseNet 121, and DenseNet 161, inspired by the best mod-
els in the previous studies by Chen et al. [19], Tiulpin et al.
[29], Mikhaylichenko and Demyanenko [28], Yong et al. [14]
respectively. Finally, we developed an ensemble of these base
models to improve the prediction precision and accuracy.

C. EXPERIMENTS

1) BASE CLASSIFIERS

For the training of base classifiers, the batch size is 28. Differ-
ent image transformations are applied and chained together
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FIGURE 3. Basic architectures of imageNet pre-trained CNNs are compared. all four
networks contain multiple convolutional and max pool layers and, finally, a fully

connected layer to produce 1000 outputs.

to improve model learning. These transformations include
changing the brightness and saturation, flipping the image
horizontally, random affine, and normalizing. This batch was
then passed to the base network.

Considering the KL grade classification as an ordinal
regression problem, a rank-consistent ordinal regression-
based framework (CORN) [30] has been used for loss
calculation and grade prediction. It used the chain rule of
conditional probability distribution to obtain unconditional
rank probabilities and was developed to be used with deep
neural networks. The implementation of CORN is provided
by the coral-PyTorch library. The idea is to solve the KL
grading problem as an ordinal classification task.

Given a training set:

D =[xyl (1

These target labels are extended into binary tasks to indi-
cate if yll exceeds a certain grade g, such that y,[:] e 0,1.
These are then passed to the base classifier model. We set
the output layer for CORN to use g-1 classes associated with
kl grade 1, grade 2, grade 3, and grade 4, i.e., gl, g2, g3,
and g4, respectively, in the output layer of the base classifier
model. Then CORN calculates conditional probability based
on conditional training subsets. So, the output of the k-th
binary task is

fealy = PO > eyt > gin), @)
where these events are nested {yl!l > g;} € (Yl > gx_1}
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Four logits from the base classifier can be calculated using
the following expression,

k—1
glil=1+> 10" > g)>05 3)
j=1
For an input image i, the index of KL predicted grade
18, 8411
For KL grade O, the results of all sub-tasks are false,
resulting in prediction 0. While for KL grade 4, the results
of all four sub-tasks are true, which makes its sum equal to 4.
Hence grade 4 is predicted.
For training CORN, the following loss function is mini-
mized.

k=1 1Sj

L(Z,y) = —; ZZ [log (0 (z[i])) .

k—1
Zj:l |Sj| j=1i=1
x Wyl > g +log (0 (zm) - z[i]) Iyl < gk]
4)

where }Sj| is the size of the j-th conditional training set.

Z is the last layer’s net inputs, and we call these logits.

All base classifiers calculate logits, predict labels, and cal-
culate the loss. The optimizer is Adaptive Moment Estimation
(ADAM) with an initial learning rate of 0.0001. The learning
rate was reduced after every five epochs. The training was
done for 100 epochs. After each training epoch, the model
is validated on the validation set. Model results with the
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network. Validation data is validated at the end of each epoch.

best performances are reported. The Eigen-CAM visualizes
salient features [31], [32]. All four selected networks are fine-
tuned according to the training process mentioned above, also
reflected in Figure 4.

2) ENSEMBLE
The outputs from the base classifiers are joined using a
fully connected layer in the Ensemble model, which uses
the ADAM optimizer with an initial learning rate of 0.0001.
The batch size was 28. The learning rate decayed every
three epochs. After each epoch validation set was evaluated.
Training is done for 25 epochs, and CrossEntropy is used to
calculate the loss. The Ensembling process is demonstrated
in Figure 5.

Implementation has been done with python 3.7, PyTorch-
v1.12.1, and coral-PyTorch-1.4.0 in the GoogleColab
framework.

D. EVALUATION METRICS
A machine learning model will partition the predictions into
different classes for evaluation.

True Positive (TP) means an image is correctly identified
as positive.

False Positive (FP) means an image is negative but identi-
fied as positive.

True Negative (TN) means an image is negative and cor-
rectly identified as negative.

False Negative (FN) means an image is positive but iden-
tified as negative.

Based on these outcomes, accuracy can be calculated.

Accuracy is the measure of correct predictions. In terms of
FP, TP, TN, and FN, accuracy is

TP + TN
TP+ TN + FP+FN’

Precision is how many images predicted as positive are
positive.

&)

Accuracy =

. TP
Precision = —— (6)
TP + FP
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The recall is the ratio of images correctly identified as
positive.
P

Recall = —— @)
TP + FN

The F1 score or F Measure is used to measure the accuracy of
a model. The greater the F1 score, the better the performance
of our model.

Precision % Recall
F=2x — (®)
Precision + Recall

Another evaluation measure for Ordinal Regression is
Mean Squared Error (MSE) is the mean or average of the
square of the difference between actual and estimated values.
For a dataset of n images, given the actual label and predicted
label, the MSE is defined as

n
MSE = l Z (actual — predicted)2 ©)]

n i=1
Cohen’s Quadratic Weighted Kappa (QWK) (x) is useful
when classification labels are ordered. It measures the agree-
ment between classification accuracy (Proportion of observed
agreement i.e., Pg) and the theoretical probability of chance
agreement i.e.,P,. Weights (w) can be assigned according to

the ordering or severity information.

_ Po(w) — Pe(w)

1 —P.(w)
The Receiver Operating Characteristics Curve (ROC) mea-
sures how accurately the model can differentiate between dif-

ferent classes, while Area Under the Curve (AUC) measures
the entire 2-dimensional area underneath the ROC curve.

(10)

IV. RESULTS
Accuracy, precision, recall, Fl-score, and AUC for all the
models are compared in Table 2. The Ensemble model has
secured the best overall results for almost all evaluation met-
rics except recall.

The Ensemble model achieved an overall accuracy of 0.98,
an overall precision of 0.98, an overall Fl-score of 0.97,

48297



IEEE Access

T. Tariq et al.: Knee Osteoarthritis Detection and Classification Using X-Rays

Trained Base

Classifiers
—

DenseNet 161 )

\ J
——
DenseNet 121

| —
Y

Input X-ray

=

ResNet-34

Ensemble
Fully Connected

Cross Entropy

Final
Predicted
Grade

FIGURE 5. Ensembling: four imageNet pre-trained networks are fine-tuned, and then
their predictions are joined as an ensemble to produce one final output.

TABLE 2. Performance comparison of five models overall and across different grades.

. Grade
Metric Model Overall 0 T 5 3 )
DenseNet-121 | 0.96 0.99 | 0.88 | 0.96 | 0.97 | 0.96
DenseNet-161 | 0.97 1.00 | 0.95 | 0.96 | 0.99 | 0.94
Accuracy | ResNet-34 0.95 096 | 0.93 | 0.94 | 0.97 | 0.96
Vgg-19 0.96 0.99 | 0.92 | 0.95 | 0.95 | 0.94
Ensemble 0.98 1.00 | 0.94 | 0.97 | 0.99 | 0.92
DenseNet-121 | 0.97 0.96 | 0.95 | 0.94 | 0.98 | 1.00
DenseNet-161 | 0.97 0.97 | 0.97 | 0.99 | 0.97 | 0.98
Precision | ResNet-34 0.96 0.97 | 0.88 | 0.97 | 0.96 | 1.00
Vgg-19 0.96 0.97 | 0.92 | 0.96 | 0.97 | 0.96
Ensemble 0.98 0.98 | 0.97 | 0.98 | 0.96 | 1.00
DenseNet-121 | 0.95 0.99 | 0.88 | 0.96 | 0.97 | 0.96
DenseNet-161 | 0.97 1.00 | 0.95 | 0.96 | 0.99 | 0.94
Recall ResNet-34 0.95 0.96 | 0.93 | 0.94 | 0.97 | 0.96
Vgg-19 0.95 0.99 | 092 | 0.95 | 0.95 | 0.94
Ensemble 0.96 1.00 | 0.94 | 0.97 | 0.98 | 0.92
DenseNet-121 | 0.96 0.98 | 0.91 | 0.95 | 0.97 | 0.98
DenseNet-161 | 0.97 0.98 | 0.96 | 0.97 | 0.98 | 0.96
F1-Score ResNet-34 0.95 0.97 | 0.90 | 0.95 | 0.97 | 0.98
Vgg-19 0.95 0.98 | 0.92 | 0.95 | 0.96 | 0.95
Ensemble 0.97 0.99 | 0.96 | 0.97 | 0.97 | 0.96
DenseNet-121 | 0.97 0.98 | 0.94 | 0.97 | 0.98 | 0.98
DenseNet-161 | 0.98 0.99 | 0.97 | 0.98 | 0.99 | 0.97
AUC ResNet-34 0.97 0.97 | 0.95 | 0.96 | 0.98 | 0.98
Vgg-19 0.97 0.98 | 0.95 | 0.97 | 0.97 | 0.97
Ensemble 0.98 0.99 | 0.97 | 0.98 | 0.99 | 0.96

and an overall AUC of 0.98. The highest QWK («), with
a confidence interval of 0.95, is 0.99; minimum MAE and

MSE are 0.027 and 0.032, respectively, which the Ensemble
model also obtains. The confusion matrices of these models
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TABLE 3. Cohen kappa, MAE, and MSE for all models.

Metric Model
DenseNet-121 | DenseNet-161 | ResNet-34 | VGG-19 | Ensemble
Weighted Kappa 0.98 0.98 0.98 0.98 0.99
MAE 0.0471 0.0326 0.054 0.0465 0.0265
MSE 0.058 0.0459 0.065 0.055 0.0326

can observe the same results. For grade 0, 637 classes out of
639 were correctly predicted by the Ensemble model. ROC
curves and AUC values also depict the same exciting fact
that DenseNet-161 and Ensemble model performed best for
grades 0, grade 2, and grade 3.

It can also be seen that the overall accuracy of VGG-19 and
DenseNet-121 is equal. For overall accuracy, DenseNet-161
scored first, while ResNet-34 was at the lowest by acquiring
a minimum accuracy of 0.95. The DenseNet-161 achieved
better accuracies for most KL grades, i.e., grade 0, grade 1,
and grade 3.

DenseNet-121 and ResNet-34 have obtained the best accu-
racy, precision, recall, and F1 score for grade 4. For the
ResNet-34 confusion matrix, out of 639 x-rays for grade 0,
615 were correctly reported as grade 0, 21 were misclassi-
fied as grade 1, and only three were mislabeled as grade 2.
For gradel, 14,6, and 1, X-rays were wrongly identified as
grade 0, grade 2, and grade 3, respectively. Out of 447 x-rays,
images of grade2 5, 18, and 5 were wrongly reported as
grade 0, grade 1, and grade 3. For grade 3, only six images
were improperly classified as grade 2. For grade 4, only two
images needed clarification and were marked as grade 3.

It has been observed that the model wrongly labeled
adjacent grades more often than distant ones. Overall final
accuracy achieved as 95%. Accuracy, precision, recall, and
F-Score results are shown in Table 2 and Table 3. Confusion
Matrices and ROC curves can be seen in Table 4.

The Ensemble and DenseNet-161 obtained the best pre-
cision, recall, and F-scores. To abridge the research gaps
discussed earlier in section I, we used the dataset set based
on the OAI dataset. In addition, since the OAI study is con-
ducted within defined protocols and images are annotated
by multiple annotators’ consensus, there are fewer chances
of inter-rater disagreements. To improve the overall perfor-
mance of the model following strategies were implemented.
First, the input image size enables the model to extract use-
ful information about the structures and features of bones.
Secondly, the ratio of samples between each class is not
equal. This problem of data unbalances resolved by applying
different transformations to the training data. These variations
helped the model learn variance, eliminating the need to treat
left and right knee images separately, resulting in a robust
model. It was also observed that training for more epochs
could enhance the overall accuracy by compromising the
accuracy of any KL grade. Since the number of samples
in grade O is more abundant than in the rest of the grades,
accuracy increases for grade 0. Hence more training leads
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to better accuracy of rates with more samples and starts
overfitting for grades with fewer samples, thus reducing their
accuracy.

The benefits of using CORN can also be observed. By con-
sidering the ordering information of the KL grades, the over-
all performances of the models are improved. Most of the
wrong predictions are made to the nearby grade instead of
making a wrong prediction to the distant grade, and most
predictions now fall towards the diagonal. During training,
the learning rate decays, which helps the model converge.

Accuracies, precision, recall, and F-score are reported.
In addition, overall quadratic weighted kappa is also reported.

For computer-aided diagnosis, the focus is on the model’s
accuracy and precision hence we used the above-mentioned
metrics for the model’s evaluation. The computational com-
plexity of deep learning models depends upon the number
of parameters and layers, as shown in Figure 3. The num-
ber of Floating-Point Operations (FLOPs) is another metric
that measures the performance of deep networks. ResNet-34
has 4 Billion FLOPs with 21 Million parameters. VGG-19,
DenseNet-121, and DenseNet-161 have 20 Billion, 3 Billion,
and 8 Billion FLOPs, respectively. Finally, the Ensemble
model utilizes all these operations to predict better.

Table 5 presents the feature localization by Eigen-CAM.
It can be concluded that our models could extract valuable
features from the X-ray image. These models can be visu-
alized to differentiate bone sclerosis, osteophytes, cartilage
degeneration, and joint space narrowing, as the Eigen-CAM
highlights their extracted features. For instance, for grade 0,
the Ensemble model has almost 100% accuracy. Similarly,
for grade 4, ResNet-34 and DenseNet-121 identified better
features, as shown by Eigen-CAM.

Table 6 compares our results with other state-of-the-art
techniques.

In almost all previous studies overall accuracy of the KL
grade 1 was significantly less than the overall accuracy. Com-
pared to our research, some studies have used a different
dataset, and some have adopted another loss function.

The most recent study by Liu et al. [35] has performed mul-
tiple experiments with Cross Entropy loss and Focal Ordinal
Loss (FOL) using several classical pre-trained models such
as VGG, ResNet, DenseNet, and GoogleNet. Moreover, they
have performed experiments with augmented datasets and
CBAM. Their best results are reported in Table 6. The overall
accuracy is 66%. In addition, they have shown improvements
in performance measures using FOL, but their results were
unstable in accuracy.
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TABLE 4. Results- confusion matrices and ROC curves.
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If we refer to the work of Yong et al. [14], they have
performed several experiments with state-of-the-art architec-
tures. Overall accuracy was enhanced up to 88.09% with
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a QWK of 0.86 using an ordinal regression module with
DenseNet-161. Their accuracies for initial grades can be
improved.
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TABLE 5. Eigen-CAM visualization all models.

Grade 0 Grade 1 Grade 2 Grade 3

Original

DenseNet-121

DenseNet-161

ResNet-34
VGG-19 i i H . . I
Ensemble
Feng et al. [33] have implemented ResNet, without its dataset distribution in a train, testing, and validation as ours,
residual part, with an attention module, where Mish is used their overall performance and performance for each KL grade
as an activation function. However, with the same dataset and still need to be higher than our models.
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TABLE 6. Comparison with other state-of-the-art techniques.

Reference

Overall Evaluation

Accuracy per KL Grade (%)

Antony et al. (2017) [17]

Accuracy 63.6%

KL0=87 KL1=6 KL2=60

MSE= 0.70 KL3=72 KL4=78
Accuracy=66.71%
. . MSE=0.48 KLO0=78 KL1=45 KL2=52
Tiulpin et al. (2018) [29] Kappa coefficient = 0.83 | KL3=70 KL4=88
AUC=0.93
Accuracy=69.7% KL0=87 KL1=18 KL2=75
Chen et al. (2019) [19] MAE.-0.344 KL3—75 KL4—84

Mikhaylichenko et al. (2020) [28]

Accuracy = 71.08%

KL0=92 KL1=16 KL2="72
KL3=83 KL4=63

Feng et al. (2021) [33]

Accuracy = 70.23%
Recall = 68.23%
Precision = 70.25%

KL0=92 KL1=15 KL2=70
KL3=82 KL4= 84

Fl = 67.55%
Accuracy= 88.09% _ _ _
Yong et al. (2021) [14] MAE=0.33 Eigjgg Eﬂ:gg KL2=70
QWK= 0.8609 - -
. Accuracy = 66% KL0=82 KL1=29 KL2=57
Liu et al. (2022) [34] MSE - 0.48 KL3—85 KL4— 82
Accuracy—98%
. MAE=0.027 KL0=100 KL.1=94 KL2=97
This work MSE=0.033 KL3=99 KL4—92
QWK = 0.99 - -
AUC = 0.98

In comparison to the work by Mikhaylichenko and Demya-
nenko [28], which used variants of DenseNet, the accu-
racies of our, DenseNet-121 and DenseNet-161 are better.
Our lowest-performing model, ResNet-34, performed better
than their best ensemble model. They performed multiple
experiments with DenseNet, training from scratch and with
pre-trained models. They have also compared the results of
CrossEntropy loss, and ordinal loss [19]. The main differ-
ence is that we used CORN to calculate losses and grade
prediction.

Chen et al. [19] have applied knee joint localization. Then
they made a comparison of fine-tuning variants of ResNet,
VGG, DenseNet as well as Inception. They have also intro-
duced an adjustable ordinal loss function considering KOA
grading an ordinal regression problem. Our models outper-
form their results by using CORN loss.

Tiulpin et al. [29] developed and compared three types
of models. One is the pre-trained ResNet-34 as a baseline
network. Second is the re-implementation of CNN by [17].
Finally, their models are based on the siamese network trained
using multiple hyper-parameters and different seeds. They
use cropped images into two square patches and feed these
images to the Siamese network, which makes their approach
different from our research. Finally, they used ensembling to
combine networks trained with different seeds. They have
used separate datasets for training, testing, and validation.
They have also included radiographs taken from multiple
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angles, i.e., 5%, 10, and 15°. To train our model, we applied
different conversions, e.g., rotation and flipping, to the frontal
images for better training.

Another impactful and inspiring study that is the basis of
most of the studies mentioned above is by Antony et al. [17].
Unlike our work, they have performed experiments with two
types of datasets. They have implemented and trained a CNN
from scratch and another CNN for simultaneous regression
and classification for KOA grading. Our models have shown
a tremendous difference in performance.

A substantial limitation of our study is the need for more
diversity in the dataset. For example, the same dataset is used
for training, testing, and validation.

V. CONCLUSION

In this paper, we have applied a deep learning-based ordinal
classification approach to grading knee osteoarthritis X-rays.
We present new state-of-the-art results in automated KOA
classification for all KL grades. In addition, we enhanced
the performance of our models by making an ensemble of
fine-tuned models. Our method provides a quick, early, and
reliable evaluation of input knee X-rays, and medical practi-
tioners can use it as an alternative option to save time. Ordi-
nal classification improved the performance of our system
significantly. Further Ensemble has also shown significant
improvement for all evaluation metrics. In the future, we plan
to incorporate multiple datasets from multiple settings.
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