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ABSTRACT This article introduces a new flexible four parameter distribution by convolution of the
exponential and Weibull distribution using the odd function transformation, which offers greater flexibility
in terms of fit, its called the modified exponential-Weibull (MEW). The MEWmodel is designed to provide
a more accurate description of failure time data resulting from a system with one or more failure modes
and is characterized by a hazard rate (HR) that takes the shape of a bathtub due to its complexity. The
moments properties, quantile function, and residual life are derived and discussed. We discussed the HR
function and several distributional properties of the MEW model, and applied maximum likelihood and
Bayesian techniques to estimate its unknown parameters. The Hamiltonian Monte Carlo (HMC) algorithm
is employed to simulate the posterior distributions and verify the MEW Bayes estimators. We examined the
behavior of theMEWmodel on two data sets with bathtub-shaped HR and compare it with five other popular
bathtub-shaped methodologies. The results indicate that the MEW model provided the best description of
the two failure time data sets, suggesting that the proposed model could be a viable candidate for solving
various real-life problems.

INDEX TERMS Bathtub-shape hazard rate, exponential-Weibull model, moments, residual life, Hamiltonian
Monte Carlo simulation, time to failure data.

I. INTRODUCTION
One of the most important non-monotone shapes of the haz-
ard rate function (HRF) is the bathtub-Shaped. This kind of
HR curve usually arises when it is possible to treat the popula-
tion as divided into multiple sub-populations, for instance in
situations where the distribution of time until failure consists
of initial failures, failures due to wear and tear, and failures
that occur at a relatively constant rate [1]. Hence, the ideal
bathtub-shaped has two change points encompassed by a
constant segment, as shown in Figure 1. The advantages of
bathtub-shaped hazard rate (HR) are widely acknowledged
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in various fields, to mention few: [2] conducted an analysis
of conditional failure rates and utilized the expected failure
rate to prioritize the replacement of water pipelines. The
pipes were categorized by age and type, and the expected
number of breaks in the upcoming years was predicted. The
maintenance schedule was determined based on the age of the
pipe, with the assistance of the bathtub curve. Reference [3]
examined the reliability and life prediction of power converter
components. The lifespan of power electronic devices was
determined by the failure rate of each individual device.
The study evaluated the failure rate of power semiconductor
devices by taking into account certain influential variables.
The life span of the device was determined using the bathtub
curve.

50130
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-2788-8946
https://orcid.org/0000-0003-0329-5898
https://orcid.org/0000-0001-6768-8346
https://orcid.org/0000-0002-1276-6770
https://orcid.org/0000-0001-6192-9890
https://orcid.org/0000-0002-2951-1192


L. A. Al-Essa et al.: New Flexible Four Parameter Bathtub Curve Failure Rate Model, and Its Application

In addition, [4] examined the implications of using an
alternative bathtub model that is based on the arcsine distri-
bution. The author highlighted the significance of the model
by presenting three case studies that focused on data sets
from an engine fan, microcomputer, and crystal oscillator.
The studies demonstrated the importance of the alternative
bathtub model in terms of reliability analysis. Reference [5]
utilized theWeibull distribution to analyze the failure rate and
probability density function of a shovel-dumper system in an
open cast coalmine from a reliability perspective. The authors
discussed the use of the bathtubmodel in conjunction with the
Weibull distribution to represent the failure rates of both the
shovels and dumpers. Reliability Workbench is considered to
analyze the failure data and demonstrated the application of
the bathtub model using time between failures and time to
repair data sets.

Moreover, [6] illustrated the effectiveness of the q-Weibull
distribution in analyzing the reliability of computed tomogra-
phy (CT) equipment failure data. The authors demonstrated
that the q-Weibull distribution could effectively describe the
entire bathtub curve, which is a graphical representation of
the failure rate over time. The q-Weibull enabled to analyze
the CT equipment failure data and gain insights into the
equipment’s reliability. Reference [7] examined the reliabil-
ity evaluation of electronic devices using a bathtub curve
derived from the extension of the exponentiated-perks dis-
tribution. Reference [8] demonstrated the practical use of
the bathtub-shaped curve in reliability analysis and quality
control based on the beta-Weibull distribution and the inverse
power law; and has proven effective in modeling the failure
times of electronic components and analyzing the quality
of manufactured products. Specifically, the author studied
various parameters such as the mean time to failure, and
failure rate to discuss the performance of the capacitor under
analysis to obtain meaningful insights. Reference [9] used
the bathtub hazard rate function from the modified extension
of weibull model to analyzed the failure characteristics of
some aerospace electronic components. They demonstrate
how the function can be used to evaluate the reliability of the
components under different stress levels and to optimize the
maintenance schedule to minimize downtime and cost.

A significant importance is attached to this kind of HR
curve in industrial practice, essentially in burn-in strategies
study to improve system reliability [10]. Yet, it has always
been difficult to model data sets with obvious bathtub distri-
butions due to the associated data complexity.

In parametric analysis, lifetime models having explicit
physical interpretations pertinent to actual system or
device failure times are more desirable than distributions
lacking such interpretations. Recently, [11]introduced the
exponential-Weibull (EW) distribution as a suitable model
for analyzing the failure times of a system composed of
two independent and simultaneous sub-systems operating
in series. This means that the system fails when at least
one of the sub-systems fails. The EW distribution has been
shown to provide better fits than other classical and extended

FIGURE 1. Description of bathtub-shaped hazard rate.

distributions, including the four-parameter additive Weibull
(AddW) distribution [12], for data sets characterized by
monotone HRs. The EW distribution has a clear physical
interpretation and was specifically designed to accommo-
date failure times arising from a series system with two
sub-systems functioning independently. The time to failure
of the system is defined by the random variable T = min
{Y ,Z }, where Y and Z are the failure times of the first and
second sub-systems, respectively. Y is assumed to have an
exponential distribution, while Z has a Weibull distribution.
A random variable T is said to have a two-parameter EW
distribution if its cumulative distribution function (CDF) is
given by:

F(t) = 1 − exp
(
−λt−tα

)
, t > 0, α, λ > 0. (1)

where α, and λ are the distribution parameters. However,
it is important to note that the two-parameter EW distribution
is not suitable for modeling data sets with non-monotone
hazard rates, as demonstrated by [13]. The HRF of the dis-
tribution is increasing when the only shape parameter α <

1 and is decreasing if α > 1. That is, the underlying
distribution of Y and Z from the two sub-system need to
have monotone HRs. However, often in reliability studies,
quality control analysis and survival analysis, lifetime data
sets possess non-monotone HRs and therefore the use of EW
model in the study and prediction of failure of a system
or individual survival time may not provide the approxi-
mate description of the actual situation. The bathtub-shaped
and unimodal are the frequently encountered HRs among
other non-monotone HRs. Where the bathtub-shaped HRF
remains the most important shape every model struggle
to possess (see [14], [15] for details on different forms
of bathtub HRF). Considering the limited flexibility of
EW distribution, several works were carried out to modi-
fied the model. The transmuted exponential-Weibull (TEW),
Kumaraswamy exponential-Weibull (KwEW), Gamma expo-
nentiated exponential-Weibull (GEEW) and generalized
extended exponential-Weibull (GExtEW) are recently intro-
duced by Saboor et al. [16], Cordeiro et al. [17], Pogány and
Saboor [18], and Shakhatreh et al. [13].

Although, the TEW, KwEw, GEEW, and GExtEW
extended the EW distribution by adding parameter(s) through
different modification methods, the distributions are found
to be better in practice than the EW distribution. The TEW,
KwEW, GEEW, and GExtEW distributions are learned to
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have exhibited at least one non-monotone HR shape, and
notwithstanding, can not adequately describe lifetime data
that have one or two failure modes with clear bathtub-shaped
HR such as the cable joint failure data sets reported by
Tang et al. [19] and Tang et al. [20], and the well-known
device failure times data set by Meeker et al. [21]. This draw-
back may happen since their modifications does not take into
account the physical interpretation of the EW distribution.

On the other hand, several extension of Weibull dis-
tribution with similar physical interpretation to EW dis-
tribution are defined. These include the new modified
Weibull [22], additive modified Weibull [23], Weibull Lind-
ley [24], log-normal modified Weibull [15], improved new
modified Weibull [25], Weibull-Chen [26], additive Chen
Weibull [27], flexible additive Chen-Gompertz [28], and
additive Gompertz-Weibull [29] distributions.

In view of the deficiencies identified with EW distribution
and its extensions and with no study that extended the distri-
bution while reserving its practical interpretation, we propose
to extend the EW distribution to allow the random variable
T =min{Z ,Y } accommodate monotone and non-monotone
HR distributions. In this case, either the distribution of Z or Y
can have monotone or non-monotone HR function. The mod-
ified EW (abbreviated as MEW) distribution, is constructed
by replacing T in Eq.(1) with

G(t)/Ḡ(t), and [Ḡ(t) = 1 − G(t)],

whereG(t) = 1−exp((t/θ )γ) is the CDF of standardWeibull
distribution. Hence, we have the CDF of the modified model
as given in Eq.(2). One interesting flexibility of the MEW
model over the other extensions of EW distributions is that it
can accommodate T =min{Z ,Y } with both Z and Y having
non-monotone HR function. This is contrary to many additive
models, where either both the HR of Z and Y are monotone
(such as in EW and AddW distributions) or only one of the
baseline random variables has non-monotone HR (like the
case of AMW, NMW, and ACW models). The advantages of
the adopted modification procedure has been recognized in
different notable studies, such as [30] and [31].

The enhanced distribution has greater flexibility, due to the
transformation and added shape parameter. It has depicted
several types of HR shapes, including the notable bathtub
curve labeled in FIGURE 1 and can be adopted in modeling
different failure time data sets. We present Bayesian tech-
nique and maximum likelihood procedure for estimating the
four unknown model parameters. Contrary to many studies
verifying their distributions’ applicability using complete/
uncensored data, here, we demonstrate the potential of the
MEWmodel using censored and uncensored failure time data
sets. The enhanced distribution best fits the considered data
sets in comparisons with other recent models based on some
known model selection criteria and plots.

After justifying the study purpose and problem to be
addressed, and how to define a flexible distribution with
bathtub-shaped HR function in Section I, we then proceed
to describe the modified model in Section II, including the

model interpretation as well as some shapes of density and
HR functions. Section III presents some properties of the
distribution. In Sections IV, we provide information on how
to use both the maximum likelihood and Bayesian approach
to estimate the parameters of the distribution. In Section V,
we demonstrate the practical applications of the distribution
using real-world data. Lastly, in Section VI, we summarize
and conclude the paper.

II. THE MEW DISTRIBUTION
Here, to modify the EW model, first we consider the model
transformation by odd function and transform the random
variable T in Eq.(1). The odds function of the CDF of stan-
dard Weibull model is defined by as G(t)/(1 − G(t)) =

exp((t/θ )γ)−1. Thus, the CDF of the proposedMEW having
four-parameter vector ϕ = (α, γ, θ,λ)′ is given by

F(t) = 1 − exp
{
λ(1 − e(t/θ )

γ
) − (e(t/θ )

γ
− 1)α

}
, t > 0,

(2)

where α > 0, and γ ≥ 0 are MEW’s shape parameters, and
λ ≥ 0 and θ > 0 represents the model’s scale parameters.
The model was intended to have two shape and two scale
parameters that is why the two parameter EW in Eq.(1) is con-
sidered, and it helps in getting reliable optimization results
in estimation process. Eq.(2) can be viewed in two different
ways. The first as an extension of EW distribution. While the
second as an additive model with modifiedWeibull extension
(MWE) [32] and three-parameter improved Weibull-Weibull
(IWW3) [33] distributions as the hybrid baseline models.
That is, Eq.(2) can be written as F(t) = 1−SMWE (t)SIWW3(t),
where SMWE (t) and SIWW3(t) are the survival functions of the
MWE and IWW3 distributions, respectively.

The associated probability density function (PDF) is given
by

f (t) =
γ

[
λ + α(e(t/θ )

γ
− 1)α−1

]
θ(t/θ )−γ+1e−(t/θ )γ

× exp
{
λ(1 − e(t/θ )

γ
) − (e(t/θ )

γ
− 1)α

}
, t > 0.

(3)

FIGURE 2 presents the PDF curves of the MWE distribution.
It can be noted that the shape of the density function varies

depending on the parameter values, with some examples in
FIGURE 2 including decreasing, unimodal, and modified
bathtub shapes characterized by a pattern of decreasing-
increasing-decreasing. The reliability/survival function and
hazard rate function are expressed separately, with the (SF)
representing reliability/survival and the (HRF) representing
the hazards rate function.

S (t) = exp
{
λ(1 − e(t/θ )

γ
) − (e(t/θ )

γ
− 1)α

}
, t > 0,

(4)

and

h (x) =
γ

[
λ + α(e(t/θ )

γ
− 1)α−1

]
θ (t/θ )−γ+1e−(t/θ )γ , t > 0. (5)
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FIGURE 2. Various MEW density function curves under different settings
of the parameter values.

Glaser [34] discuss the adequate conditions to characterize
a given distribution with non-monotone HR. The HRF of the
MEW model, which depends on the two shape parameters
γ > 0 and α > 0, presents bathtub-shaped when h′(t∗) = 0 if
and only if t = t∗ is the root of the equation:[

(γ−1)t∗−1
+γθ−γ t∗γ−1]h(t∗)+(α−1)t∗γ−1(1−e−(t∗/θ )γ )−1

=0,

where h′(t) =
dh(t)
dt is the derivative of theHRF in (5). It is ver-

ifiable that the HRF is decreasing if h′(t) < 0 for t < t∗ and is
increasing if h′(t) > 0 for t > t∗. The figure 3(a)-(c) displays
the HRF plots for different parameter values in the improved
model, which incorporates multiple HRF shapes to describe
intricate failure time data. In particular, figure 3(c) illustrates
the bathtub-shaped HR curve that includes a long-flat seg-
ment (known as the useful lifetime). The usefulness of a
bathtub-shaped HR with a long or long-flat useful lifetime
is significant for reliability and other survival time analysis.
It is interesting that the HRF of MEW possessed this quality;
as a result, MEW can be extremely useful in this context. The
MEW distribution has an advantage over the other EWmodel
extensions because it is the only EW extension that preserves
the EW physical interpretation while also presenting this type
of bathtub-shaped HR curve.

III. DISTRIBUTION PROPERTIES
In this section we derive and discuss various properties of the
MEW model.

A. QUANTILES, MEDIAN AND MODE
Quantile function is an indispensable function in statistical
studies in both theoretical and applied studies such as gener-
ating random data, model estimation, extreme values studies,
graphical analysis, mean residual analysis, etc. (see, [35],
[36], [37]). The quantile tq, for 0 < q < 1 of the MEW
model can be gotten by the real solution of the given non-
linear equation

λe(t/θ )
γ

+ (e(t/θ )
γ

− 1)α = λ − log (1 − q) . (6)

Eq.(6) does not have a closed-form solution in tq, and thus,
we adopt a numerical solution technique to determine the
quantile. Following we presents a simple algorithm for deriv-
ing random samples from the MEW(γ, α, θ, λ).
Step 1 Generate qi ∼ U (0, 1), i = 1, 2, . . . , n, and then
Step 2 apply Step 1 to calculate for tqi in

λe(tqi/θ )
γ

+ (e(tqi/θ )
γ

− 1)α = λ − log(1 − qi).

FIGURE 3. MEW hazard rate function curves: (a) increasing and
decreasing shapes, (b) bathtub-shaped without long-flat segment, and
(c) bathtub-shaped with long-flat phase for different parameter settings.

FIGURE 4. Histograms and MEW density curves of three simulated
samples each with n = 10000: (a) α = 1.5, γ = 2.0, λ = 0.5, θ = 0.5,
(b) α = 0.1,γ = 7.0, λ = 0.7, θ = 400, and
(c) α = 0.5, γ = 0.8, λ = 2.0, θ = 0.

To investigate the consistency of the generated samples from
Eq.(6), we display the histograms andMEWdensity curves of
the simulated samples in FIGURE 4(a)-(c). From FIGURE 4,
we observe that the generated samples are consistent. Eq.(6)
gives the median of the MEW random variable T at q = 1/2.
The mode of the MEW distribution is the value of T at

which the density function f (t) = h(t)S(t) reaches its highest
point. Therefore, the Eq. (7) can be solved to find the value
of T that corresponds to the mode.

h′(t)S(t) + h(t)S ′(t) = 0, (7)

where h′(t) and S ′(t) are respectively obtained as the deriva-
tives of HRF and SF functions,

h′(t) =

[
(γ − 1)t−1

+ γθ−γ tγ−1
]
h(t)

+ (α − 1)tγ−1(1 − e−(t/θ )γ )−1,

S ′(t) = −γθ−γ tγ−1e(t/θ )
γ
(λ + α(e(t/θ )

γ
− 1)α−1)S(t).

Eq.(7) lacks a practical analytical expression, hence it
necessitates the use of numerical techniques.

B. RELIABILITY
Mean residual life (MRL) and Mean time to failure (MTTF)
are important tools in reliability analysis and can help
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predict the expected lifetime and failure rate of a system or
component.

1) MEAN RESIDUAL LIFE
MRL represents the period from a specific time x to the
failure time of an individual or system. That is, it determine
the expected remaining lifetime of a component, system or
individual with age x at present. Residual life are also used
to characterized distribution uniquely (see, [38]). In [39],
the author explores the connections between the MRL and
HRF, with a particular focus on bathtub-shaped models. Four
extensions of theWeibull are analyzed, specifically in regards
to their change points and the variations between them. The
article also delves into additional concerns surrounding the
flatness of the bathtub curve. We refer to [40] for more appli-
cations ofMRL in reliability engineering, quality control, risk
management, life testing, and maintenance optimization. The
MRL of the MEW is computed as:

µT (x) = E(T − x|T > x)

=
1

S(x)

∫
+∞

x
S(t) dt =

1
S(x)

∫
+∞

0
S(t + x) dt

=
eλ

S(x)

+∞∑
i,j=0

+∞∑
p=0

υi,jυp

∫
+∞

0
(t + x)jγe−pθ

−γ (t+x)γdt

=
e
λe(x/θ)

γ
+

(
e(x/θ)

γ
−1

)α

γ

×

+∞∑
i,j=0

+∞∑
p=0

υi,jυp
θ jγ+1

p(jγ+1)/γ γ

(
jγ + 1

γ

)
, (8)

where υi,j = (−λ)i(i)j/i!j!θ jγ,

υp =
∑

+∞

k,ℓ=0 (−1)pγ(kα + ℓ + 1)υk,ℓ/p!γ(kα + ℓ − p+ 1)
and υk,ℓ = (−1)kγ(kα+ℓ)/k!ℓ!γ(kα), and γ(.) is the gamma
function.

2) MEAN TIME TO FAILURE
MTTF is the average time until the variable fails or stops
working. It represents the expected value of the time to fail-
ure. We define the MEW model MTTF as:

MTTF =

∫
+∞

0
S(t) dt

=

∫
+∞

0
e
λ
(
1−e(t/θ )

γ
)
−

(
e(t/θ )

γ
−1

)α

dt

= eλ
+∞∑
i,j=0

+∞∑
p=0

υi,jυp

∫
+∞

0
t jγe−p(t/θ)γdt

=
eλ

γ

+∞∑
i,j=0

+∞∑
p=0

υi,jυp
θ jγ+1

p(jγ+1)/γ γ

(
jγ + 1

γ

)
,

where υi,j, υk,ℓ and υp are given in Eq.(8), and γ(.) is the
gamma function.

To explore the characteristics of MRL (µT (x)) and MTTF
of MEW distribution at varying parameter values, we provide

some Monte Carlo simulation and numerical integration val-
ues along with their respective errors in TABLEs 1-2. The
simulation outputs were derived from N = 1000 random
samples based on the sizes 50, 100, 200 and 300, respec-
tively, under two parameter settings. Four time points x =

0.01, 0.2, 0.6, and 0.8 were taken for the µT (x). It is learned
that the µT (x) and MTTF are tend to the same value as
x decreases to 0, that is, MRL of a device or individual
converges to the MTTF as x → 0. The findings depict
a fall in the µT (x) estimates under both Monte Carlo and
numerical integration methods as x increases over a fixed
sample size n. A consistent decrease in standard deviations
(between parenthesis) for theMonte Carlo results is observed.
It can be seen that the two methods produce more comparable
values when the shape parameter α is above unity.

C. MOMENTS
Moments are critical tools in statistical studies and can be
used to describe several distribution characteristics. For T ∼

MEW(α, γ, λ, θ), the computation of the r th non-central
moments is achievable in the following way: considering the
Taylor series of et , then Binomial expansion of (1+ t)b−1, for
b real and non-integer, also, |t| < 1.

µr =

∫
+∞

0
trdF(t)

=

∫
+∞

0
rtr−1e

λ
(
1−e(t/θ )

γ
)
−

(
e(t/θ )

γ
−1

)α

dt

= reλ
+∞∑
i,j=0

+∞∑
p=0

υi,jυp

∫
+∞

0
t jγ+r−1e−p(t/θ)γdt

=
reλ

γ

+∞∑
i,j=0

+∞∑
p=0

υi,jυp
θ jγ+r

p(jγ+r)/γ γ

(
jγ + r

γ

)
,

for r = 1, 2, . . . ,

where υi,j, υk,ℓ and υp are given in Eq.(8), and γ(.) a gamma
function. Direct usage of Eq.(8) may be difficult; however,
numerical integration and Monte Carlo simulation could
alternatively be applied for computing different distributional
properties of MEW from the moments, such as the variance
(σ 2), skewness (

√
β1) and kurtosis (β2).

TABLEs 5-6 report the Monte Carlo simulation results
for the first four non-central moments (µ′

1, µ
′

2, µ
′

3, and µ′

4),
variance (σ 2), skewness (

√
β1) and kurtosis (β2) with their

respective standard deviations (SDs) between parenthesis.
The estimates of the properties were computed for nine dis-
tinct combinations of MEW parameters, and random samples
N = 1000 base on sizes n = 50, 100, 200 and 300. For
each parameter setting, the estimates are seen to be closed to
each other with decrease in SDs over different sample sizes.
All the seven computed characteristics of the distribution
deceases when γ is less than unity over an increase in α.
Contrarily, the kurtosis β2 rises when γ > 1 and over the
increase in α.
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TABLE 1. Results for MRL
(
µT (x)

)
and MTTF using Monte Carlo

simulation and numerical integration with standard deviation and
integration error reported between parentheses;
α = 0.3, γ = 2.5, λ = 0.2, θ = 1.2.

TABLE 2. Results for MRL
(
µT (x)

)
and MTTF using Monte Carlo

simulation and numerical integration with standard deviation and
integration error reported between parentheses;
α = 1.2, γ = 2.5, λ = 0.2, θ = 1.2.

IV. ESTIMATION
Within this section, we will examine the process of determin-
ing theMEWunknown parameters using bothmaximum like-
lihood estimation (MLE) and Bayesian estimation methods.

A. MLE FOR NON-CENSORED DATA
Maximum likelihood technique is the commonly used sta-
tistical inference method. This method is reliable and
offers advantages in theoretical studies and asymptotic effi-
ciency, there is an extensive literature regarding this method
(see, [41] and [42]). Suppose we have a random sample
of size n, denoted by t1, t2, . . . , tn, from the MEW model

TABLE 3. First four moments, variance, skewness and kurtosis
1000 simulated samples of sizes n = 50 and 100; standard deviations
between parentheses.

TABLE 4. First four moments, variance, skewness and kurtosis for
1000 simulated samples of sizes n = 200 and 300; standard deviations
between parentheses.

with parameter vector ϕ = (α, γ, λ, θ)′. The log-likelihood
function of ϕ can be obtained from the PDF in (3) as

ℓ(ϕ) = n log γ − nγ log θ + (γ − 1)
n∑
i=1

log ti

+

n∑
i=1

(ti/θ)γ +

n∑
i=1

log(ci) −

n∑
i=1

(
λai + aα

i
)
, (9)

where ai = e(ti/θ )
γ

− 1, and ci = λ + αaα−1
i . Let ϕ̂ be the

estimates, the determination of ϕ̂ can be achieved through the
maximization of (9) or by solving its derivative with respect
to each parameter. Thus, we arrived at the following score
functions.

∂ℓ

∂λ
=

n∑
i=1

1
ci

−

n∑
i=1

ai,

∂ℓ

∂α
=

n∑
i=1

aα−1
i

ci
(1 + α log(ai)) −

n∑
i=1

aα
i log(ai), ,

∂ℓ

∂θ
= −

nγ
θ

−
γ

θ

n∑
i=1

(ti/θ)γ +
γα(α − 1)

θ

n∑
i=1

aα
i bi
a2i ci
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+
γ

θ

n∑
i=1

bi
ci

∂ℓ

∂γ
=
n
γ

− n log θ +

n∑
i=1

log ti

+ α(α − 1)
n∑
i=1

aα
i bi
a2i ci

log (ti/θ)

+

n∑
i=1

(ti/θ)γ log (ti/θ) −

n∑
i=1

bici log (ti/θ),

where ai = e(ti/θ )
γ

− 1, bi = (ti/θ )γe(ti/θ )
γ
, and ci = λ +

αaα−1
i . Finding solutions to these problems using analytical

methods may be too difficult. As a result, a numerical tech-
nique is employed to calculate the maximum likelihood esti-
mates (MLEs) of the unknown parameters ϕ = (α, γ, λ, θ)′,
starting with a well-chosen set of initial values. We used
the maxLik function from the maxLik package [43] in the
R4.2.2 software for optimization.

Additionally, we can determine the MLEs of S(t) and
h(t) by applying the invariant property of the MLE [44].
Therefore, the MLEs of S(t) and h(t) are, respectively, given
by

R̂(t) = eλ̂(1−e
(t/θ̂ )γ̂ )−(e(t/θ̂ )

γ̂
−1)α̂

;

ĥ(t) = γ̂θ̂−γ̂ t γ̂−1e(t/θ̂ )
γ̂

(
λ̂ + α̂(e(t/θ̂)

γ̂
− 1)α̂−1

)
.

1) ASYMPTOTIC CONFIDENCE INTERVALS
It is possible to determine the precise distributions of the
Maximum Likelihood Estimators (MLEs), but obtaining
closed-form solutions is quite challenging. Therefore, we opt
to calculate an estimated confidence interval for the param-
eters. We base our calculation on the asymptotic normality
distributions for γ, α, θ , and λ, as the sample size approaches
infinity. Specifically,

√
n

(
ϕ − ϕ̂

)
∼ N4

(
0, I−1

)
, where

I (ϕ) = −


∂2ℓ(ϕ)

∂γ2
∂2ℓ(ϕ)
∂γ∂α

∂2ℓ(ϕ)
∂γ∂θ

∂2ℓ(ϕ)
∂γ∂λ

.
∂2ℓ(ϕ)

∂α2
∂2ℓ(ϕ)
∂α∂θ

∂2ℓ(ϕ)
∂α∂λ

. .
∂2ℓ(ϕ)

∂θ2
∂2ℓ(ϕ)
∂θ∂λ

. . .
∂2ℓ(ϕ)

∂λ2

 .

The elements of I (ϕ) are given in the Appendix. Then we can
have the approximate variance-covariance matrix evaluated
at ϕ̂ = (γ̂, α̂, θ̂ , λ̂)′, the MLE of (γ, α, θ, λ)′ as

I−1 (
ϕ̂
)

=


var(γ̂) cov(γ̂, α̂) cov(γ̂, θ̂ ) cov(γ̂, λ̂)

. var(α̂) cov(α̂, θ̂ ) cov(α̂, λ̂)

. . var(θ̂ ) cov(θ̂ , λ̂)

. . . var(λ̂)

 .

Hence, the 100(1 − δ)% asymptotic confidence intervals
(ACIs) for each ϕk is given by

ACIk =

[
ϕ̂k − Z δ

2

√
Îkk , ϕ̂k + Z δ

2

√
Îkk

]
,

where Îkk is the (k, k) diagonal elements of In(ϕ̂)−1 for
k = 1, 2, 3, 4 and Z δ

2
is the upper δth percentile of the

standard normal distribution.

B. MLE FOR RIGHT-CENSORED DATA
In the same way, we have established the log-likelihood
function of the MEW model for data that has been right-
censored. Let (yi, δi), where i ranges from i = 1, 2, . . . , n,
be a random sample that has been censored. For δi = 1, yi
is a failure or survival time, and for δi = 0, yi is a censored
time. We can express the log-likelihood function of the MEW
model in this case as:

ℓC (ϕ) =

n∑
i=1

δi log f (yi) +

n∑
i=1

(1 − δi) logR(yi)

= ν log
(
γθ−γ)

+ (γ − 1)
n∑
i=1

δi log yi

+

n∑
i=1

δi(yi/θ )γ +

n∑
i=1

δi log ci

− λ

n∑
i=1

ai −
n∑
i=1

aα
i ,

where ai and ci are given in (9), ν =
∑n

i=1 δi, and f (.) and
S(.) are the PDF (3) and survival function (4). The estimate
ϕ̂ =

(̂
α, γ̂, λ̂, θ̂

)′
of (α, γ, λ, θ)′ can be obtained using the

log-likelihood function (10) via a similar approach with the
non-censored case in Section IV-A.

C. PERCENTILE BOOTSTRAP CONFIDENCE INTERVALS
FOR MEW PARAMETERS
Finding the standard error of a point estimator with a com-
plex form is either challenging or even not achievable with
standard statistical methodology. In such a circumstance, the
bootstrap method may be employed (see [45]). To implement
the bootstrap method, we generate bootstrap samples from
f (t; ϕ̂), where ϕ̂ is the ML estimate of ϕ, and compute a
bootstrap estimate ϕ̂∗ (the ML estimate of ϕ calculated from
the bootstrap sample). This technique is known as the para-
metric bootstrap. Besides, we can apply the non-parametric
bootstrap when the density function f (t; ϕ̂) is not available
or difficult to generate data. In this circumstance, we treat
the original real data as the population and draw bootstrap
samples with replacement from it. This process is repeated B
times as describe in the following steps.

Step 1 Produce a bootstrap sample 1: t11 , t
1
2 , . . . , t

1
n from

the given data set sampled with replacement to
compute the ML estimate of ϕ, say ϕ̂∗ =

(̂α1
∗, γ̂

1
∗, λ̂1

∗, θ̂
1
∗ )

′.
Step 2 Repeat step 1 B times to obtain the bootstrap sam-

ples set for the estimates.
Step 3 Then use the bootstrap samples to compute the

bootstrap sample means ¯̂ϕ∗ = ( ¯̂α∗, ¯̂γ∗,
¯̂λ∗,

¯̂θ∗)′ and
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standard error SEBp ( ¯̂ϕ∗) =

(
SEBp ( ¯̂α∗), SEBp ( ¯̂γ∗),

SEBp (
¯̂λ∗), SEBp (

¯̂θ∗)
)′

using the standard methods.

Step 4 Let ¯̂α
δ
∗ represent the δ percentile of α̂

j
∗, for j =

1, 2, . . . ,B. That is

1
B

B∑
j=1

I{
α̂
j
∗≤

¯̂α
δ
∗

} = δ, 0 < δ < 1,

where I{.} is the standard indicator function. Thus,
the (1 − ξ )% bootstrap confidence interval (CLBp)
for α is defined as(

¯̂α∗(ξ/2), ¯̂α∗(1−ξ/2)
)

Step 5 Repeat steps 4 to obtain the (1−ξ )% CLBp for γ, λ,
and θ .

D. BAYESIAN ESTIMATION
Bayesian inference is a different approach from frequentist
inference that has been widely used in many fields to estimate
parameters, especially in complex situations. This article sug-
gests using the Bayesian paradigm to estimate the parameters
of the MEW model (more information can be found in [46]
and [47]). The Bayesian model is constructed by the product
of the likelihood function and prior distribution π (ϕ) for
ϕ = (γ, α, θ, λ)′, which derived the posterior distribution
of ϕ represented by φ(ϕ|D). π(ϕ) denoted the distribution
of ϕ before observing the data D : t1, t2, . . . , tn. Based on
the Bayes theorem, we can obtained the distribution of the
posterior as ϕ|D defined:

π (ϕ|D) =
L(D|ϕ)π (ϕ)∫

2 L(D|ϕ)π (ϕ)dϕ
∝ L(D|ϕ)π (ϕ), (10)

where
∫
2
L(D|ϕ)φ(ϕ)dϕ is the normalizing constant of the

posterior distribution of ϕ, 2 is the parameter space, and
L(D|ϕ) represents the likelihood function of MEW distribu-
tion, and is given by

L(D|ϕ) =
γn

θn
Ai exp

{
λ

n∑
i=1

Bi −
n∑
i=1

(e(ti/θ )
γ

− 1)α

+

n∑
i=1

(ti/θ )γ + (γ − 1)
n∑
i=1

log(ti/θ )

}
, (11)

where Ai =
∏n

i=1
[
λ + α(e(ti/θ )

γ
− 1)α−1

]
and Bi = 1 −

e(ti/θ )
γ
.

In this study, the parameters γ, α, θ , and λ are sup-
posed to have gamma priors following the works of Kundu
Howlader [48], Soliman et al. [49], and Abba and Wang [29].
Let π (ϕk ) denote the gamma prior having (νk , γk ) as the
hyper-parameters, with PDF given by

π (ϕk ) =
ν
γk
k

γ(γk )
ϕ

γk−1
k e−νkϕk , νk > 0, γk > 0,

k = 1, 2, 3, 4. (12)

Thus, γ ∼ π (γ|ν1, γ1), α ∼ π (α|ν2, γ2), θ ∼ π (θ |ν3, γ3)
and λ ∼ π (λ|ν4, γ4). For this study, we assigned the

hyper-parameter values which yield means approximate to
the MLEs of the parameters [27]. The joint posterior dis-
tribution of ϕ|D is therefore obtained after substituting
Eq.(11)-(12) into (13) as

π (ϕ|D) ∝
γn+γ1−1αγ2−1λγ4−1

θn−γ3+1 Ai exp {−α1γ − α2α − α3θ

− α4λ}

× exp

{
λ

n∑
i=1

Bi −
n∑
i=1

(e(ti/θ )
γ

− 1)α

+

n∑
i=1

(ti/θ )γ + (γ − 1)
n∑
i=1

log(ti/θ )

}
. (13)

We can determined the marginal posterior densities from (12)
for the γ, α, θ , and λ as

π(γ|D) ∝ γn+γ1−1Ai exp
{
+(γ − 1)

n∑
i=1

log(ti/θ ) − α1γ

}

× exp

{
λ

n∑
i=1

Bi −
n∑
i=1

(e(ti/θ )
γ

− 1)α +

n∑
i=1

(ti/θ )γ
}

,

π (α|D) ∝ αγ2−1Ai exp
{
−

n∑
i=1

(e(ti/θ )
γ

− 1)α − α2α

}

π (θ |D) ∝ θ−n+γ3−1Ai exp
{
(γ − 1)

n∑
i=1

log(ti/θ ) − α3θ

}

× exp

{
λ

n∑
i=1

Bi −
n∑
i=1

(e(ti/θ )
γ

− 1)α +

n∑
i=1

(ti/θ )γ
}

,

π(λ|D) ∝ λγ4−1Ai exp
{
λ

n∑
i=1

Bi − α4λ

}
. (14)

Applying the square error loss function (SELF), the Bayes
estimators of γ, α, θ , λ, survival function R(t), and HRF h(t),
are derived as follows:

γ̂∗ = E(γ|D) =

∫
2

γπ(ϕ|D)dϕ

α̂∗ = E(α|D) =

∫
2

απ (ϕ|D)dϕ

θ̂∗ = E(θ |D) =

∫
2

θπ(ϕ|D)dϕ

λ̂∗ = E(λ|D) =

∫
2

λπ (ϕ|D)dϕ

R̂∗ = E(R(t; ϕ)|D) =

∫
2

R(t; ϕ)π (ϕ|D)dϕ

ĥ∗ = E(h(t; ϕ)|D) =

∫
2

h(t; ϕ)π (ϕ|D)dϕ (15)

Calculating the Bayes estimates (BEs) via the posterior
means may be infeasible with no closed-form solutions of the
marginal posterior densities π (α|D), π(γ|D), π(λ|D), and
π (θ |D). Hence, we opt for NUTS [50], another form of the
HMC algorithm, to samples from the posterior distribution
using Rstan [51] in R. A recent re-explanation of the HMC
algorithm can be found in [29].
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Hence, for a posterior sample {ϕs, s = 1, 2, . . . ,N } gener-
ated from π (ϕ|D), the approximate Bayes estimates of MEW
parameters α, γ, λ, and θ , as well as the reliability function
S(t) and HRF h(t) are calculated as

γ̂∗ ≈
1

N − ℘

N∑
s=℘+1

γs

α̂∗ ≈
1

N − ℘

N∑
s=℘+1

αs

λ̂∗ ≈
1

N − ℘

N∑
s=℘+1

λs

θ̂∗ ≈
1

N − ℘

N∑
s=℘+1

θs

R̂∗(t) ≈
1

N − ℘

N∑
s=℘+1

S(t; ϕs)

ĥ∗(t) ≈
1

N − ℘

N∑
s=℘+1

h(t; ϕs),

where ℘ represents the number of burn-in observations/
iterations prior to stationarity of the samples. It is highly
advisable to run the simulation for m parallel chains (m =

3, 4 or 5) for better assessment of the sampler conver-
gence [25]. Therefore, we can proceed to compute the pos-
terior means for m parallel chains as follows:

α̂∗ ≈
1

m(N − ℘)

m∑
b=1

N∑
s=℘+1

α(s,b)

γ̂∗ ≈
1

m(N − ℘)

m∑
b=1

N∑
s=℘+1

γ(s,b)

λ̂∗ ≈
1

m(N − ℘)

m∑
b=1

N∑
s=℘+1

λ(s,b)

θ̂∗ ≈
1

m(N − ℘)

m∑
b=1

N∑
s=℘+1

θ(s,b)

R̂∗(t) ≈
1

m(N − ℘)

m∑
b=1

N∑
s=℘+1

S(t; ϕs,b)

ĥ∗(t) ≈
1

m(N − ℘)

m∑
b=1

N∑
s=℘+1

h(t; ϕs,b).

We checked the nature of the convergence of the HMC
samples for each chain by considering the Gelman and
Rubin’s [52] potential scale reduction factor (PSRF, R̂). The
PSRF is a combination of Between-chain and Within-chain
variances, and the HMC sample is considered to be converged
if R̂ is less than 1.1. To calculate the (1 − δ)100% Bayesian
credible intervals (BCIs) for the parameters, we sorted the
HMC samples in ascending order as ϕk,1 ≤ ϕk,2 ≤ · · · ≤

ϕk,N−s, where k ranges from k = 1, . . . , 4, and expressed the
intervals as [ϕk, δ

2 (N−s), ϕk,(1− δ
2 )(N−s)]. Additionally, we com-

puted the approximate (1− δ)100% highest posterior density
(HPD) interval of µk , which is the interval consisting the
highest posterior density.

E. SIMULATION RESULTS
Simulation studies involve using computer experiments to
create data through random sampling. This allows us to gain
insight into the behavior of statistical techniques, as we have
knowledge of parameters used in generating the data. This
understanding helps us examine the properties of methods,
such as bias. Reference [53] provides further information on
simulation studies.

In this section, we conduct a Monte Carlo simulation
experiment to assess the effectiveness of the suggested esti-
mators using the proposedmaximum likelihood and Bayesian
methodologies for estimating MEW parameters. The param-
eters were estimated using the simulated samples produced
via the sampling procedure described in Section III-A, and
under different parameter values and 1000 samples for ten
sample sizes, n = 30, 60, . . . , 270, and 300. To compute the
Bayes estimates, we consider 1000 iterations under gamma
priors with hyper-parameter values derived from the selected
MEW parameter values. We count out the first 50% as warm-
up samples.

We performed all the simulations and computations in
R4.2.2 software using nlminb package, an R base
package.

The estimates of bias and mean square error (MSE) were
considered to assess the performance of the two methods.
FIGUREs 5 - 6(a)-(d) provides the visual views of the
simulation results for various parameter sets and different
sample sizes.As n rises, both the biases and MSEs for the
ML and Bayes estimates approach zero, which explains the
consistency of the suggested approaches. The line plots in
FIGUREs 5 - 6(a)-(d) reveal that bias and MSE estimations
under the ML approach are, in most cases, quite small com-
pared to the Bayesian method. Therefore, the proposed esti-
mation methodologies can be implemented for diverse MEW
distribution scenarios.

V. APPLICATIONS OF MEW MODEL TO CENSORED AND
UNCENSORED DATA
In this section, we examine the potential difference of the
enhanced MEW model with other methodologies, includ-
ing the EW [11], AddW [12], exponentiated modified
Weibull extension (EMWE) [54], exponentiated AddW
(EaddW) [55], and GExtEW [13] distributions on two failure
time data.

For the two illustrations, the parameter estimates of all
models were determined using theMLmethodology, whereas
we use Bayesian method to obtain the posterior summaries of
theMEWparameters.We similarly reports the−ℓ, AIC, BIC,
and KS goodness-of-fit statistics for comparative inferences.
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FIGURE 5. Simulation findings for ML and Bayesian methods under
different settings of parameters: (a)-(b) for α = 0.7, γ = 0.4, λ = 0.2, and
θ = 4.4 and (c)-(d) for α = 1.8, γ = 2.5 =, λ = 0.8, and θ = 5.

FIGURE 6. Simulation findings for ML and Bayesian methods under
different settings of parameters: (a)-(b) for α = 32, γ = 0.8, λ = 1, and
θ = 1.5, and (c)-(d) for α = 0.7,γ = 6, λ = 0.3, and θ = 4.8.

Besides that, the HRF and survival function curves for the
trained models are employed to further support the compar-
isons. We gives the Bayes estimate and their associated 95%
HPD intervals for the MEW parameters, along with their
respective trace plots, density plots, box plots, and scatted plot
matrix from the HMC output.

A. FAILURE AND RUNNING TIMES OF 30 DEVICES
The data represent the failure and running times (FRTs)
of thirty devices reported by Meeker et al. [21], which is
characterized by bathtub-shaped HR. Although, the data is
well-known as a benchmark for evaluating the adequacy of fit
for models with bathtub-shaped HRF (see for instance, [13],
[28], [33]), most of the existing literature applied it an uncen-
sored data by ignoring the censoring indicator. However,
this study used the FRT data in it full scale as censored.
TABLE 5 present the data, where the ’∗’ represent the cen-
soring indicator. The FRTs is reported to have two failure
modes: electric surge andwear-out, and thereforematched the
physical interpretation of MEW model. Hence, the enhanced

TABLE 5. Failure and running times, consisting of failure and running
times of 30 devices. Where ’∗’ is a right-censored indicator.

TABLE 6. ML estimates along with parametric and non-parametric
goodness-of-fits statistics; Censored FRT data of devices.

FIGURE 7. Curves of the fitted hazard rate and survival functions for MEW
and other competing models; Censored FRT data of devices.

model is suitable for fitting the FRTs. Table 6 presents theML
estimates, negative log-likelihood (−ℓ), AIC, BIC, and AICc
values for various trained distributions, including MEW.
Based on the table, the MEW model has the lowest negative
log-likelihood (−ℓ), surpassing the other fitted models by a
significant margin of at least one unit. Moreover, the MEW
model outperforms all the other learned additive and non-
additive models, as evidenced by its top ranking in terms of
AIC, AICc, and BIC selection criteria. This implies that the
proposed MEW model is the most appropriate for accurately
describing the FRT data. FIGURE 7(a)-(b) shows the fitted
models’ survival functions and HRFs. In FIGURE 7(a), the
reliability curves of the learned models and the Kaplan-Meier
(KM) estimate are depicted. It is obvious that the fitted relia-
bility curves of MEW approximates the KM to some reason-
able degree better than the competing models. It is observed
from FIGURE 7(b) that the HRF of the MEW has provided
the best curves that resemble the FRTs non-parametric HR
represented by the empirical step function (SF).

To proceed with the Bayesian inference, we construct the
posterior samples of the parameters for the data by employ-
ing the HMC algorithm and generating four parallel chains,
each with 2000 independently and identically observations.
We discard the first 1000 as warm-up and managed the last
1000 posterior samples to calculate the posterior summaries
given in TABLE 7. FIGURE 8(a)-(c) depicts the trace, pos-
terior density and box plots of the HMC-generated samples.
The trace plots reveal the four parallel HMC chains converge
to comparatively the same target distribution for each of the
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TABLE 7. ML and Bayes estimates, along with 95% ACI, BpCI and HPD
intervals for MEW parameters; Censored FRT data of devices.

FIGURE 8. Posterior plots depicting: (a) the trace plots (b) density curves
and (c) box plots for the MEW parameters; Censored FRT data of devices.

four parameters. This finding is also supported by the density
and box plots which are nearly symmetrically distributed
around the central values. The correlations between the Bayes
estimates of the parameters are shown in scatter matrix given
in FIGURE 9. The fact that most parameter pairs appear
to have very low correlation points to the accuracy of the
posterior estimates under the HMC method.

TABLE 7 provides the ML, Bayes estimates and 95%
intervals of α, γ, λ, and θ . From the Table, the values of
estimated values for the first three parameters α, γ and θ of
the proposed MEW are nearly close to each other under the
two approaches. However, the Bayes estimate of λ is shown
to be relatively bigger than its ML estimate. We also display
the survival and HR curves of the Bayesian MEW model in
FIGURE 8, which are depicted to strongly agreed with their
MLE counterparts.

Thus, we conclude that the numerical results are consistent
with FIGUREs 8-7, and that the MEWmodel may be applied
to analyze and predict the reliability of the censored failure
and running time of devices via either of the estimation
approaches.

B. TIME TO FAILURE OF 50 DEVICES
The values in TABLE 8 correspond to the times to failure
(TTF) of 50 electronic devices [56]. The TTF data is still
one of the most well-known benchmark lifetime data, dis-
tinguished by bathtub-shape HR and used to validate the fits
of a newly built model. It has been used by Mudholkar and
Srivastava [57], Xie and Lai [12], Sarhan and Apaloo [54],
EL-Baset and Ghazal [55], and Shakhatreh et al. [13] to

FIGURE 9. Scatter plot matrix of HMC output for fitting MEW; Censored
FRT data of devices.

TABLE 8. Time to failure of 50 electronic devices.

TABLE 9. ML estimates along with parametric and non-parametric
goodness-of-fits statistics; TTF data.

validate the fit of ExpW, AddW, EMWE, EaddW, and
GExtEW models, respectively. The outcomes from each
study show how these models outperform the other compet-
ing models analyzed in the studies. In this illustration, we will
show that the MEW model can better fit TTF data than the
earlier mentioned and many recently introduced models.

TABLE 9 lists the ML estimates for all the trained models’
parameters, along with their associated model selection cri-
teria. It is noted that AIC = 418.103, BIC = 425.751, and
KS = 0.098 for the enhanced MEW model is by far the
least among all other competing models. Consequently, the
MEW provides the best fit among all other distributions.
FIGURE 10(a)-(b) demonstrates the curves of the fitted sur-
vival and HRF for the MEW, EMWE, EaddW, GExtEW,
ExpW, and EW models for TTF data fitting, along with their
corresponding empirical survival and HR step function (SF).
As shown by FIGURE 10(a), the MLE.MEW survival curve
best resembles the Kaplan-Meier SF (KM) among all the
fitted survival curves. The MEW is also shown to explore the
HR of the TTF data best than the other distributions. It can
be further seen from FIGURE 10(b) that the HR curve of
the MEW model has identified the early, constant/random,
and wear-out segments of the empirical SF. This is very
significant among all the HR curves of the models.
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FIGURE 10. Curves of the fitted hazard rate and survival functions for
MEW and other competing models; TTF of electronic devices.

TABLE 10. ML and Bayes estimates, along with 95% ACI, BpCI and HPD
intervals for MEW parameters; TTF of electronic devices.

To determine the Bayes estimate of MEW parameters,
we sampled 2000 observations from the proposed poste-
rior distributions of the parameters for four parallel chains.
In each case, the last 1000 samples are recorded for posterior
computations while leaving out the first 1000 observations as
a warm-up.

FIGURE 12 depicts the trace plots, posterior density
curves, and box plots generated by the HMC method. For
each parameter, the trace plots reveal the quick convergence
of all four parallel chains to the same target distribution. The
density curves and box plots have supported the trace plot
by displaying the approximately symmetrically distributed
curves around the mid-values and plots with similar prop-
erties. We further present the scatter matrix of the posterior
samples as given in FIGURE 11, to show the less sensitivity
of the HMC algorithm to correlated parameters. The figure
reveals that all pairs of MEW parameters have very weak
relationships except for the correlation between γ and θ .
Therefore, it depicts how the algorithm could attenuate the
correlation effect while producing decent posterior samples.

TABLE 10 displays theML and Bayes estimates of γ, α, θ ,
and λ, along with their 95% asymptotic, bootstrap and HPD
intervals. From the Table, all the estimated values from either
approaches are very close to each other. The intervals have
well contained the their associated estimates.

Consequently, we can infer that the MEW model under
the two inferential methodologies have well describe the
TTF data as evidently shown by the numerical and pictorial
findings.

C. COMPATIBILITY OF THE MEW MODEL
Here, we will discuss how well the proposed MEW model
matches with two data sets through a straightforward but
logical method called predictive simulation [58]. The basic
concept behind using predictive simulation to evaluate the
compatibility of the model is to compare the original sam-
ple or its relevant function with the data generated by
the fitted model, which is referred to as the predictive

FIGURE 11. Posterior plots depicting: (a) the trace plots (b) density curves
and (c) box plots for the MEW parameters; TTF of electronic devices.

FIGURE 12. Scatter plot matrix of HMC output for fitting MEW; TTF of
electronic devices.

FIGURE 13. Box plots for the original data and three distinct simulated
samples (S1, S2 and S3) from the trained MEW models under Bayesian
and ML approaches: (a) Meeker-Escobar (FRT) data and (b) Aarset (TTF)
data. Asterisk (*) within the bars represent the sample means.

sample. To accomplish this, we will employ box plots,
a commonly used visual comparison tool, to evaluate the
predictive samples from the fitted MEW models (using the
two estimated approaches) with each of the original data
sets.
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The figures in FIGURE 13 display box plots that compare
three predictive samples from MLE.MEW and Bayes. MEW
to the original sample (Real data) for the two examples. It is
evident from the box plots that the predictive samples from
the learnedMEW using both estimation methods are in better
agreement with the original sample in all cases. These results
indicate that theMEWdistribution closelymatches the exper-
imental data distributions. Based on numerical and graphical
analyses, the proposedMEWmodel provides a more accurate
description of the Meeker-Escobar and Aarset data sets than
the other five competingmodels. As a result, theMEWmodel
is highly recommended for studying and predicting failure
time data sets with different bathtub failure rates in the fields
of reliability engineering and survival studies, among others.

VI. CONCLUSION
We introduce a modified version of the exponential-Weibull
(EW) distribution, named the modified exponential-Weibull
(MEW) model, which extended some physical character
of the EW. We conduct a thorough Bayesian inference of
the MEW model and also present the maximum likelihood
method. To sample from the MEW posterior distribution,
we use theHamiltonianMonte Carlo algorithm.We assess the
performance of the MEWmodel by applying it to two sets of
data on the failure times of devices, onewith censored and one
with uncensored data, both exhibiting a bathtub-shaped haz-
ard rate. We compare the MEW model to six other bathtub-
shaped methodologies, including the EW, AddW, EMWE,
EAddW, and GExEW models based on the hazard rate char-
acterizations of the data. We present model selection criteria,
survival, and hazard rate curves for each model to determine
which model best fits the case study data. Our numerical and
graphical results suggest that the MEW model may be the
most suitable for describing the failure times of the devices.
Thus, our findings indicate that modifying the EW model
while preserving its physical interpretation is the optimal
approach to extending the model.
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