
Received 12 April 2023, accepted 6 May 2023, date of publication 16 May 2023, date of current version 24 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3276872

Cross-Platform Real-Time Collaborative
Modeling: An Architecture and a Prototype
Implementation via EMF.Cloud
KOUSAR ASLAM , (Member, IEEE), YU CHEN , MUHAMMAD BUTT,
AND IVANO MALAVOLTA , (Member, IEEE)
Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

Corresponding author: Kousar Aslam (k.aslam@vu.nl)

This work was supported in part by the Rijksdienst voor Ondernemend Nederland (RVO) through the ITEA3 BUMBLE Project 18006.

ABSTRACT Real-time collaboration in model-driven software engineering is gaining increasing attention
from both the research and industrial community. This is due to its potential adverse effects on the efficiency
of software modeling process. However, current approaches for real-time collaboration are tightly coupled
to modeling platforms and language workbenches. To address this issue, we present BUMBLE-CE, the first
extensible approach for cross-platform real-time collaborative modeling which is independent of both the
modeling platforms and the domain-specific modeling language used by the modelers. One of the main
characteristics of BUMBLE-CE is that it allows modelers to work on the head revision of their models
as usual and, when necessary, they can start and terminate on-demand real-time collaborative modeling
sessions. This paper reports on the requirements driving the design of BUMBLE-CE, its architecture
and underlying design decisions, implementation of BUMBLE-CE using EMF.Cloud technologies and an
example application of BUMBLE-CE to state machine models realized in Eclipse EMF and Jetbrains MPS.

INDEX TERMS Collaborative modeling, eclipse EMF, jetbrains MPS, model-driven software engineering.

I. INTRODUCTION
Model-Driven Software Engineering (MDSE) uses models
as the main artefacts during software design and develop-
ment, thus increasing the abstraction level of the software
development process [1]. MDSE-based software is therefore
expected to be easier to understand, to facilitate better com-
munication among software engineers, and to improve soft-
ware maintenance [2]. Similarly, with the growing trend of
geographically distributed teams, adoption of agile method-
ologies, and open-source development, the need for increased
collaboration within software development teams is more
and more pressing [3]. Combining the positives of both
MDSE and Collaborative software engineering, Collabo-
rative MDSE deals with the development of methods and
tools to increase communication and collaboration among

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

technical and non-technical stakeholders working together on
large models for building complex software systems [4].

CollaborativeMDSE is gaining popularity in academia [5],
[6] and industry [7]. This is due to the fact that the ardu-
ous and complex task of designing models for complex
systems can benefit from the brain power of more than
one modeler, in many cases involving different expertise
in different disciplines [8]. Various modeling platforms
are available for defining and designing models, such as
the Eclipse Modeling Framework [9], Jetbrains MPS [10],
MetaEdit+ [11]. The choice of modeling platform can depend
on either the chosen domain-specific modeling language
(DSML) or organization-specific constraints and preferences.
While working on these modelling platforms, modelers can
collaborate either in an offline mode (i.e., asynchronous col-
laboration [5]) or a real-time one (i.e., synchronous collabora-
tion [5]). In offline mode, collaborators check out a modeling
artefact from a version control system (VCS), such as Git,
and commit local changes to the repository asynchronously.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 49241

https://orcid.org/0000-0003-2474-0188
https://orcid.org/0009-0009-8180-5196
https://orcid.org/0000-0001-5773-8346
https://orcid.org/0000-0002-7194-3159


K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

This method is effective, though not fast due to the inevitable
delay that is introduced by having to wait for files to be sent
and received, as well as the time it takes to merge independent
changes [12]. In real-time collaboration, modelers can simul-
taneously edit a model and these changes are immediately
propagated to all other modelers (similarly to what Google
Docs does). The inefficiency of offline collaboration is elim-
inated by real-time collaboration through automatic synchro-
nization of model edit operations between modelers [13].
We focus on real-time collaboration in this work.

Several modeling platforms being used nowadays are
integrated with real-time collaboration tools. Examples of
such technologies are Modelix [14] for JetBrains MPS [15],
Spoofax [16] for Eclipse, and Visual Studio Live Share for
Visual Studio Code’s modeling SDK [17]. The need for
real-time collaboration in the context of modeling across
different platforms stems from the same reason as discussed
above - there are several modeling platforms available to
choose from. Currently less attention is being paid to enable
cross-platform real-time collaboration. At the time of writ-
ing, the MDSE research community is primarily interested
on intra-platform collaboration [6].

In our work, we aim to fill this research gap by present-
ing a novel generic architecture and its prototype real-
ization for real-time collaboration which is independent
of both the modeling platforms and the domain-specific
languages used by the modelers. The architecture has been
designed with the aim to provide flexibility to the modelers to
enable real-time collaboration within their preferred editors
with minimal effort. This is achieved via a set of exten-
sion points for external plugins where third-party developers
can extend the default real-time collaboration mechanisms
with their own business logic (e.g., by implementing their
own model validators, resolvers for tracing model elements
across modeling environments, and more). Our approach
allows modelers to work on different platforms by allowing
them to collaborate on the same model represented by dif-
ferent concrete syntaxes, yet conforming to the same meta-
model. This is different from multi-view modeling which
refers to decomposing the models into multiple views, that
are concerned with specific aspects of the whole system.
Each of these views is generally represented using com-
pletely different modeling languages, each with their own
abstract syntax [18]. The work has been done as part of
the BUMBLE ITEA3 project [19]. BUMBLE is a European
research project centered around blended modeling [20] and
collaborative modeling [5]. As such, we name our collabora-
tion engine as BUMBLE-Collaboration Engine (BUMBLE-
CE). In brief, the main contributions of this study are the
following:

1) Elaboration of the main requirements for cross-
platform real-time collaborative modeling engines.

2) The description of the software architecture and key
design decisions for building our extensible cross-
platform real-time collaborative modeling engine.

3) The prototype implementation of the above-mentioned
architecture using EMF.Cloud.

4) The description of an example application of the pro-
totype implementation of BUMBLE-CE, in the context
of a simple DSML for modeling state machines.

It is to be mentioned that in this work we focus on designing
and implementing BUMBLE-CE to fulfill the requirements
elicited in Section IV, not on providing an evaluation or
conducting a case study to assess BUMBLE-CE. In the future,
we will perform extensive evaluation, both in academic and
industrial contexts.

The target audience of this study is composed of
researchers and practitioners. Specifically, with this study
we provide evidence that collaborative modeling that is
both real-time and cross-platform is feasible, thus provid-
ing a foundation for researchers active in the collaborative
modeling research area; researchers can reuse/expand our
generic architecture for carrying out their own research, e.g.,
by (i) implementing (and empirically evaluating) their own
algorithms for change propagation across different modeling
platforms, (ii) integrating their own cross-platform tracing
mechanisms, (iii) studying how different concrete syntaxes
for the same DSML can be suitably integrated in a real-time
collaboration network, or (iv) studying how synchronous
and asynchronous collaborative modeling paradigms can be
suitably integrated. Practitioners, specially tool vendors, can
(i) use our generic architecture as a blueprint for implement-
ing their own collaborative modeling engines or (ii) expand
how EMF.cloud-based prototype into a production-ready col-
laboration engine and use it in their own industrial projects.

The rest of the paper is organized as follows: Section II
explains the essential concept of real-time collaboration
and introduces the technologies needed to understand the
paper; Section III draws a comparison between our work-
ing and existing approaches/tools for real-time collabora-
tion; Section IV presents the requirements elicited from aca-
demic and industrial partners for BUMBLE-CE; Section V
explains the architecture and underlying design decisions
for BUMBLE-CE; Section VI describes prototype imple-
mentation of BUMBLE-CE; an example application of our
collaboration engine is presented in Section VII. A reflection
on limitations and areas of improvement for BUMBLE-CE
is provided in Section VIII and finally we conclude in Sec-
tion IX. We suggest readers interested in the research context
of the work to focus on Sections II and III, the readers inter-
ested in the principles and design decisions for BUMBLE-CE
to focus on Sections IV and V, while the readers interested in
technical aspects of BUMBLE-CE to focus on Sections VI
and VII.

II. BACKGROUND
In this section, we provide the basic concepts for understand-
ing the remainder of this paper. Specifically, we first pro-
vide a definition for real-time collaboration and collaborative
modeling (Section II-A); then, we present the technologies

49242 VOLUME 11, 2023



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

used for implementing our prototype (EMF and EMF.Cloud,
Section II-B); finally we present Jetbrains MPS since it is a
relevant part of our example application on the DSML for
modeling state machines (Section II-C).

A. REAL-TIME COLLABORATION
Real-time collaboration is defined as the collaborative edit-
ing of data by multiple modelers over a network, in real-
time [21]. A well-known example of this type of real-time
collaboration is the collaboration functionality offered by
Google Docs, where multiple modelers can work on a single
document at once, seeing the input of others appear as it is
typed [22]. In this context, real-time refers to be within a
time frame that is considered sufficiently small for accept-
able timeliness [23]. Instantaneous communication over a
network is physically not possible, due to factors such as
travel and processing time, which is why there will always be
a delay involved to some degree. However, as Google Docs
exemplifies, when operating optimally, modern technology
allows for collaboration that appears near-instantaneous to
the collaborating modelers.

B. ECLIPSE EMF AND EMF.CLOUD
The Eclipse Modeling Framework (EMF) is a popular devel-
opment environment comprising a set of Eclipse plugins
that provide tools for MDSE in Eclipse [24]. EMF is an
implementation of the well-known MOF four-layers meta-
modeling stack [25]. The MOF stack is composed of the
following layers: M0 (Modeled System) layer represents the
software system to be modeled, M1 (Model) represents a
model edited by a modeler, M2 (Metamodel) defines the
modelling language used to create the model in M1, and
M3 (Metametamodel) defines a language for the definition
of modeling languages. In essence, the metamodel describes
the structure of the model and a model is a concrete instance
of this metamodel. Modelers are able to define metamodels
in EMF using the Ecore metamodeling language. Ecore is
an implementation of the Essential MOF (EMOF) language,
which is a subset of MOF [26]. A minimal set of elements
required to specify metamodels is provided by EMOF. EMF
models are programmatically manipulable through a Java-
based API, and EMF offers a converter for serializing and
deserializing models to/from XMI.

EMF.cloud [27] is the umbrella project for components and
technologies that make the EMF and its features accessible
on the web and in the cloud. The current EMF implemen-
tation natively supports loading, model manipulation, and
serialization. To connect web clients, the EMF.cloud model
server builds a foundation on top of current technologies.
It can control the state of loaded models in a shared editing
domain at run-time. It permits applying modifications using a
command pattern and registering for modifications. It offers
a REST API that supports various formats for models and
model edits (e.g., JSON and XMI) [28]. The features listed

above make EMF.Cloud a good candidate for our prototype
implementation of BUMBLE-CE.

C. JETBRAINS MPS
TheMPS IDE1 is an open-source language workbench devel-
oped by JetBrains [10]. It is used within as well as outside of
JetBrains to aid in the development of a variety of modeling
tools.MPSmakes use of projectional editing. This means that
users of a language defined withinMPS edit the language ele-
ments of amodel in a fixed layout determined by the language
developers. Behind the scenes, MPS is keeping track of a data
model that describes all aspects of the model being edited.
The projection that the modeler sees is generated from this
datamodel. A projectionwithinMPS can be textual, symbolic
and/or tabular. This list can be expanded further upon through
the implementation or use of plugins (e.g., for providing
graphical editors). One of the most recurrently-proclaimed
features of projectional editing is its user-friendliness, as it
does not require the modelers to edit any source code and
largely eliminates the possibility for modelers to make syn-
tactic errors while working on the models.

III. RELATED WORK
Real-time collaboration has been identified as a popular
research topic [5], [6], aligning well with its 95% industry
need [7]. Several approaches and methods have been devel-
oped to deal with the challenging task of facilitating modelers
to make changes to the same model simultaneously. Table 1
presents existing popular tools/approaches for real-time col-
laborative modeling. We classify the identified tools along
the following features: Technical Space, specifies technology
that the tool is being built on, such as Eclipse, Jetbrains MPS,
or any other custom framework; Cross-platform, whether the
tool is able to incorporate another modeling platform as a
collaborating party; Change propagation, whether the tool
provides flexibility to the user to choose a particular mech-
anism for propagation of changes during real-time collabo-
ration session; Language independent, does the tool allows
modelers to collaborate on model developed in any modeling
language or only supports a specific language; Conflict reso-
lution, whether the tool provides some mechanism to resolve
the conflicts occurring during collaboration; and finally the
Workspace awareness, the ability of tool to allow users to see
what other collaborators are doing in real-time, such as the
cursor location of others in a document.

MONDO collaboration framework enables offline and
real-time collaboration for models hosted in a version con-
trol system (VCS), currently SVN repository [29]. MONDO
provides a secure collaborative framework for VCSes, but it
is not real-time. The real-time collaboration is handled by
offering a web basedmodeling front-end (Eclipse RAP-based
web application). In contract to BUMBLE-CE, this web user
interface is language dependent and, therefore, needs to be
provided separately for each modeling domain supported by

1https://www.jetbrains.com/mps/

VOLUME 11, 2023 49243



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

TABLE 1. Comparison of BUMBLE-CE with existing real-time collaboration tools/approaches.

MONDO collaborative modeling tool. Workspace awareness
is mainly provided by the versioning system (e.g., commit
messages, update notifications, etc.).

AToMPM is a cloud-based multi-user tool that provides an
in-browser interface for different modeling activities [30].
Each client of AToMPM has its own view of the same model,
using its own concrete syntax. The real-time collaboration is
supported either (i) by sharing the same model and canvas or
(ii) by sharing the abstract syntax only. In both cases, changes
in the abstract syntax are shared; in the first case, changes
in the representation are shared as well. AToMPM does not
offer any locking or conflict resolution mechanism. Similar
to BUMBLE-CE, the first change seen by the server always
wins. AToMPM provides workspace awareness by making
updates from other users directly visible in the editor.

WebGME [31] is a web-based collaborative (meta) model-
ing tool that supports online collaboration andmodel version-
ing. Shared data are protected by applying user access con-
trol. WebGME uses lightweight branching and allows users
to create commit objects and send branch update messages
to the server. The user is responsible for manual creation of
branches and there is no mechanism available for automatic
conflict resolution, or locking to prevent conflicts. WebGME
also provides workspace awareness by making updates from
other users directly visible in the editor and providing general
notifications, such as a popup messages.

Collaboro, based on EMF, provides real-time collaboration
facilitation for creation of domain-specific languages [32].
Its metamodel is generic and can be applied to various group
decision-making problems. Collaboro supports both static
(e.g., change proposals) and dynamic (e.g., voting) aspects
of collaboration. Although Collaboro enables team work
between stakeholders at different levels of abstraction and
decision making, all the stakeholders involved in collabora-
tion need to agree on all of the proposals as Collaboro only
adopts a consensus based policy.

In our previous work, we presented a language dependent
tool, Parsafix, which enables real-time collaboration among
engineers working on Modelix and Saros [33]. Modelix is
a real-time collaboration tool for JetBrains MPS, and Saros
is a real-time collaboration tool for the Eclipse IDE (as well
as IntelliJ). Parsafix achieved its goal by facilitating indi-
rect communication between existing real-time collaboration
technologies that the modeling platforms possess, posing as a
client for each and translating model data from one side to the
other, ultimately forming a collaborative project. From all the

tools listed in Table 1, only Parsafix supported cross-platform
collaboration, however, the tool is not extensible. This implies
that we could not incorporate more editors as collaboration
parties in Parsafix.

The recent capabilities of mobile devices have enabled
their use for modeling. FlexiSketch facilitates domain-
specific modeling on the mobile devices, mainly for the
purposes of requirements elicitation [34]. FlexiSketch allows
modeling and metamodeling to be done in any order. For
instance, a user can sketch a model informally, introduce
new sketched elements, and then upgrade some of the ele-
ments as concepts of a language. One of the problems with
FlexiSketch is an ever increasing metamodel size with every
new modeling project. For conflict resolution, FlexiSketch
uses a non-optimistic locking mechanism to prevent conflicts
by preventing the modification of the same element by more
than one user. In such cases, the element is shown with a red
background and becomes non-reactive to the inputs of other
users.

The comparison presented in Table 1 shows that
BUMBLE-CE mainly distinguishes from other real-time
collaboration engines in (i) facilitating modelers working in
different platforms to work together (Cross-platform) and,
(ii) allowing themodelers to incorporate a mechanism of their
choice for propagation of edit operations (Change propaga-
tion) among collaboration parties during collaboration ses-
sions. The latter point is achieved by making BUMBLE-CE
extensible by providing extension points so that engineers can
plugin their custom logic in BUMBLE-CE.

IV. REQUIREMENTS FOR BUMBLE-CE
The requirements for BUMBLE-CE are elicited from the use
cases provided by both the academic and industrial partners in
the BUMBLE project. The purpose of these requirements is
to clarify what functionality must be supported by BUMBLE-
CE. The starting point for the design of BUMBLE-CE is that,
given a DSML and its corresponding editors, it shall provide
a collaboration mechanism that allows multiple modelers to
collaboratively edit the models in real-time across different
modeling platforms. Within BUMBLE-CE, we identify the
following stakeholders and related responsibilities:

- BUMBLE-CE admin: The technical person adminis-
trating the front- and back-end of BUMBLE-CE. The
admin will be responsible for setting up the collab-
oration engine for a specific use case, e.g., they add
the languages and their supported editors for which

49244 VOLUME 11, 2023



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

collaboration is enabled, they integrate the various plu-
gins to be used for collaborating, they assign roles to
modelers, etc.

- MDSE engineer: A person developing the plugins
(e.g., Consistency Checker, GitHub Driver) for our
BUMBLE-CE engine.

- modeler: Amodeler is anMDSE practitioner collaborat-
ing on models with other modelers through BUMBLE-
CE.

Below we present the requirements we identified for sup-
porting cross-platform real-time collaborative modeling in
BUMBLE-CE.

R1: Independence from the used modeling platform.
Agnostic of a particular platform the modelers have chosen
(e.g., EMF or MPS) – changes made in one platform shall
be propagated to all other editors in the other modeling
platforms. The system shall be fully compatible with the
existing platforms such that it shall fully preserve all existing
functionalities and features, user interfaces and workflows
for modeling and non-real-time collaboration. In this way
modelers would effectively reuse their knowledge, skills, and
experience in a familiar environment along with real-time
collaboration functionalities provided by the collaboration
engine.

R2: Freedom of using a preferred concrete syntax. Mod-
elers shall be able to choose the editor/view to be used to
edit/view (elements of) the models they are working on.
This means that independently from the concrete syntax the
modelers have chosen, changes by an individual modeler
are instantly visible to all other modelers that have view-
ing/reading and/or editing/writing rights to the considered
(collection of) models.

R3: Authentication of modelers. The modelers shall be
identified by means of an authentication step (e.g., with a
login) when accessing the modeling environment. For this
purpose, modelers will be assigned with username and pass-
word to be used as login credentials.

R4: Access rights to models.Modelers shall only be able to
collaborate on models for which they have access rights. For
a collaboration session, the initiator (a modeler who started
the collaboration session) will be able to invite other modelers
(collaborators) to the collaboration session.

R5: Undo functionality for modeler’s own actions. By
default, a modeler shall at least have full access rights to
model elements that they modified. In particular, while edit-
ing a model, a modeler must at least be able to perform undo
actions for modification that they made and is (by default) not
able to undo modifications performed by other modelers.

R6: Supporting real-time collaboration. Changes made by
a modeler in one editor should be visible to the modelers in
real-time in other editors. This implies that during a real-time
collaboration session, BUMBLE-CE should ensure high local
responsiveness such that each local editing operation per-
formed on the models must immediately take effect without
noticeable delay.

R7: Supporting model validation. It shall be possible to
view errors/notifications on the results of model validation
in the editor/view for any concrete syntax that represents
(elements of) the corresponding model. Model validation is
therefore to be realized at the level of (elements of) the
relevant model while the interaction with the modeler is to
be performed via all of the available concrete syntaxes.
R8: Independent cross-referencing of model elements.

Cross-referencing between elements of the same model must
be agnostic of the specific syntax that a modeler may have
selected to edit/view such model.

R9: Supporting custom modeler’s preferred actions.Mod-
elers must be able to enable extra functionalities preferred by
them to fulfill their needs for performing specific actions on
models e.g., generating code, checking consistency between
models, etc.

V. THE SOFTWARE ARCHITECTURE OF BUMBLE-CE AND
ITS DESIGN DECISIONS
In this section, we present the generic architecture of
BUMBLE-CE which enables modelers to collaborate in
real-time across different platforms by fulfilling the require-
ments illustrated in the previous section. Our cross-platform
real-time collaboration engine implies a star topology where
the BUMBLE-CE will be deployed on a server at the cen-
ter of the star and various collaboration parties will run on
third-party modeling environments locally on the modelers’
machines.

Figure 1 shows an example scenario where four modelers
are collaborating on the same model of a state machine
across different modeling platforms. Specifically, modeler
A is working in an Eclipse2 environment where the state
machine is modeled textually via an editor implemented in
xText,3 modeler B is also working in an Eclipse environment
but in this case the model is edited via a GMF-based graphical
editor, modeler C is working in an MPS environment with a
textual editor, and finally modeler D is working on a custom
web app implemented in Angular4 where the state machine
is edited via a custom graphical editor.

The main responsibilities of BUMBLE-CE is to bring
up, terminate, and enable real-time collaboration sessions
among modelers working on the same model. Intuitively,
when two or more modelers are collaborating on the same
model, every edit operation on the client side is propagated
to the BUMBLE-CE (that is, the center of the star topology),
properly remapped to the concrete representations and for-
mats of the other modelers participating in the collaboration
session, and then propagated to all the other involved model-
ing environments.

The example scenario already shows some key design
decisions we took for BUMBLE-CE.

2https://www.eclipse.org/
3https://www.eclipse.org/Xtext/
4https://angular.io/

VOLUME 11, 2023 49245



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

FIGURE 1. Example of cross-platform real-time collaborative modeling enabled by BUMBLE-CE.

FIGURE 2. Software architecture of BUMBLE-CE.

- We design BUMBLE-CE with minimal impact on the
tools and modeling environments used by the modelers.
Real-time collaboration is realized via a set of dedi-
cated plugins that are suitably loaded in the (already-
existing) modeling environment of the modeler. The
BUMBLE-CE plugins have two main responsibilities:

(1) to establish a continuous communication chan-
nel to the central BUMBLE-CE for sending/receiving
edit operations in real-time and (2) to provide an
always-updated inventory viewer, which allows the
modelers to get an overview about all models managed
within the project, the current collaborative sessions, the

49246 VOLUME 11, 2023



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

status of the models (e.g., persisted on Git, valid/not
valid etc.).

- A track record of all the models, relationships between
the models, modelers, collaboration sessions and DSML
definitions used in the project are kept by means of a
so-called Model Inventory. The Model Inventory stores
various relationships between the models (which can
be freely customized by its modelers) and the DSMLs
definitions. The Model Inventory keeps track and pro-
vide information about the currently active real-time col-
laboration sessions, models that are being collaborated
on, and modelers currently involved in collaboration
sessions. The inventory viewers on client side is devel-
oped once and for all for each modeling environment
(e.g., Eclipse, MPS), whereas collaboration plugins are
developed once and for all for each type of editor (e.g.,
Eclipse xText, MPS textual editor, Eclipse Sirius).

- During a real-time collaboration session, models are not
persisted and all the edit operations are performed in
memory and internally stored in a stack of commands.
Model persistency is managed externally by BUMBLE-
CE by means of persistency drivers. A default imple-
mentation for the persistency driver is provided in our
work. In the scenario described above, we show a basic
GitHub driver which performs a ‘‘commit and push’’
operation on a selected GitHub repository as soon as
the modelers collaborating on themodels agree that their
model reached a certain level of stability; this operation
also resets the collaboration session and its correspond-
ing stack of commands.

- During a real-time collaboration session, the edit opera-
tions is stored in memory.

- The contents of theModel Inventory can be inspected at
any time via a web-based viewer, which is independent
of the modeling platforms used by the modelers for
collaboration.

A more detailed description of the architecture of
BUMBLE-CE is shown in Figure 2. In the remainder of this
section we describe each component of the architecture and
relate it to the main responsibilities, technical choices, and
its relationship with the requirements reported in previous
section.

A. MODEL INVENTORY
The responsibility of the Model Inventory is to represent and
store the metadata of all modelers, models, DSML definitions
(i.e., the metamodels underlying the used DSMLs), their rela-
tionships and the ongoing collaboration sessions. Internally,
the Model Inventory is implemented as a megamodel [35].
Megamodeling has been proposed with the aim of supporting
modeling in the large, that is, dealing with models, meta-
models, and their properties and relations. Intuitively, a meg-
amodel is a model in which the atomic units of informa-
tion are other models (or metamodels). While a metamodel
specifies properties and rules governing models construc-

tion, a megamodel specifies properties and rules governing
MDSE artefacts construction, and among them, models and
metamodels. Megamodeling offers the possibility to specify
relationships between models (and metamodels) and to nav-
igate among them. This is fundamental in the BUMBLE-CE
since it allows us to abstract from specific technical spaces of
collaborating parties, attach collaboration-specific metadata
to every model/DSML and keep track of the real-time collab-
orative sessions and their associated metadata.

By following the models@runtime principles [36], the
megamodel stored in the Model Inventory is continuously
updated, so as to keep in sync the workspaces of the clients’
modeling environments.

B. MODEL INVENTORY CONTROLLER
The Model Inventory Controller has the main responsibil-
ity of providing standard functionalities for accessing and
manipulating theModel Inventory, such as CRUD operations
on all its contained information about models, collaborators,
languages, supported editors. Model Inventory already con-
tain information about the access rights of modelers encoded
in the corresponding roles associated to them (i.e., owner,
initiator and collaborator). The BUMBLE-CE admin assigns
these roles via the BUMBLE-CE Web-based Model Inven-
tory Viewer. These access-based roles capture the relation
between the modeler and the model under collaboration.
Different authentication and authorization mechanisms are
included in the Model Inventory Controller which make use
of information about modeler roles to enable the satisfaction
of requirements R3 and R4.
Model Inventory Controller provides an extension point

for third-party plugins which allows third-party actions to be
called at specific moments in time, for instance, when a new
model is created, when a real-time collaborative session is
terminated, when a modeler pushes a certain button on their
modeling editor, etc.). Examples of providers of such external
actions include consistency checkers for specific DSMLs,
code generators, timing analysis tools, etc. This functionality
has been provided to satisfy requirement R9. A special type
of action consists of model validators, which allow theModel
Inventory Controller to check for the presence of errors in the
models and then to notify the modeler accordingly.

The Model Inventory Controller communicates with the
Real-time Sessions Manager when new real-time collabora-
tion sessions need to be spawned or terminated, depending
on the requests arriving from the modelers. Also, this compo-
nent communicates to the Persistency Controller by issuing
requests for fetching or saving models.

C. INVENTORY VIEWER
The Inventory Viewer is a platform-specific plugin loaded on
the client side of the architecture aimed at interacting with
the Model Inventory. It allows modelers to suitably integrate
the API provided by the Rest API Gateway into the client.
For example, modelers using Eclipse are able to visualize
all models and DSML referenced by the Model Inventory,

VOLUME 11, 2023 49247



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

FIGURE 3. Overview of the information architecture of the BUMBLE-CE
web-based model inventory viewer.

to manipulate its internal megamodel, and to trigger the
third-party actions and drivers provided by the Model Inven-
tory Controller and Persistency Controller, respectively. For
the sake of simplicity, at the moment we are envisioning that
Inventory Viewer plugins will communicate with the REST
API Gateway by means of long polling via HTTPS.

D. BUMBLE-CE WEB-BASED MODEL INVENTORY VIEWER
TheBUMBLE-CEWeb-basedModel Inventory Viewer allows
modelers andMDSE engineers to quickly inspect and manip-
ulate the megamodel stored in the Model Inventory at any
time. This component also allows modelers to trigger all the
actions currently loaded as plugins of the Model Inventory
Controllers and to trigger the drivers used for the persistence
layer. On the client side, this action can be performed using
the Inventory Viewer plugin.

The user interface of BUMBLE-CE Web-based Model
Inventory Viewer is designed with respect to the usability
principles [37] and accessibility guidelines [38] to meet the
functionalities proposed in the requirements with usability
and accessibility. The BUMBLE-CEWeb-basedModel Inven-
tory Viewer has two distinguished layouts in page style,
namely the Login page layout and the Home page lay-
out. The information architecture of our inventory viewer
is shown in Figure 3. All the structures listed behind the
Home page is different sub-pages that are displayed on the
information board. On the Login page, the user of BUMBLE-
CE Web-based Model Inventory Viewer enters the credentials
(username and password). On successful entry, the user is
redirected to the Home page. The Home page of the inventory
viewer is where users may access information stored in the
Model Inventory. Within the Home page layout, sections
such as collaboration sessions and languages are located. The
default view of the Home page provides a concise view of the
inventory instances. This means that this is the sub-page to
which the user is directed after logging in.

E. COLLABORATION PLUGIN
The main responsibility of this component is to establish
and maintain a bidirectional communication channel with the
collaboration engine during a real-time collaboration session.
The communication channel is built on top of the well-known
concept of language server protocol (LSP). The Collabora-
tion Plugin uses a different flavour of LSP, depending on the
type of editor used by the modeler. Based on the results of our
studies of the state of the art and practice [6], [7], we aim to
support the following three protocols:

1) LANGUAGE SERVER PROTOCOL (LSP)
It is the most stable version of the LSP concept and supports
actions predicating on text-based edits, such as addition of a
character or removal of a block of text. This protocol is used
for propagating the changes performed in textual editors.

2) GRAPHICAL LANGUAGE SERVER PROTOCOL (GLSP)
It is an evolved version of the LSP with a focus on graphical
modeling languages. Instead of dealing with textual edits,
its main actions predicate on typical elements of a graphical
editor, such as addition/removal of nodes and edges, moving
of a node, rerouting of an edge and more.

3) MODEL SERVER PROTOCOL (MSP)
Such a protocol focuses on the structural semantics of an
edited model and the semantic changes of a model with
respect to the structure dictated by the metamodel it conforms
to. Examples of actions represented in this protocol include:
addition/removal of a model element (i.e., an instance of a
metaclass), update of the value of a structural feature of a
model element (i.e., the update of either one of its references
or attributes). A platform-independent MSP does not exist for
now. Such anMSP allows for a direct treatment of the seman-
tic changes happening in themodels, thus keeping BUMBLE-
CE more future proof since it is capable of managing also
other types of editors that are not currently covered by LSP
or GSLP (e.g., tree-based editors, table-based editors, form-
based editors etc.).

All the above-mentioned protocols are language-
independent, meaning that the information passing from the
Collaboration Plugin to the BUMBLE-CE encodes also the
meta-information related to the performed edit operations.
However, the Collaboration Plugin is coupled to the specific
editor being used (e.g., Eclipse xText, Eclipse Sirius, MPS
editor) since it needs to know how to listen to the edit
operations performed in the local editor in order to relay
them through one of the language server protocols. For
example, in editors based on the Eclipse Graphical Modeling
Framework (GMF), Java classes can use an instance of the
DiagramEventBroker class, which acts as a listener for model
changes and broadcasts EObject events to all registered
listeners. This behaviour is specific to Eclipse GMF and
other editors have similar (but not identical) event-based
systems for notifying listeners to model changes. The local

49248 VOLUME 11, 2023



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

editor is also updated when changes are made on the other
collaborating parties, still via the three protocols mentioned
above. In this case it is the BUMBLE-CE which propagates
changes from the other editors to the local one. Different
collaboration plugins might be used within the same mod-
eling environment, thus allowing the modeler to choose their
preferred editor to be used when collaborating on a certain
model or a default one. Collaboration plugin fulfills the
requirement R2.

F. SP GATEWAY
The SP Gateway acts as a reverse proxy that accepts
JSON-RPC messages from the collaborating parties and suit-
ably (i) abstracts from the details of the used language server
protocols and (ii) routes the messages to the correct real-time
collaboration session. This design choice allows us to be inde-
pendent of the specific version of the used language server
protocol and when possible, from the specific Editor Plugins,
decouple the server-side components of the collaboration
infrastructure from the third-party plugins and to balance the
load of requests.

G. REAL-TIME SESSIONS MANAGER
This component is the core of the real-time features of
the collaboration engine. Its main responsibility is to sat-
isfy requirements R1 and R6, specifically: (i) to bring up
real-time collaboration sessions, (ii) to propagate edit oper-
ations coming from each collaborating party to all the other
collaborators, and (iii) provide a set of extension points for
external plugins where third-party developers can extend the
default real-time collaboration mechanisms with their own
business logic (e.g., by implementing their own model val-
idator, resolvers for tracing model elements across modeling
environments). Collaboration sessions happen in real-time,
meaning that modelers can perform live concurrent editing
on the same model. This can be achieved by exploiting a
particular class of algorithms for multi-site real-time concur-
rency, called operational transformation [24]; or alternatively
evaluating the usage of conflict-free replicated data types
(CRDT) [39]. In both cases, it is possible to reasonably merge
concurrent updates performed by different modelers without
conflicts [39], [40]. In our work, we do not support conflict
resolution for now. In the future, we aim to incorporate exist-
ing conflict management techniques for handling concurrent
changes occurring during real-time collaboration sessions
managed by BUMBLE-CE [41].

Internally, the Real-time Sessions Manager follows the
publish-subscribe architectural pattern [42]. Every time a
real-time collaboration session is started, a dedicated event
bus is created capable of managing textual, graphical and
semantic edits. Then, the following sequence of operations
is performed: model validation, edit adaptation, and edit
propagation. Since model validation, edit adaptation, and
identity resolution depend on the semantics of the models
and on the specific constraints of the collaborating parties,

we decided to make BUMBLE-CE independent from their
specific implementations. BUMBLE-CE provides two cor-
responding extension points to third-party developers for
implementing their own business logic for model valida-
tion, edit adaptation and identity resolution as external plu-
gins. This makes BUMBLE-CE independent of the specific
implementations of the collaborations parties. This design
choice is also convenient from a scientific perspective since it
will allow us to experiment with different combinations and
heuristics for collaborative modeling, and to still control the
overall collaboration model (this will make our experiments
replicable and independently verifiable). In the following,
we describe each of the above-mentioned operations.

1) MODEL VALIDATION
It checks the well-formedness of the current edit operation.
Depending on the specific needs of a software project, differ-
ent validators can be executed on the currently-edited model
and the received edit operations. For example, in a project we
might have a constraint that every edit operation must always
lead to a valid instance of the DSML.

The current edit operation proceeds to the next step of the
sequence (i.e., Edit adaptation) or is discarded, depending on
the outcome of the model validation step. This functionality
is provided to satisfy requirement R7.

2) EDIT ADAPTATION
It adapts the currently-received edit operation (e.g., a textual
change) to the other modeling environments participating
in the collaboration (requirements R8). This step is crucial
since it is not possible to simply forward the edit operations
performed on onemodeling environment to all the other mod-
eling environments. As we learned in our previous work [33],
this is true even if the concrete syntax of the modeling envi-
ronments is the same. Edit adaptations can act also as a filter,
for example, we expect that several changes performed in
graphical models might not need to be forwarded to textual
modeling environments. Examples of edit changes which
might be filtered out when passing from a graphical edit to
a textual edit include: moving a node within the diagram,
resizing of a node, rerouting of a connector etc.

3) IDENTITY RESOLVER
When adapting an edit operation, it is crucial to keep informa-
tion about which element in the model edited in a modeling
environment corresponds to which elements in other mod-
eling environments. Internally, the edit adaptation step can
use one or more identity resolvers. The main responsibility of
an identity resolver is to implement a rule or a heuristics for
mapping modeling elements in one environment to modeling
elements in another environment. Such a resolution can be
generic (e.g., elements with the same ID are matched, name-
based matching, structured-based matching etc.) or editor-
specific.

Lastly, during edit propagation, the event bus sends the edit
operations to all subscribed parties via the SP Gateway. This

VOLUME 11, 2023 49249



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

means the Collaboration Plugins running in the modeling
environment of the modeler receives the changes performed
by other collaborators and applies them in the locally-edited
model.

Internally, each real-time session stores a command stack,
which allows modelers joining an ongoing real-time collab-
oration session to get the latest version of the model being
edited according to the edit operations performed by the
collaborating team.

H. PERSISTENCY CONTROLLER
The main responsibility of this component is to provide an
abstract layer for persisting the various models referenced
by the Model Inventory. Such an abstraction layer allows us
to treat model persistence in a platform-independent man-
ner. Indeed, the Persistency Controller provides a generic
API to the Model Inventory Controller, independently of the
persistence technologies used in the project (e.g., databases,
VCSs). Examples of endpoints provided by such generic
API include:

- fetchModel(id): loads the model with the given id into
the Model Inventory

- fetchAll(): loads all persisted models into the Model
Inventory

- save(id): persists the model with the given id
- saveAll(): persists all models
The Persistency Controller receives calls according to the

provided generic API and maps them towards the specific
persistency technologies used in the project. The Persis-
tency Controller is independent of any persistence technol-
ogy, which is treated as external plugins of the BUMBLE-
CE. Indeed, depending on the specific requirements of
the project, modelers can decide to persist their models
using one of the drivers that third-party developers will
develop. In Figure 2 we have three examples of such
drivers:

• MongoDB Driver: stores the models as entries in a
MongoDB instance; this solution might be convenient
for managing large models with thousands of model
elements;

• Git Driver: saves the models by performing a combina-
tion of add, commit, push commands on a given GitHub
repository and fetches them using a pull command; this
solution might be convenient for managing the history
of the models across branches.

• Filesystem Driver: saves the models as raw files in the
file system of the server where the BUMBLE collabo-
ration engine is running; this solution will be used for
rapidly prototyping the other components of the BUM-
BLE collaboration engine, without incurring additional
development effort.
Depending on the specific scenario, thePersistency Con-
trollermight be called either on-demand by the modeler
or automatically by the platform.

I. REST API GATEWAY
The Rest API Gateway allows the collaborating parties to
interact with the Model Inventory Controller in a platform-
independent manner. It acts as a reverse proxy which
(i) accepts HTTPS messages from the collaborating par-
ties and (ii) calls the corresponding methods of the Model
Inventory Controller accordingly. This solution allows us to
decouple theModel Inventory Controller from the third-party
modeling environments running on the client side. Similarly
to the SP Gateway, the presence of the Rest API Gateway
allows us to balance the load of requests in case during the
project we observe performance bottlenecks on the server
side.

VI. PROTOTYPE IMPLEMENTATION
In this section, we describe the current status of the prototype
implementation of BUMBLE-CE. The implementation for
BUMBLE-CE allows modelers to initiate and maintain a
real-time collaboration across different platforms. The imple-
mentation is available online and can be used by other
researchers to replicate our work and extend the function-
ality of BUMBLE-CE, since all the components from the
proposed architecture are not yet implemented. Below we
present in details the components which are more stable from
a technical point of view, namely: Model Inventory (Sec-
tion VI-A), the Model Inventory Controller (Section VI-B),
the Web-based Model Inventory Viewer (Section VI-C), and
two collaboration plugins on the editors side, one for Eclipse
EMF and one for Jetbrains MPS (Sections VI-D and VI-E,
respectively).

A. MODEL INVENTORY
The Model Inventory is a repository used by BUMBLE-
CE to store and keep track of models, DSML definitions,
their relationships, and their relevant metadata. The Model
Inventory contains a model conforming to a model inventory
metamodel. The Model Inventory metamodel is defined as
an Ecore metamodel and it is graphically shown in Fig-
ure 4. The metaclasses in our model inventory metamodel
represent the main concepts related to BUMBLE-CE and the
extension points for several functionalities provided by the
plugins developed by MDSE-engineers. The main concepts
of the model inventory metamodel include User, Model, Col-
laboration Session, Language, Editor, Participant, and the
extension points include Action Provider, Validator, Driver,
Identity resolver and Edit adapter. Below we describe the
main concepts of this metamodel:

• User: The User class represents the modeler in the
context of BUMBLE-CE. Name, password, and email
address are included in the User’s attributes. In addition,
it contains references to the Model metaclass which
represents models owned by the user.

• Language: This metaclass contains information about
the various DSMLs used to define the models on which
real-time collaboration can be activated. This metaclass

49250 VOLUME 11, 2023



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

FI
G

U
RE

4.
M

od
el

in
ve

nt
or

y
m

et
am

od
el

.

VOLUME 11, 2023 49251



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

contains the name of the languages and their (one or
more) supported editors.

• Editor: The Editor metaclass stores information about
the editors that support the languages stored by the
metaclass language. For instance, Microsoft Visio is an
editor that supports modeling in UML.

• EditorType: is an enumeration used to store the infor-
mation about whether the editor is textual, graphical,
or custom. For now, BUMBLE-CE does not support
graphical editors.

• Model: represents a model on which collaboration
can be activated. Each model possesses the following
attributes: name, location, URI, and creator. Amodel can
conform to one and only one language and it refers to its
corresponding driver (for managing its persistence) and
action providers (for triggering actions on the model).

• CollaborationSession: The modelers can initiate a ses-
sion to collaborate with each other in real-time by right-
clicking on the model and choosing Start Collabora-
tion. We call this session as CollaborationSession in the
metamodel. Each collaboration session is related to one
model and is opened for modelers to collaboratively edit
a model in real-time. It has a start and end time as its
attributes.

• Participant represents the modelers who are currently
participating in a collaboration session, with a certain
role (read below).

• RoleType: is an enumeration that stores the role of
a participant within an ongoing collaboration session.
Amodeler can participate in a collaboration session with
one of the following three roles: initiator - the modeler
who starts a collaboration, owner - the modeler who
owns a model associated with the sessions, and collab-
orator - the modeler who participates in the session.

• Driver: The metaclass Driver stores the information
about the drivers (for instance, a GitHub driver or a
MongoDB driver) chosen by the modeler to persist their
models.

• ActionProvider: This metaclass stores information
about the third-party plugins that may provide function-
alities desired by the modelers for their specific needs,
such as to check consistency between models, generate
code from models and so on.

• EditAdapter: Information about the plugins needed for
adapting the edit operations received from one model-
ing platform to another is stored in the metaclass Edi-
tAdapter.

• IdentityResolver: The metaclass IdentityResolver
stores information about the plugins responsible for
mapping modeling elements in one modeling environ-
ment to the corresponding elements in another modeling
environment.

• PersistenceStrategyType: The changes made to the
model can be saved either automatically at regular inter-
vals or manually when the modeler decides to save the
changes.

• ImageType: This enumeration is used to indicate the
image type of the thumbnails/icons for the plugins cre-
ated by the MDSE-engineers.

It is important to note that the metamodel of the Model
Inventory is one of the artifacts living inside BUMBLE-CE
at runtime; such a metamodel defines the data structures
for storing the metadata of the models and collaboration
parties involved in the real-time collaboration. This meta-
model shown in Figure 4 does not represent the metamodel
of BUMBLE-CE.

B. MODEL INVENTORY CONTROLLER
A Model Inventory Controller operates on the Model Inven-
tory and offers CRUD operations as well as authentica-
tion and authorization functionalities to the modelers. The
Model Inventory Controller is built on the existing EMF.cloud
model server [28]. The controller and the web-based model
inventory viewer communicate through the REST API Gate-
way, which is based on the default REST API provided by
EMF.Cloud.
The EMF.Cloud model server’s registration system makes

sure the instance models follow the scheme of the cor-
responding metamodels. For modeling environments that
do not use UUIDs as identities for models, the server
generates UUIDs and assigns them to each model com-
ponent. This enables models to be initiated and changes
to be managed on platforms with various model-saving
mechanisms.
The server can process PATCH requests in a number of

formats for change propagation, including EMF command
style, JSON patch with EMF-like paths, and JSON patch
using JSON Pointer paths. After receiving a change patch,
the server applies the update to the saved model and uses
web sockets to communicate the changes to its subscribers.
The server can send updates in the JSON, XMI, and EMF
command formats. Therefore, the collaboration plugins cus-
tomized for different platforms can select the most effective
method to encode and decode updates sent to and received
from the server.
For a modeler that joins a given collaboration session,

Model Inventory Controller ensures that the selected local
model corresponds to one in the model server. This is
done by performing a GET request, comparing the model
received from the server with the local model and making any
changes,if needed. A websocket connection is then initiated
to the model server to receive changes made to the model by
the collaborators during the collaboration session. The Web-
socket connection follows a publish-subscribe mechanism,
where the modelers subscribe to the selected model, and the
model server publishes a given change to all the modelers.
One downside to this mechanism is its ‘fire and forget’ prop-
erty, i.e., there is no record of changes already published. For
our work, this has no impact as once subscribed to the model
server, a PATCH request is sent to report a change to the server
conforming to the layout of the model server, which would

49252 VOLUME 11, 2023



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

FIGURE 5. Main page of the Web-based Model Inventory Viewer showing Model Inventory instances.

thereafter immediately be broadcasted to all the subscribers
from the server.

C. WEB-BASED MODEL INVENTORY VIEWER
The Web-based Model Inventory Viewer has been developed
with the goal to facilitate BUMBLE-CE admin to examine
and interact with themegamodel that is saved in the inventory.
The Web-based Model Inventory Viewer provides modelers
working in different development environments with a graph-
ical interface for inspecting modeling artefacts and interact-
ing with theModel Inventory units through REST API. From
the standpoint of the Web-based Model Inventory Viewer,
BUMBLE-CE provides Rest endpoints to get and update the
contents of the megamodel representing the contents of the
Model Inventory.

TheWeb-basedModel Inventory Viewer is developed using
the Vue.js5 javaScript framework. Vue.js is a user interface
framework that builds on top of HTML, CSS, and JavaScript
standards. It offers declarative and component-based pro-
gramming methods that improve the productivity of user
interface development. Vue is selected as the framework
for this project because of its flexibility and good perfor-
mance [43] among popular frameworks currently available.
It is reasonably simple to learn and use, and better suited for
smaller projects [44].

State management refers to the management of the state
of one or more user interface controls such as text fields,
OK buttons, radio buttons in a graphical user interface. State
management is also required in our work in order to maintain
track of the current status of inventory items and information
of the modeler. We use Vuex,6 the official state management

5https://vuejs.org
6https://vuex.vuejs.org

library for Vue.js, to fulfill this need. Vuex adheres to the
same Flux principles [45], a set of guiding principles that
define statement management patterns: Figure 5 shows the
main page of theWeb-based Model Inventory Viewer.
The Web-based Model Inventory Viewer allows model-

ers to perform CRUD operations on the instances of the
Model Inventory metaclass, with the exception of collabora-
tion sessions. This is because the Model Inventory controls
the sessions, and users of inventory viewer are not permit-
ted to edit them in this project. The REST API provided
from the server and the fact that Model Inventory exists
as a megamodel make the CRUD requests different from
common REST-based communication paradigms. Normally,
create, delete and update requests are separated using differ-
ent HTTP methods such as POST, DELETE and PUT. The
API offered by the server to DELETE and POST a model,
however, only supports independent models.Model Inventory
is a single megamodel, and all class instances are kept in the
XMI-based representation of theModel Inventory. This trans-
forms every CRUD operation on a Model Inventory instance
into an UPDATE operation on theModel Inventory XMI file.
Therefore, all of the create, delete and update actions applied
to the instances are achieved through PUT request to update
the XMI model representing theModel Inventory.

D. COLLABORATION PLUGIN FOR ECLIPSE EMF
On the EMF side, the Collaboration Plugin7 uses an acti-
vator to control its life cycle. It activates a new window of
a run-time editor and initiates the server client when the
modeler launches the collaboration application and termi-
nates the plugin when the modeler exits the editor window.

7https://github.com/blended-modeling/nl.vu.cs.bumble.emfcollaboration
plugin

VOLUME 11, 2023 49253



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

The run-time model editor allows the modeler to import
new models from various resources or generate models from
existing metamodels.

In this prototype, we use the publish-subscribe pattern
for data communication. The Eclipse Collaboration Plugin
listens to the changes happening in the editor domain and
sends them to the server. The EMF cloud server acts as
the publisher that receives messages from clients (i.e., sub-
scribers) and propagates the changes to all of its subscribers.
The changes that were received by the client are then applied
to the local model in the editor domain. In the example
application, we assume the Ecore model already exists in
the server so that modelers can post models generated from
it into the server. Once the collaboration button is clicked,
the plugin first checks if the local model has a copy in the
server by sending a GET request to the server. If the server
confirms that the model exists then the model is pulled from
the server and the local version stored in the editor’s resource
set is replaced with the server version. If the model is not
in the server, the plugin will POST the local model to the
server. At this stage, the communication between the client
and server is done via REST API. Once the initiation is done,
the client subscribes to the model in the server through the
WebSocket protocol.

To close the cycle of the publish-subscribe pattern, the plu-
gin contributes to the process of propagation and subscription
and has a built-in listener to monitor local changes.

1) LISTENER
In the context of EMF, the model itself and its contents can
all be represented using EObjects. The EMF library provides
a ChangeRecorder class that can listen to changes in EOb-
jects and returns notifications that include the details of the
changes. In this prototype, we only listen to semantic changes
which means the listener will only be notified if a property
change is fully done, e.g., a modification in the name of a
node. The collaboration plugin parses the notification and
converts it into a JSON patch based on the operation type of
the change (i.e., replace, remove, and addition). The JSON
patch includes the operation type, the path that locates the
node and the new value.

2) PROPAGATION
The JSON patch is sent to the server if a change is detected.
Once it is received, the server first applies the change to the
model on its side and publishes it to the subscribers. The
published message is again in the format of JSON patch
which resembles the JSON patch it receives from clients.
In practice, the JSON patch sent to and received from the
server are not always exactly the same. Operations such as
removal and addition may cause position changes in other
nodes. Thus, a single JSON patch sent from the client may
eventually lead to a list of JSON patches published from the
server to its subscribers and each JSON patch in the list states
a single step of change. The propagation function is provided

by the EMF cloud server and it ignores the platform of the
JSON patch sender and model subscribers. As long as the
message the client sends to and receives from the server is
in the format of JSON patch, the platform of the client is not
restricted.

3) SUBSCRIPTION
The Eclipse collaboration plugin subscribes to the model in
the server via WebSocket. It receives JSON patches from
the server and applies the changes to the local model in the
modeler’s editor domain. This is achieved by parsing the
JSON patches one by one and for every single patch, the
parser locates the position of the node to be changed through
the path value in the patch and creates a new EObject with
the new value, and attaches it to the position located. From
the modeler’s perspective, the model in the editor domain
changes with new properties on certain nodes in real-time if
other clients made a change on their side.

E. COLLABORATION PLUGIN FOR MPS8

To enable real-time collaboration on the MPS side, we imple-
mented two functionalities: enable/start a collaboration ses-
sion, and disable collaboration. Each functionality comprises
a sequence of action coded to initiate different sets of logic.
These actions are combined into a group calledCollaboration
which is configured to display these actions in the context
menu for nodes. A model in MPS is stored in a data structure
called node, specifically in a root node. Thus in order to
begin collaboration, a modeler right-clicks on the root node
and clicks on Enable collaboration. This action from the
modeler will launch the Collaboration plugin in MPS, if it
is not already running. Upon the launch of this plugin, three
components are fired up one after another: the synchronizer,
the mapper, and the listener.

1) SYNCHRONIZER
This component is responsible for ensuring that all aspects of
the selected node inMPS are equivalent to that of themodel in
EMF model server. This implies, that the language structure
of the given node complies with the Ecore logic of the EMF
model, as well as the content at the start of the collaboration.
This is achieved with the following sub-components:

1) Validator: Ensures that the selected node is present in
the EMF model server by performing a GET request
with the name of the selected node. If available, the
validator checks whether the language structure of the
selected node conforms to the metamodel of the corre-
sponding model in the model server. This is achieved
with the help of a mapper component. If the validation
process fails for any one of the two steps mentioned
above, the collaboration is automatically disabled.

2) Mapper: Since the logic of the language structure of
MPS and Ecore are packed differently, this component
cross-checks theEStructuralFeatures andESuperTypes

8https://github.com/blended-modeling/MPS-Collaboration-Plugin

49254 VOLUME 11, 2023



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

of Ecore with the language structure in MPS. Each root
node of the language structure ofMPS represents a con-
cept, which might or might not extend and implement
other concepts. A concept is referred to as an EClass
in EMF terminology. In order to store and read Ecore
data, the Ecore file is fetched from the server via GET
request in JSON format, and stored in data classes with
Jackson’s Object Mapper.9 In order to read data from
the root nodes of MPS, MPS’s Open API, SModel,10

was used. After ensuring that all EClasses from the
EMF metamodel are present in the language structure
of MPS by their name, the EStructural features and
ESupertypes of each EClass are compared.

3) ContentSynchroniser: After mapping is performed
between MPS node and EMF models, the ContentSyn-
chroniser component compares and synchronizes the
content of the selected node in MPS to that of the EMF
model in the model server. If there is any inconsistency
found, then the content of the selected node is over-
written to that of the model present in the model server.
At the end of this process, a structural map is produced
which is a mapping of each node to its location in the
model. This structural map is used to find the relevant
node when a patch is received from a server in order to
apply the relevant change.

With the help of the mentioned sub-components, we were
able to generify the structural communication between
MPS and Eclipse, such that an introduction of a different
meta-model will not cause any additional complications that
might require technical intervention to make the framework
work.

2) MAPPER
We established the communication between MPS and
EMF via an external library, the emfcloud-modelserver.11

Originally the emfcloud-modelserver has been designed to
accommodate EMF logic so we designed our own map-
per component discussed earlier to interpret and exploit
this logic for MPS. Models stored on the model server can
be attained via GET requests in various formats, we used
JSON format in our work. In order to propagate the changes
made during the collaboration session on a given model,
the modeler is subscribed to the model via websocket.
We receive these edit operations on MPS side as JSON
patches. Once subscribed, patch operations can be per-
formed on the models using MPS’s SModel language to
reflect any change made to the model in the model server
locally in MPS.

9https://fasterxml.github.io/jackson-databind/javadoc/2.7/com/fasterxml/
jackson/databind/ObjectMapper.html

10https://github.com/JetBrains/MPS/tree/master/core/openapi/source/org/
jetbrains/mps/openapi

11https://github.com/eclipse-emfcloud/emfcloud-modelserver

3) LISTENER
MPS provides a library called Open API12 which provides
controlled access to a given model and also provides inter-
faces in order to provide a custom implementation in various
aspects, in our case for the listener. Among the listeners
provided by OpenAPI, we are using SNodeChangeListener
in our work. When an edit operation is performed on a given
node in MPS, SNodeChangeListener is notified via MPS’s
message bus and the operation is propagated to the EMF
model server. For now, the listener is configured to report
changes character by character on MPS side in our work.
In the future, we will refine the implementation to receive
and propagate the change as a whole.

When themodeler decides to end the collaboration session,
(s)he can right click the node involved in their collaboration
session and click Disable collaboration. With this action, the
Listener and EmfModelServer websocket client are disabled
one after another.

Overall, on the implementation side, we encountered a
few challenges during the implementation of the collabo-
ration plugins for EMF and MPS, such as setting up the
operating environment, researching the mechanism of the
EMF model and its cloud server, converting model objects
into JSON patches and the other way around, and making
the implementation as generic as possible. We experienced
MPS environment as a little unstable particularly while using
Java source code regarding the ability of the environment to
detect the presence of required libraries. This often resulted in
crashing forMPS and the only possible solutionwe could find
was reimport of the project. The online help resources ofMPS
include the MPS’s official user guide, the community forums
and MPS official slack channel. Due to limited userbase of
MPS, finding help regarding technical issues can be a little
cumbersome.

VII. EXAMPLE APPLICATION
To demonstrate the functioning of BUMBLE-CE, we apply
it in the context of two of the most used modeling plat-
forms, specifically: Eclipse EMF and JetBrains MPS. The
example is used as a common basic use case within the
BUMBLE European project, which involves the usage of
a simple DSML for representing state machines. Below,
we explain (i) the State Machine metamodel, (ii) the
TrafficSignal.statemachine model conforming to the State
Machine metamodel, and (iii) an example of collaboration
session between EMF and MPS.

A. STATE MACHINE DSML
The State MachineDSML is initially designed by the Model-
ing Value Group (MVG) in MPS.13 We firstly translated the
language definition of State Machine from MPS to an Ecore-
basedmetamodel. The Ecoremetamodel of the StateMachine

12https://github.com/JetBrains/MPS/tree/master/core/openapi/source/org/
jetbrains/mps

13https://github.com/ModelingValueGroup/statemachines

VOLUME 11, 2023 49255



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

FIGURE 6. Ecore metamodel of state machine.

DSML is shown in Figure 6. According to such metamodel,
a State Machine extends three metaclasses: BaseConcept,
NamedElement and Element; also, a state machine can con-
tain sets of instances of the Input, Output, State, and Transi-
tionmetaclasses. The State Machinemetaclass keeps track of
the current input, output and state through the references cur-
rentinput, currentoutput and currentstate to the metaclasses
Input, Output and State. The current State receives a trigger
defined by the metaclass Input, transitions to a new State and
produces a newOutput. The Transitionmetaclass handles the
control flow from one state to another state on receiving an
input through references to Input and State metaclasses. The
metaclasses Input, Output, and State have attributes name
and description. The metaclass State has references to the
metaclasses Input and Output; and the metaclass Transition
has references to the metaclasses Input and State. In this way,
our metamodel illustrates essential concepts to define a state
machine. According to BUMBLE-CE, the modeler has the
responsibility of storing the metamodel of the used DSML
(StateMachine in our case) in the server. We expect that the
metamodel of the used DSML is not subjected to changes
frequently and storing the metamodel on the server is only
a one-time action performed by the BUMBLE-CE admin.

B. THE TRAFFICSIGNAL.STATEMACHINE MODEL
Figure 7 shows our TrafficSignal.statemachine model within
the tree-based default editor of EMF. The model conforms to
the StateMachine metamodel and it is used for exemplifying
the real-time collaboration among the EMF and MPS editors.
The TrafficSignal.statemachinemodel represents theworking
of a traffic signal with three inputs Go, Wait and Stop and
three states Red, Yellow and Green. When in state Red or
Green and on receiving inputs Go or Stop respectively, the
TrafficSignal.statemachine will transition to the state Yellow.

FIGURE 7. The TrafficSignals.statemachine model.

When in state Yellow, if input Stop is received, the TrafficSig-
nal.statemachine transitions to the state Red and if input Go
is received, the TrafficSignal.statemachine transitions to the
state Green.

C. EXAMPLE OF REAL-TIME COLLABORATION SESSION
To start the real-time collaboration session, a modeler right
clicks on the TrafficSignal.statemachine in their respective
editor and clicks on the Start Collaboration menu item pro-
vided by BUMBLE-CE. The Session Manager uploads the
TrafficSignal.statemachine on the server so that other model-
ers can also join the collaboration session. The model that has
been just added on the server acts as a single source of truth
for the collaboration session. Specifically, once a modeler
performs an operation on the model (for instance, adds or
deletes a state, edits the name of a transition, or changes
the position of an input in the tree), the change will be
propagated to all the other participating editors through the
web sockets mechanism provided by EMF.Cloud. Figure 8
shows the collaboration scenario for the replace operation
between EMF and MPS. The TrafficSignal.statemachine is
shown for both EMF and MPS before starting the collab-
oration in Figures 8a and 8b, respectively. The modeler on
the EMF side replaces the name of the Wait Input with Hold
and the change is immediately reflected on the MPS side, see
Figures 8c and 8d. Figure 8e shows the log history containing
all the events happening on the MPS side, where we can
observe that the Replace operation is successfully received
and the intended changes are updated in the model.

The information about the collaboration sessions, par-
ticipating modelers and the model under the collaboration
are displayed on the Web-based Model Inventory Viewer as
well. We have built custom Collaboration Plugins on both
MPS and EMF side, explained below, to enable the edi-
tors to connect to BUMBLE-CE. The real-time collaboration
is supported in both directions, that is, EMF to MPS and
vice-versa.

49256 VOLUME 11, 2023



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

FIGURE 8. Example scenario of cross-platform (between Eclipse EMF and JetBrains MPS) real-time collaboration using BUMBLE-CE.

VIII. DISCUSSION
Reflection – The complexity of engineered systems is ever
increasing, resulting in larger and more diverse models. This
increased complexity can be handled by following collab-
orative MDSE practices. Distributed software development
teams increasingly rely on collaboration tools and frame-
works for accomplishing a variety of tasks [46], [47], [48].
The generic architecture and its prototype implementation
described in this paper takes a step forward towards enhanc-
ing this collaboration by facilitating cross-platform real-time
collaboration– i.e., providing the flexibility during modeling
to accommodate live edits created synchronously by multiple
modelers, across different modeling platforms.

We started with eliciting requirements for building
BUMBLE-CE. These requirements present the functionalities

necessary for collaboration in real-time and across different
platforms. However, the requirements have been gathered
in the context of the BUMBLE project, so we suggest the
reader to consider the list as being not exhaustive or at
the very least as needing a customization with respect to
project-specific and organizational constraints. Our proposed
architecture fulfills these requirements and ensures that the
modelers do not need tomakemodifications in their own tools
or frameworks to use BUMBLE-CE. The access of different
stakeholders involved in the modeling process to BUMBLE-
CE is controlled through authentication mechanisms.

The main strength of BUMBLE-CE is that it supports
real-time collaboration while being independent of the mod-
eling platforms and concrete syntaxes chosen by the model-
ers. BUMBLE-CE provides an extensible framework which

VOLUME 11, 2023 49257



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

enables MDSE engineers to add external plugins through
available extension points to incorporate specific logic or
mechanism needed for a particular software project. For
instance, the modelers can choose a particular model val-
idator or a persistency controller driver for their purposes.
However, BUMBLE-CE is still a work in progress project.
Below we report lines of activities for improving the project,
both on implementation and research side.
Limitations and Needed Improvements

• Conflict resolution:When modelers work together on a
model and perform edit operations, conflicting requests
become inevitable due to the concurrent changes made
by the different modelers. Conflict management is a
main concern for tools and frameworks facilitating col-
laborative modeling. However, for BUMBLE-CE we
process the edit requests sequentially i.e., in order of
arrival. In this way, the success or failure of a request
is based on the current situation of the model. This
approach for conflict management allows automatic res-
olution of all requests and enables BUMBLE-CE to
handle all message requests with minimal processing
which results in improved responsiveness. In future,
we also aim to incorporate existing conflict manage-
ment techniques for handling concurrent changes occur-
ring during real-time collaboration sessions managed by
BUMBLE-CE [41].

• Multi-view modeling: Collaborative modeling is a joint
effort of several modelers to create a representation
of those parts of the software system that they con-
sider relevant for the modeling goal. Different modelers
working on a shared model to collaborate on a larger
project may focus on different parts of the same model.
Similarly, modelers may desire to view a model for
varying purposes. A specific view may contain only a
portion of a model or utilize a distinct visualization.
Multi-view modeling is, therefore, an important feature
for collaborative modeling tools and has been studied
extensively [31], [49], [50]. Currently, BUMBLE-CE
does not support multi-view modeling functionality.

• Workspace awareness: Workspace awareness refers to
the ability of a tool to allow modelers to see what other
collaborators are doing in real-time. Workspace aware-
ness is an important aspect of collaborative modeling
because it allows users to work together more effec-
tively by providing transparency and visibility into the
actions and contributions of other users [51]. Currently,
BUMBLE-CE does not provide awareness of each oth-
ers actions to themodelers. In the future, we are planning
to add workspace awareness to our collaboration engine
such as, include seeing the cursor of other users, viewing
the changes, comments and annotations made by other
users in real-time.

• Improving usability of BUMBLE-CE: There are some
improvements needed on the usability side of the col-
laboration plugins. A dedicatedModel Inventory Viewer

is yet to be developed for both EMF and MPS. This will
allow the modelers to choose a model for collaboration
among a collection of models available for collabora-
tion in their inventory. Being based on the same data
stored in the central model inventory, platform-specific
inventory viewers will be synchronized with the generic
BUMBLE-CE Web-based Model Inventory viewer.

• Support for more operations: For now, BUMBLE-CE
only supports basic operations on models, i.e., add,
replace and delete. Adding more operations such as
moving or copying modeling elements will enrich the
functionality of BUMBLE-CE and will enhance the
usability of the tool.

• Support for more editors: BUMBLE-CE currently sup-
ports tree-based editors. The prototype tool can be
extended to support graphical, textual and more editors.
We have picked up on providing a support for the graphi-
cal editors in near future so that a real-time collaboration
across different concrete syntaxes can be made available
for modelers.

• Evaluation of proposed approach: In this paper, we have
provided an example application of BUMBLE-CE
by showing collaboration between Eclipse EMF
and JetBrains MPS for a state machine model,
TrafficSignals.statemachine. However, we have not yet
evaluated BUMBLE-CE through a case study or a large-
scale evaluation. We realize that scalability in collabo-
rative modeling has many facets, including the ability
to collaborate on larger models and supporting a large
number of modelers for real-time collaboration sessions.
In this respect, the performance of our collaboration
engine is also yet to be analyzed in terms of scalability.
In the future, we aim to perform user studies on both
academic and industrial level which will help us to
assess the scalability and performance of BUMBLE-CE.

• Undo functionality: BUMBLE-CE does not support
undo functionality. Storing the operations performed by
amodeler in a stackwill facilitate themodeler to perform
undo operations across platforms.

IX. CONCLUSION
Cross-platform real-time collaboration is becoming increas-
ingly relevant due to the availability of different modeling
platforms. In this work, we elaborated on the requirements,
architecture, in-progress implementation and an example
application of our generic solution for achieving real-time
collaboration across different platforms – i.e., BUMBLE-
CE. To the best of our knowledge, there is no prior work
done for facilitating cross-platform real-time collaboration.
BUMBLE-CE has been designed to be independent of both
the modeling platforms and the DSML used by the mod-
elers. BUMBLE-CE facilitates the real-time collaboration
through a set of BUMBLE-CE plugins which are loaded
into the modeling tools of the modelers with an aim to
minimally impact the modeling tool. The modelers can also
view an always-updated overview of the existing models in

49258 VOLUME 11, 2023



K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

the project, current collaboration sessions, active participants
in the collaboration sessions and more through a web-based
model inventory viewer. The implementation for BUMBLE-
CE is still in progress and needs more functionalities to be
added so that our prototype is in line with the proposed archi-
tecture. We also elaborated on these limitations and areas of
improvement in the paper.

Future work – In the near future, we want to incorporate
more editors to BUMBLE-CE so that we can uncover the
effort needed for adding different types of editors as collab-
oration parties to our framework. We further plan to evaluate
the performance and scalability of our collaboration engine
by conducting user studies with both academic and industrial
participants. We find that efficient conflict resolution mech-
anisms and high workspace awareness greatly impact the
user experience when modelers are collaborating in real-time
with each other. As our implementation is available online,
interested researchers can pursue these lines of research and
extend the current functionality of BUMBLE-CE with new
plugins providing their own new contributions to the plat-
form.

REFERENCES
[1] D. C. Schmidt, ‘‘Model-driven engineering,’’ IEEE Comput. Soc., vol. 39,

no. 2, p. 25, Feb. 2006.
[2] C. A. González and J. Cabot, ‘‘Formal verification of static software

models in MDE: A systematic review,’’ Inf. Softw. Technol., vol. 56, no. 8,
pp. 821–838, Aug. 2014.

[3] I. Mistrík, J. Grundy, A. V. D. Hoek, and J. Whitehead, ‘‘Collaborative
software engineering: Challenges and prospects,’’ in Collaborative Soft-
ware Engineering. Berlin, Germany: Springer, 2010, pp. 389–403.

[4] D. Di Ruscio, M. Franzago, I. Malavolta, and H. Muccini, ‘‘Envisioning
the future of collaborative model-driven software engineering,’’ in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng. Companion (ICSE-C), May 2017,
pp. 219–221.

[5] M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini, ‘‘Collabora-
tive model-driven software engineering: A classification framework and a
research map,’’ IEEE Trans. Softw. Eng., vol. 44, no. 12, pp. 1146–1175,
Dec. 2018.

[6] I. David, K. Aslam, S. Faridmoayer, I. Malavolta, E. Syriani, and P. Lago,
‘‘Collaborative model-driven software engineering: A systematic update,’’
in Proc. ACM/IEEE 24th Int. Conf. Model Driven Eng. Lang. Syst.,
Oct. 2021, pp. 273–284.

[7] I. David, K. Aslam, I. Malavolta, and P. Lago, ‘‘Collaborative model-
driven software engineering—A systematic survey of practices and needs
in industry,’’ J. Syst. Softw., vol. 199, May 2023, Art. no. 111626.

[8] L. Hattori, ‘‘Enhancing collaboration of multi-developer projects with
synchronous changes,’’ in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng.,
May 2010, pp. 377–380.

[9] F. Budinsky, R. Ellersick, D. Steinberg, T. J. Grose, and E. Merks,
Eclipse Modeling Framework: A Developer’s Guide. Reading, MA, USA:
Addison-Wesley, 2004.

[10] F. Campagne, The MPS Language Workbench. vol. 1. Saint Joseph,
Réunion: Fabien Campagne, 2014.

[11] J.-P. Tolvanen and M. Rossi, ‘‘MetaEdit+: Defining and using domain-
specific modeling languages and code generators,’’ in Proc. Companion
18th Annu. ACM SIGPLAN Conf. Object-Oriented Program., Syst., Lang.,
Appl., Oct. 2003, pp. 92–93.

[12] C. Jaspan, M. Jorde, A. Knight, C. Sadowski, E. Smith, C. Winter, and
E. Murphy-Hill, ‘‘Advantages and disadvantages of a monolithic reposi-
tory: A case study at Google,’’ in Proc. 40th Int. Conf. Softw. Eng., Softw.
Eng. Pract., 2018, pp. 225–234.

[13] P. Nicolaescu, M. Derntl, and R. Klamma, ‘‘Browser-based collaborative
modeling in near real-time,’’ in Proc. 9th IEEE Int. Conf. Collaborative
Comput., Netw., Appl. Worksharing, 2013, pp. 335–344.

[14] (Feb. 2021). Modelix and the Future of Language Engineering.
[Online]. Available: https://blogs.itemis.com/en/modelix-and-the-future-
of-language-engineering

[15] M. Voelter and K. Solomatov, ‘‘Language modularization and composition
with projectional language workbenches illustrated with MPS,’’ Softw.
Lang. Eng., vol. 16, no. 3, pp. 1–10, 2010.

[16] L. C. Kats and E. Visser, ‘‘The Spoofax language workbench,’’ in Proc.
SPLASH/OOPSLA Companion, 2010, pp. 237–238.

[17] (May 2021). Visual Studio Live Share: Visual Studio. [Online]. Available:
https://visualstudio.microsoft.com/services/live-share/

[18] A. Cicchetti, F. Ciccozzi, and A. Pierantonio, ‘‘Multi-view approaches for
software and system modelling: A systematic literature review,’’ Softw.
Syst. Model., vol. 18, no. 6, pp. 3207–3233, Dec. 2019.

[19] BUMBLE Project Official Webpage. Accessed: Oct. 14, 2022. [Online].
Available: https://itea3.org/project/bumble.html

[20] I. David, M. Latifaj, J. Pietron, W. Zhang, F. Ciccozzi, I. Malavolta,
A. Raschke, J.-P. Steghöfer, and R. Hebig, ‘‘Blended modeling in com-
mercial and open-source model-driven software engineering tools: A sys-
tematic study,’’ Softw. Syst. Model., vol. 22, no. 1, pp. 415–447, Feb. 2023.

[21] K. Riemer and F. Frößler, ‘‘Introducing real-time collaboration systems:
Development of a conceptual scheme and research directions,’’ Commun.
Assoc. Inf. Syst., vol. 20, pp. 204–225, Dec. 2007.

[22] Y. Sun, D. Lambert, M. Uchida, and N. Remy, ‘‘Collaboration in the cloud
at Google,’’ in Proc. ACM Conf. Web Sci., New York, NY, USA, Jun. 2014,
p. 239, doi: 10.1145/2615569.2615637.

[23] A. Burns and A. Wellings, Real-Time Systems and Programming Lan-
guages. New York, NY, USA: Pearson Education, 2009.

[24] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engi-
neering. San Rafael, CA, USA: Morgan Claypool, 2012.

[25] (1997).OMG/MOFMeta Object Facility (MOF) Specification. OMGDoc-
ument AD/97-08-14. [Online]. Available: http://www.omg.org/

[26] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework. London, U.K.: Pearson Education, 2008.

[27] EMF.Cloud—Evolve Your Modeling Tools to the Web! Accessed:
Jun. 27, 2022. [Online]. Available: https://www.eclipse.org/emfclo
ud/

[28] J. Helming, M. Koegel, and P. Langer. The EMF.Cloud Model Server.
Accessed: Jun. 27, 2022. [Online]. Available: https://eclipsesource.com/
blogs/2021/02/25/the-emf-cloud-model-server/

[29] C. Debreceni, G. Bergmann, M. Búr, I. Ráth, and D. Varró, ‘‘The MONDO
collaboration framework: Secure collaborative modeling over existing ver-
sion control systems,’’ in Proc. 11th Joint Meeting Found. Softw. Eng.,
Aug. 2017, pp. 984–988.

[30] J. Corley, E. Syriani, and H. Ergin, ‘‘Evaluating the cloud architecture of
AToMPM,’’ in Proc. 4th Int. Conf. Model-Driven Eng. Softw. Develop.,
2016, pp. 339–346.

[31] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz,
T. Levendovszky, and A. Lédeczi, ‘‘Next generation (meta) modeling:
Web-and cloud-based collaborative tool infrastructure,’’MPM@MoDELS,
vol. 1237, pp. 41–60, 2014.

[32] J. L. Cánovas Izquierdo and J. Cabot, ‘‘Collaboro: A collaborative (meta)
modeling tool,’’ PeerJ Comput. Sci., vol. 2, p. e84, Oct. 2016.

[33] S. N. Voogd, K. Aslam, L. Van Gool, B. Theelen, and I. Malavolta,
‘‘Real-time collaborative modeling across language workbenches—A case
on JetBrains MPS and Eclipse Spoofax,’’ in Proc. ACM/IEEE Int. Conf.
Model Driven Eng. Lang. Syst. Companion (MODELS-C), Oct. 2021,
pp. 16–26.

[34] D. Wüest, N. Seyff, and M. Glinz, ‘‘FlexiSketch: A lightweight sketching
and metamodeling approach for end-users,’’ Softw. Syst. Model., vol. 18,
no. 2, pp. 1513–1541, Apr. 2019.

[35] J. Bézivin, F. Jouault, and P. Valduriez, ‘‘On the need for megamodels,’’ in
Proc. Best Practices Model-Driven Softw. Develop. Workshop, 19th Annu.
ACM Conf. Object-Oriented Program., Syst., Lang., Appl., 2004, pp. 1–9.

[36] G. Blair, N. Bencomo, and R. B. France, ‘‘Models@ run.time,’’ Computer,
vol. 42, no. 10, pp. 22–27, 2009.

[37] R. Molich and J. Nielsen, ‘‘Improving a human–computer dialogue,’’
Commun. ACM, vol. 33, no. 3, pp. 338–348, Mar. 1990.

[38] Accessibility. Accessed: Jun. 27, 2022. [Online]. Available: https:
//www.w3.org/standards/webdesign/accessibility

[39] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, ‘‘Conflict-
free replicated data types,’’ in Proc. Symp. Self-Stabilizing Syst. Cham,
Switzerland: Springer, 2011, pp. 386–400.

VOLUME 11, 2023 49259

http://dx.doi.org/10.1145/2615569.2615637


K. Aslam et al.: Cross-Platform Real-Time Collaborative Modeling

[40] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, ‘‘Achieving convergence,
causality preservation, and intention preservation in real-time cooperative
editing systems,’’ ACM Trans. Comput.-Hum. Interact., vol. 5, no. 1,
pp. 63–108, Mar. 1998.

[41] M. Sharbaf, B. Zamani, and G. Sunyé, ‘‘Conflict management techniques
for model merging: A systematic mapping review,’’ Softw. Syst. Model.,
vol. 2022, pp. 1–49, Jan. 2022.

[42] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Reading, MA, USA: Addison-Wesley, 2003.

[43] E. Saks, ‘‘JavaScript frameworks: Angular vs react vs Vue,’’ Bachelor’s
Thesis, Haaha-Helia, Univ. Appl. Sci., Finland, 2019.

[44] E. Wohlgethan, ‘‘Supporting web development decisions by compar-
ing three major JavaScript frameworks: Angular, React and Vue.js,’’
Ph.D. dissertation, Dept. Comput. Sci., Hochschule für Angewandte Wis-
senschaften, Hamburg, Germany, 2018.

[45] P. Halliday, Vue.js 2 Design Patterns and Best Practices: Build Enterpris-
eready, Modular Vue.js Applications With Vuex and Nuxt. Birmingham,
U.K.: Packt Publishing, 2018.

[46] N. A. Moketar, M. Kamalrudin, S. Sidek, M. Robinson, and J. Grundy,
‘‘An automated collaborative requirements engineering tool for better val-
idation of requirements,’’ in Proc. 31st IEEE/ACM Int. Conf. Automated
Softw. Eng., Aug. 2016, pp. 864–869.

[47] S. Oppl, ‘‘Articulation of work process models for organizational align-
ment and informed information system design,’’ Inf. Manage., vol. 53,
no. 5, pp. 591–608, Jul. 2016.

[48] J. L. Pérez-Medina and J. Vanderdonckt, ‘‘Sketching by cross-surface
collaboration,’’ in Proc. Int. Conf. Inf. Technol. Syst. Cham, Switzerland:
Springer, 2019, pp. 386–397.

[49] B. Combemale, O. Barais, and A.Wortmann, ‘‘Language engineering with
the GEMOC studio,’’ in Proc. IEEE Int. Conf. Softw. Archit. Workshops
(ICSAW), Apr. 2017, pp. 189–191.

[50] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and
H. Ergin, ‘‘AToMPM: A web-based modeling environment,’’ in Proc. 16th
Int. Conf. Model Driven Eng. Lang. Syst., Oct. 2013, pp. 21–25.

[51] C. Gutwin and S. Greenberg, ‘‘The mechanics of collaboration: Develop-
ing low cost usability evaluation methods for shared workspaces,’’ in Proc.
IEEE 9th Int. Workshops Enabling Technol., Infrastruct. Collaborative
Enterprises, Mar. 2000, pp. 98–103.

KOUSAR ASLAM (Member, IEEE) received the
Ph.D. degree in computer science from the Eind-
hoven University of Technology. She is currently
a Postdoctoral Researcher with Vrije Universiteit
Amsterdam, The Netherlands. Her research inter-
ests include blendedmodeling, software evolution,
and model-based re-engineering. She is a mem-
ber of VERSEN, EUGAIN, and Amsterdam Data
Science.

YU CHEN received the bachelor’s degree in com-
puter science from Vrije Universiteit Amsterdam,
The Netherlands, where she is currently pursu-
ing the master’s degree in computer science. Her
research interest includes front-end engineering.

MUHAMMAD BUTT is currently pursuing the
bachelor’s degree in computer science with Vrije
Universiteit Amsterdam. His experience as of
this moment is more orientated toward back-end
engineering.

IVANO MALAVOLTA (Member, IEEE) received
the Ph.D. degree in computer science from the
University of L’Aquila, in 2012. He is currently
an Associate Professor and the Director of the
Network Institute, Vrije Universiteit Amsterdam,
The Netherlands. He has authored more than
150 peer-reviewed scientific articles in interna-
tional journals and conferences proceedings. His
research interests include data-driven software
engineering, with a special emphasis on software

architecture, mobile software development, robotics software, and model-
driven engineering. He is a program committee member and a reviewer
of international conferences and journals in the software engineering and
robotics fields. He is a member of ACM, VERSEN, and Amsterdam Data
Science.

49260 VOLUME 11, 2023


