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ABSTRACT Palm oil industry is an important economic resource for Malaysia. However, an oil palm tree
disease called Basal Stem Rot has impeded the production of palm oil, which caused significant economic
loss at the same time. The oil palm tree disease is caused by a fungus known as Ganoderma Boninense.
Infected trees often have little to no symptoms during early stage of infection, which made early detection
difficult. Early disease detection is necessary to allow early sanitization and disease control efforts. Using
Terrestrial Laser Scanning technology, 88 grey-distribution canopy images of oil palm tree were obtained.
The images were pre-processed and augmented before being used for training and testing of the deep learning
models. The capabilities of the Convolution Neural Network deep learning models in the classification of
dataset into healthy and non-healthy class were tested and the best performing model was identified based on
the Macro-F1 score. Fine-tuned DenseNet121 model was the best performing model, recorded a Macro F1-
score of 0.798. It was also noted that Baselinemodel showed a relatively remarkablemacro-F1 score of 0.747,
which was better than all the feature extractor models and some of the fine-tuned models. However, fine-
tuned models suffered from model overfitting due to dataset limitations. For future work, it is recommended
to increase the sample size and utilize other CNN architectures to improve the model performance and
progress towards detecting Basal Stem Rot at the early stage of infection by classifying sample images into
multiple classes.

INDEX TERMS Basal stem rot, convolutional neural network, deep learning, Ganoderma boninense, oil
palm, terrestrial laser scanning.

I. INTRODUCTION
Oil palm (Elaeis guineensis Jacq.) is an important agricul-
tural produce in several developing countries in South East
Asia region [1], [2]. Globally, the palm oil which is produced
from oil palm tree makes up about one-third of the world’s
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vegetable oil and fat supply, with 85% of the palm oil is
produced in Malaysia and Indonesia [2], [3]. Oil palm is
commonly used as cooking oil. About three-quarters of the
global palm oil supply is used for food while almost all of the
rest is used for industrial purpose [4].

For Malaysia, palm oil is one of the largest contributors to
the country’s economy, and the industry plays a crucial role
in elevating the socio-economic development of the country.
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As of 2020, the country as a whole has more than 5 million
hectares of oil palm plantations [4], [5]. However, since year
2009, a yield decline was observed in the oil palm industry
in Malaysia. Several factors played a role in the decline of
production, including plant disease, biodiversity, the age of
palm tree and etc [4]. Infectious disease such as the basal stem
rot (BSR) have caused a significant reduction in the yearly
yield of palm oil [1].

BSR is an oil palm tree disease that can be found in
Malaysia and Indonesia [6]. BSR is caused by the white
rot fungus, also commonly known as Ganoderma [7]. There
are different species of Ganoderma that can cause the BSR
disease in oil palm trees, but the Ganoderma boninense (G.
boninense) species is by far the most common Ganoderma
fungus. G. boninense spreads and colonizes other oil palm
trees through the roots, shoots, stems and rotting stem tis-
sues [7], making the fungus a soil-borne pathogen. The fun-
gus is also Necrotrophic, which means that the fungus is
unnoticeable and not easily detectable during the early stages
of infection [1].

In the early stage of infection, the fungus begins to infect
and break down the cell wall of the infected oil palm tree
while taking in key nutrients from the infected tree. At this
stage, the tree shows little to no symptoms of infection.
As infection stage progress the tree leaves will show symp-
toms of chlorosis, and the symptoms of BSR will show at
the shoot of the infected oil palm tree. At this stage, new
tree leaves will form the spears, remain unopened while
being fully elongated. Complete colonization ofG. boninense
causes a restriction in water intake which leads to the droop-
ing effect at the lower leaves and the tree gives a skirt like
appearance. At full colonization, the color of the leaves begin
to turn yellow. The leaves will begin to dieback from the tip
of the leaves. During later stages of BSR infection the color
of the tree base turns black since there is a severe degradation
that occurs within the stem. Basidiocarps is often seen at the
base of the plant during late stage of infection. At the end
of the infection progression, the crown of the oil palm falls
off and the foundation of the tree becomes weakened and
eventually led to the fracture, collapse and death of the oil
palm tree [1], [7].

The impact of G. boninense is serious on an infected
tree. The entire economic life of an oil palm tree is around
25 years. However, once infected, the oil palm tree will
typically die within 2 to 3 years. An infected tree is also
expected to have 50 to 80% yield reduction over the tree’s
lifetime since BSR infection causes weight loss at the fruit
branches [1], [3], [8].

Nationally, G. boninense is also spreading rapidly. From
an estimated infection rate of 1.5% in year 1995,Ganoderma
boninense has infected about 7.4% of the oil palm tree popu-
lation in year 2017 [3]. InMalaysia, the spread of BSR caused
an estimated economic loss of RM225million per annum [9].
Considering the speed of infection and the potential economic
loss, it is vitally important to control the spread of BSR
especially at the early stages of infection.

There are several methods that can be used to control the
spread of BSR, namely physical control (such as cleaning,
trenching and burning), chemical control (such as the use
of fungicides and modified fertilizers), biocontrol methods,
rapid degradation, and the use of genetic resistant materials.
Physical control can be expensive due to the dependence
on human labor. Burning is also outlawed by the Malaysian
Government, under the Environmental Quality Act (EQA
1974) [1], [9], [10]. Chemical control may be effective but
may be dangerous to the environment as the phenolic com-
pounds involved are not well studied [1], [7]. As for biocon-
trol method, both chemical fungicides and biocontrol agents
showed little effectiveness on field [8]. Rapid degradation
method is a method that uses other fungi to increase the rate
of deterioration of dead oil palm trees that has collapsed at the
end of the infection progression. However, the environmental
impact of this method is still not well researched [1]. Lastly,
the use of genetic resistant material has the potential however
the genes that are responsible for BSR resistance are still not
isolated [1].

Considering the multiple options mentioned above, the
most effective way to control the spread of this disease is still
the physical method. However, this method requires human
labor to physically clean and remove the infected plant [9].
Therefore, it is crucially important to develop a cost effective
BSR detection method that can accurately detect BSR at
the early stage of infection, to ensure sufficient sanitization
efforts can be done to prevent the spread of BSR infection.
The method should also be stable and work under any envi-
ronmental conditions, while not requiring specialized tools or
training [11].

The purpose of this research is to determine the possibility
of G. boninense infection detection from the terrestrial laser
scanning (TLS) cropped point cloud crown section data using
deep learning, namely convolutional neural network (CNN).

II. LITERATURE REVIEW
In order to curb the spread of BSR infection, it is vitally
important to accurately detect BSR infection early [12]. The
default method of detecting BSR is by conducting visual
inspection on the oil palm tree. However, this method is heav-
ily dependent on human experience that is not transferable.
This method is also susceptible to human error, at the same
time technically challenging since oil palm tree that is at
the early stage of infection do not present any visible symp-
toms [1], [13]. Manual detection method is also expensive
since it is heavily dependent on human labor [4].

The laboratory methods were often cited to be reliable,
especially Polymerase Chain Reaction technology (PCR).
PCR has a very high detection accuracy and sensitivity; how-
ever the tests are very expensive as PCR requires expensive
infrastructure and highly skilled professionals to conduct the
PCR test following complicated protocols. Besides the cost,
PCR lacks the flexibility needed for large scale testing as it
does not allow on-site testing, since the DNA samples need
to be transported to the laboratory for analysis. Furthermore,
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PCR is susceptible to sample contamination, making the test
not suitable for BSR infection detection [1], [9].

Other laboratory tests available include Ganoderma Selec-
tion Medium (GSM) and Enzyme-linked Immunosorbent
Assay Polyclonal Antibodies (ELISA-PABS). GSM has the
potential for large scale use, however the testing reagent may
not be safe for the environment. Reliability of GSM test is also
yet to be proven [13]. ELISA-PABS showed greater promises
in terms of accuracy and sensitivity when the test was com-
pared against GSM. ELISA-PABS is also less technically
demanding since the test is simpler while being compared to
PCR. However, the test is still sophisticated and not suitable
for large scale infection detection [13].

In summary, manual infection detection method is too
dependent on human labor and the laboratory methods are
too costly and technically demanding. Both manual and lab-
oratory methods are not suitable for large scale BSR infec-
tion detection. Thus, digital detection methods may be better
compared to both the manual and laboratory methods, since
remote sensors perform better compared to the naked eyes,
at the same time digital detection method may be opera-
tionally simpler compared to the laboratory methods [13].

Multiple methods of digital image and data collection were
discussed extensively by Tee, C.A.T et al. (2021) [13] and
Mohd Hilmi Tan, M.I.S et al. (2021) [12]. The image and data
collected need to be pre-processed and analyzed using various
methods in order to produce meaningful results that can be
used to detect and classify BSR infection. The below section
discusses the previous research involving the use of TLS and
CNN in the detection and classification of BSR infection.

A. TERRESTRIAL LASER SCANNING (TLS)
Terrestrial Laser Scanning (TLS) is a ground based light
detection and ranging (LiDAR) technology. The technology
first shoots a pulsed laser light at an object, and the refec-
tion of the pulsed laser light will then be captured by a
sensor. The reflected pulsed laser light is used to profile
an object and capture the external shape of the object [13].
TLS offers a variety of advantages, which include easy setup,
easy data acquisition, ease of operation for both professional
and layperson, fast data acquisition, high image accuracy
and high resolution. TLS also offers imaging from different
perspectives and users are allowed to have repeatable views.
TLS only requires equipment purchase therefore it does not
require expensive laboratory set up, which shows that TLS
can be considered more cost effective in a long run [14].

For application on oil palm TLS imaging, TLS laser energy
is able to penetrate through canopy gaps and measure the tree
canopy structure. Regular optical imagery is limited since the
lower part of tree’s canopy is often not visible [14]. It was
hypothesized that healthy tree tends to have larger crown size
and the canopies are often better developed as compared to
infected trees [15]. This is true for oil palm tree as well,
since G. boninense infection causes a restriction in water
and nutrient intake of the oil palm tree. This leads to the

underdevelopment of the leaves of the trees and the entire tree
as a whole. The impact of stunted leaf growth causes a delay
in new leaf development which leads to a reduction in front
production, thus lead to a smaller crown size. Themore severe
an infection, the more pronounce the impact on the canopy of
an oil palm. By studying the physical appearance of oil palm
tree such as the canopy drooping effect, crown coverage area,
and front features using TLS technology, an infected oil palm
tree can be detected, and the infection severity of an oil palm
tree can potentially be classified as well [14].

The below section listed in chronological orders a few
research that were done that is related to BSR detection
using TLS technology. The purpose of the below review is
to identify which aspects of the research were done in order
to identify the knowledge gap.

N.A. Husin et al. (2020) utilized TLS technology and
analyzed the oil palm tree based on the observation that an
infected tree has a skirt like appearance due to dehydration
and nutrient deficiency that are caused by G. boninense. The
TLS technology used for this research was by FARO tech-
nologies. The purpose of this research was to classify BSR
disease using canopy stratification [14]. During this research,
N.A. Husin et al. constructed 3D images of the oil palm tree
using laser point data, the tree canopy was then stratified
horizontally. The data was classified using six classification
models, namely linear, two-factorial, quadratic, cubic, quartic
and fifth models. The models were used in combinations,
with less combinations developed for higher degree of poly-
nomial function as the models were too complex. A total of
118 classification models were developed using a combina-
tion of parameters which include frond angle, frond number,
crown pixel, canopy at 200cm from the top (S200) and canopy
at 850cm from the top (S850). In conclusion, linear model
with a combination of frond number, frond angle and S200
showed the greatest accuracy for healthy tree classification
(100%) while showing a classification accuracy of 86.67%
for healthy-unhealthy trees [14].

To emphasize on the analysis on the crown of tree, in a
further study, N.A. Husin et al. (2020) first obtained the sig-
nificant strata using t-test, which it was then used to develop a
detection model to detect infected tree and healthy tree [16].
N.A. Husin et al. utilized multiple linear regression equations
with the significant strata as the strata parameters to develop
the coefficients model. Through the analysis of crown strata,
it was concluded that healthy trees have higher crown den-
sities than unhealthy tress starting from 240cm from the top
(strata no.5) to the bottom. Prediction models using the strata
parameters C650, C700, C800, and C850 (where the number
next to C is the height from top measured in cm) were 92.5%
accurate in the classification of healthy-unhealthy trees [16].

In the following further study, N.A. Husin et al. (2020)
first utilized principal component analysis (PCA) to reduce
the dimensionality of the dataset in order to improve the
interpretability of the dataset while minimizing information
loss [17]. This research utilized several machine learning
techniques to classify the images. The models were evaluated

49848 VOLUME 11, 2023



Y. H. Haw et al.: Detection of Basal Stem Rot Disease Using Deep Learning

to determine which model performed the best in image classi-
fication and BSR detection. The machine learning techniques
used in this research were Decision Tree (DT), Discriminant
Analysis (DA), Naïve Bayes (NB), Support Vector Machine
(SVM), Nearest Neighbor (NN) and Ensemble Modelling
(EM). The results showed that kernel naïve Bayes (KNB)
model developed using the input parameters of the principal
components (PCs) 1 and 2 had the best performance among
90 other models with a multiple level accuracy of 85% and
a Kappa coefficient of 0.80. Furthermore, the combination
of the two highest PC variance with the most weighted to
frond number, frond angle, crown area, and C200 signifi-
cantly contributed to the classification success. The model
also could classify healthy and mildly infected trees with
100% accuracy. Therefore, it was concluded that using TLS
data, machine learning approach was highly accurate in the
prediction of BSR during early stage of infection [17].

To determine the suitable timeframe in monitoring the
progress of BSR disease, N.A. Husin et al. (2021) continued
the research using TLS [18]. The researchers observed the
change of crown and frond metrics of oil palm tree with two
different scan durations, namely 2 and 4 months after the
first scan. The purpose of this research was to help develop
long-term solutions and improve response speed in the treat-
ment of infected oil palm tree. The results showed that crown
strata that was 850cm from the top and the crown area (both
collected over four months and second two months period)
were the most suitable metrics to be used to distinguish
infected and non-infected oil palm trees. At the point of this
research, infection inspection practice occurred every 6 or
12 months. A faster cycle was recommended since BSR may
cause the death of young oil palm trees within 12 months.
A more frequent disease census may reduce and prevent crop
destruction since detection could be done earlier and allow
earlier intervention and treatment efforts [18].

From the review on the research papers related to TLS
technology, in the detection of BSR infection, it was shown
that TLS remains a reliable technology for oil palm tree data
collection. It was found that all the studies used various clas-
sification methods, which include machine learning methods
such as DT, DA, NB, SVM, NN, and EM. However, deep
learning model such as Convolution Neural Network (CNN)
was never implemented on TLS data in the detection of BSR
infection.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
RESEARCH IN BSR DETECTION
CNN is a type of neural network that is very effective in
the field of computer vision, pattern recognition and clas-
sification. CNN is often regarded as the upgraded version
of Artificial Neural Network (ANN). ANN is a neural net-
work that imitates the human brain function in complex task
completion and decision making. ANN consists of multilayer
and back-propagation to enable the learning ability of com-
puter in determining the nonlinear combinations. CNN has

recently gained popularity in the field of computer vision
and plant disease detection. The reason why CNN has shown
increase in popularity is because of the automatic feature
extraction from any given dataset. CNN contains an output
layer, a hidden layer, multiple convolutional layers, pooling
layers, fully connected layers, and normalization layers to
automatically extract abstracted shallow and deep features
of the input [13], [19]. To review the possibility of utilizing
deep learning models on oil palm data, the section below
explores the research papers that utilized neural network or
deep learning in the detection of BSR or other plant disease
through dataset generated by various sensors. The research
below were listed in chronological order.

P. Ahmadi et al. (2017) researched on the possibility of
using ANN on raw, first and second derivative spectrora-
diometer datasets. The purpose of this research was to dis-
criminate and classify BSR infection especially during early
stage of infection [20]. The research utilized visible and
near-infrared (VIS-NIR) spectral reflectance data from tree
trunk samples that were sent to lab after trunk drilling. The
research found that using ANN, early detection of BSR was
possible with a high level of accuracy, ranging from 83.35 to
100% [20].

Instead of relying on hyperspectral sensors, A.Y. Khaled et
al. (2018) identified that the electrical properties of oil palm
tree leaves could be used in the infection severity detection of
BSR. SVM and ANN classifiers were used to determine the
classification accuracies on BSR infection by analyzing the
significant frequencies that were selected using generic algo-
rithm (GA), random forest (RF) and SVM-feature selection
(SVM-FS). It was observed that SVMclassifier showed better
performance in terms of accuracy as compared to ANN, with
accuracies over 80% [21].

In a further study, P. Ahmadi et al. (2022) utilized an
unmanned aerial vehicle (UAV) together with a near infrared
sensor (NIR) to collect images of oil palm tree canopy.
The images captured were analyzed and classified using
ANN model. Training accuracy of 97.52% was achieved for
healthy palm trees, however the testing accuracy dropped to
72.73%. For early infected palm trees, the training accuracy
achieved was 88.50%, however the testing accuracy dropped
to 57.14% [22].

C.C Lee et al. (2022) also utilized a hyperspectral sensor.
The sensor was used in combination with an UAV. Multilayer
Perceptron (MLP) were used to study the spectral features
from oil palm tree of different infection severity. The images
collected were red, green and blue (RGB) image and hyper-
spectral images. It was discovered that using MLP, the accu-
racy achieved was 86.67% whereas SVM and 1-dimensional
CNN only achieved 66.67% and 73.33% accuracy respec-
tively [23].

L.Z Yong et al. (2023) detected BSR in oil palm seedlings
at an early stage of infection using NIR-hyperspectral images
and three distinct types of deep learning architecture. Three
models were used, including a 16-layer convolutional neural
network (VGG16) model that was trained on the segmented
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images, as well asMask RCNN andVGG16models that were
both trained on the original images. The best performance
was achieved by VGG16 model, which had an F1 score of
91.72% when trained with the original images at 938 nm
wavelength [24].

Based on the research reviewed, it was shown that most
studies reviewed utilized ANN instead of CNN. CNN was
only attempted on spectral data such as VIS-NIR and hyper-
spectral data. The potentials of using CNN on TLS dataset
should be studied to observe if the detection accuracy of
BSR infection can be improved as compared to other machine
learning methods that have been explored.

As a reference, there are other plant disease research that
utilized CNN. J.R. Xiao et al. (2020) showed the possibil-
ities of detecting strawberry diseases with 98% accuracy,
while applying CNN models on 1306 feature images [25].
P. Sharma et al. (2020) compared the application of CNN
on full images (F-CNN) or segmented image (S-CNN) on
around 17,000 tomato leaves images, and found that S-CNN
showed a very remarkable 98.6% accuracy as compared to
only 42.3% accuracy for F-CNN [26].

When presented with large data, CNN has the potential to
provide high disease detection accuracy. With less data avail-
able, the accuracy of CNN tend to be much lower. Nguyen
et al. (2021) showed that applying 2-dimensional CNN (2D-
CNN) and 3-dimensional CNN (3D-CNN) on 40 hyperspec-
tral images of grapevine only gave 71 to 75% training accu-
racy and around 50% testing accuracy [27].

To overcome the issue of limited dataset, data augmenta-
tion can be used to increase the number of labelled images
artificially within the dataset. Example of data augmenta-
tion includes adjustment of rotation, brightness, contrast and
sharpness of the images. Data augmentation has the potential
to increase the accuracy of deep learning models, example
given by G. Hu et al. (2018) that showed 7% accuracy
improvement can be achieved by using data augmentation
while applying CNN on a small dataset [28].

III. METHODOLOGY
A. OVERVIEW
This section is to provide an overview on how the dataset
was implemented in the study, followed by the details of data
pre-processing steps, model implementation, and experiment
setups. All experimentations were conducted with the Ten-
sorFlow framework with Keras as the backend in the Google
Colaboratory platform (2.30 GHz Intel®Xeon®CPU, up to
32 GB RAM, and NVIDIA P100 or T4 GPU).

Figure 1 depicts the overall methodology of the study.
Stage 1 was the data collection step, which this study used
secondary data obtained in [17] (refer Section B). After
stage 1, the dataset was separated into train set Dtr and test
set Dts to ensure the test dataset was never seen by the
deep learning model (refer Section C). At stage 2, the Dtr
was augmented to increase the number of images artificially
to form Dtr,aug (refer Section D). Next, from stage 3 to 4,

Dtr,aug was subjected to stratified five-fold cross-validation
(SFFCV) to evaluate the stability of the baseline model and
the five selected ImageNet pre-trained CNNs (refer Section E
to G). Depending on if themodel was stable, finally at stage 5,
the model was trained with the whole training dataset Dtr,aug
and tested on the whole testing dataset Dts (refer to Quantita-
tive Evaluation, Section G).

B. DATA COLLECTION
The study used secondary data obtained in [17]. The images
were collected using a TLS system called Faro Laser Scan-
ning Focus 3D (FAROTechnologies, Inc., Florida, USA). For
this research, canopy was the area of interest. Upon com-
pleting the scans, all the scans were imported into SCENE
software for processing and analysis. SCENE software har-
monized the multiple TLS scans and synchronized the laser
point data to create a cluster of point clouds and a complete
3D view of the oil palm tree. After the point cloud registration
process, the scanned images went through single tree extrac-
tion and crown section image extraction to single out each
tree per image.

After singling out each tree, the images were pre-processed
using grey-level distribution. This method was a global
thresholding method that relied on the grey value of the
image with the aim of separating objects of interest in an
image from the background. This method segregated the
object from the background using the object’s grey-level
distribution.

This algorithm used the assumption that the image contains
two classes of pixels following a bi-modal histogram, namely
the foreground pixels and background pixels. The algorithm
calculated the optimum threshold to discriminate the two
classes, so their combined spread (intra-class variance) was
minimal. This method was considered as simple and effec-
tive [14].

A total of 88 grey-level distribution images of the oil
palm tree canopy were collected. The collected images com-
prised two major classes, namely healthy (H) and non-
healthy (NH). The healthy class was also labelled as T0.
The NH class could be further divided into three sub-
classes, namely mildly infected (T1), moderately infected
(T2), and severely infected (T3). Table 1 illustrates the dataset
composition.

The objective of this research was to detect the G. boni-
nense, i.e. classifying the dataset to 2 separate classes,
namely H class and NH class. For this objective, H class
had 26 images, where NH class had 62 images (combination
of T1, T2 and T3 subclasses, with 20, 21 and 21 images
respectively). The measure to tackle the imbalance in the H
and NH dataset was mentioned in section F of this chapter.

C. DATA PRE-PROCESSING
Data pre-processing is a process where the raw inputs are pre-
pared into batches of processed data that will be made com-
patible with the classifier. First, the dataset, Ds was defined
asDs = {X1, X2, . . . ,XN} of N images, where an image, X =
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FIGURE 1. The overall flow of the research methodology.

(width, height, number of channels), was a two-dimensional
set of pixels with three channels that indicate RGB color
space. Each X was associated with the label space, where
Y (X ) ∈ {H ,NH}. Subsequently, train-test split method was
done on Ds, where train set, Dtr ≈ 0.7(Ds), test set, Dts ≈

(1 - 0.7)(Ds), and Dtr ∩ Dts =∅. Table 2 illustrates the
composition of Ds after the train-test split. The dataset split
was done to ensure the test set was independent and was not
used in hyperparameters fine-tuning. The test set was used for
testing only.

D. DATA AUGMENTATION
It was observed that the Dtr induced model overfitting eas-
ily during model training during the preliminary experi-
ments. was severely limited which caused the deep learning
models to not perform well due to data limitations [29].
As a result, artificial transformation, T ∈ {Tv, Th, Ti}
was introduced to Dtr to increase the number of train-
ing images, where Tv = vertical flip, and Th = hori-
zontal flip, forming the augmented train set, Dtr,aug =

Dtr + Tv(Dtr ) + Th(Dtr ). Table 3 illustrates the composition
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TABLE 1. The composition distribution of the dataset.

TABLE 2. The distribution of Ds after the train-test split.

TABLE 3. The distribution of Ds after transformation T.

of Dtr,aug after T (Dtr ). Figure 2 depicts T of a sample
image.

During model training, real-time augmentation, Ti ∈ {Tir ,
Tib, Tir} was applied using the ImageDataGenerator class
from TensorFlow Keras to the Dtr,aug, where Tir = random
rotation, Tib = random brightness, and Tiz = random zoom. Ti
augments X inDtr,aug. The augmentation was done randomly
and in real-time (with seed = 42 to ensure reproducibility)
during the model training.

E. STRATIFIED FIVE-FOLD CROSS VALIDATION
After Dtr,aug formation, stratified five-fold cross-validation
(SFFCV) was performed on the Dtr,aug. K-fold stratified
cross-validation technique divided Dtr,aug into K subsets (K
= 5), which the first K fold was taken as the validation set,
while the remaining (K − 1) folds were used as training set,
at the same time ensured all classes had the same proportion
akin to the original dataset. The average validation results
were computed from results generated from each fold. Per-
forming stratified cross-validation reduced result variability,
ensured model stability, and provided a more comprehensive
performance evaluation across the whole dataset.

Before model training, batches of preprocessed tensor
image data were generated from Dtr,aug with operations
such as rescaling, resizing, batching, and shuffling. It was
observed that image intensity values in Ds range between
0 and 255. Thus, these intensity values were normalized
to values between 0 and 1. Furthermore, it was found that

TABLE 4. The operation details of the pre-processing steps.

images in Ds vary in resolutions. Hence, the images in Ds
were resized to 224 × 224. Table 4 depicts the operations
details of the pre-processing steps.

F. WEIGHTING TECHNIQUE
Referring to Table 3, it was observed that the dataset Ds
was imbalanced. For an imbalanced dataset, classification
model tends to be biased in inferencing the majority class.
Therefore, class weighting technique was implemented to
give the minority class a more significant weight in the model
cost function while imposing a higher penalty on the minority
class. With this penalty, the model was able to converge to
minimize loss for the minority class [30]. The equation used
to determine the class weight is defined as:

Class Weighting =
N

Nc × Nsc
(1)

where N= total number of samples, NC = number of classes,
and NSC = number of samples in each class.

G. MODEL IMPLEMENTATION
1) BASELINE MODEL
This section describes the baseline CNN model for the oil
palm tree classification into H or NH class. Given an X
from Ds as an input, the primary goal was to classify X
into Y (X ) ∈ {H ,NH}. The baseline model consisted of
three convolutional blocks and one fully connected layer for
classification. The result generated by the baseline model
were used as the standard for the study. Table 5 shows the
structure of the baseline model.

2) TRANSFER LEARNING
Transfer learning is the process of improving a target pre-
dictive function fT (·) by using associated information from
a source domain, Dsource, with its corresponding source task,
Tsource, where Dsource ̸= Dtarget (target domain) or Tsource ̸=

Ttarget (target task) [31]. The first blocks of a CNN learn
generic features while the final blocks of a CNN learn task-
specific features. Therefore, transfer learning leverages the
learned generic features from Dsource and then relearns the
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FIGURE 2. Examples of the original image (i) and the respective transformed image Tv (ii) and Th(iii).

TABLE 5. The structure of the proposed baseline model.

specific features of Dtarget . Transfer learning takes in what a
model has already learned while only tuning the final classi-
fier in order to classify the given custom dataset thus solving

TABLE 6. The selected five ImageNet pre-trained CNNs used for the study.

the problem involving the given dataset. Transfer learning
allows the reduction of the time needed and the amount of
data required for model training [32]. Essentially, transfer
learning allows small datasets to be trained on CNNs with
a lower risk of model overfitting.

In this study, five pre-trained CNNs (see Table 6) in the
ImageNet dataset (a dataset that comprises more than 1.2 mil-
lion natural images with 1000 classes) were transferred to
the palm tree binary classification task (H and NH classes).
The reason why the 5 CNN’s were selected was to test the
dataset using diverse CNN architectures from different CNN
architecture family, for example, the EfficientNets were com-
prised of B0-B7 models, where the ResNets were comprised
of models from 18-152 layers and etc.. The purpose of testing
multiple CNN architectures was to provide a general sense
to which model architecture may perform better in such a
specific application.

For the classificationmodel, the model consists of a feature
extractor, fθ (parametrized by the model parameter θ ) and
a classifier, C(·|W ) (parametrized by weight matrix W ∈

Rd×c). The classifier C(·|W ) consists of two dropout layers,
fully connected layers, with the last layer equipped with a
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TABLE 7. Structures of the proposed model, a feature extractor, fθ with a
linear classifier C(·|W ).

FIGURE 3. The two configurations for the ImageNet pre-trained CNNs. For
the first mode, fixed parameter θ in the fθ and trained a new C(·|W ) on
Dtr, aug,. For the second mode, fine-tuned the parameter θ in the fθ and
trained a new CC(·|W ) on Dtr, aug. (Cube shape as fixed parameter θ

while layers of rectangular cuboids as trainable parameter).

sigmoid function σ (see Table 7). Two modes of experiments
were conducted (see Figure 3 below):

(1) Fixed the parameter θ in the fθ and trained a newC(·|W )
on Dtr,aug, i.e. frozen weights.

(2) Fine-tuned the parameter θ in the fθ and trained a new
C(·|W ) on Dtr,aug, i.e. fine-tuned weights.
The models were trained with Dtr,aug by minimizing the

binary cross-entropy loss, BCEloss (see Equation 2), using
Adam Optimizer to optimize the model parameters [38]. Fur-
thermore, grid search was performed to determine the optimal
learning rate and number of epochs for model training.

BCE loss
(
ŷ, y

)
=−

(∑N

i=1
yilogŷi + (1 − yi) log

(
1−ŷi

))
(2)

where yi = ith label y of N classes, and ŷ = ith element of
model output ŷ.

FIGURE 4. Algorithm 1: Methodology.

Algorithm 1 of Figure 4 provides a detailed description of
the entire methodology. First, Ds was divided into Dtr and
Ds via train-test split. Next, Dtr was transformed into Dtr,aug
where Dtr,aug = Dtr + Tv(Dtr ) + Th(Dtr ). Subsequently,
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five-fold stratified cross-validation split was done to split
Dtr,aug into five folds. For each fold, batches of tensor inputs
with Dtr,aug were generated for model training. After instan-
tiating the model, the model was fitted with the Dtr,aug by
minimizing the BCEloss with Adam optimizer for 100 epochs.
When the stability of the model reaches a satisfactory level
through five-fold stratified cross-validation, the model was
fitted with the whole Dtr,aug, and tested on Dts. Finally, con-
fusion matrix was done to evaluate the model performance
metrics.

3) QUANTITATIVE EVALUATION
The model performance were evaluated comprehensively,
using five performance metrics, namely accuracy, precision,
recall, F1-score, and inference time, with macro-average
technique. Given that true positive TP, true negative TN, false
positive FP, and false negative FN, the precision is computed
with TP divided by (TP + FP). The recall is computed with
TP divided (TP + FN). Precision and recall were evaluated
in order to have a comprehensive view over the model perfor-
mance. Thus, the F1-score was utilized as the primary eval-
uation metric since F1-score was expressed as the harmonic
mean of precision and recall. The purpose of using the F1-
score is to ensure a more balanced summarization of model
performance. The macro-average technique calculates each
class metric independently and averages the results, ensuring
that all classes were treated equally. The equations below
depict the evaluation metrics.

Accuracy =
TP+TN

TP+TN+FP+FN (3)

Recallmacro =
1

|C|

∑|C|

i=1
TPi

TPi+FN i
(4)

Precisionmacro =
1

|C|

∑|C|

i=1
TPi

TPi+FPi
(5)

F1scoremacro = 2 ∗
Precisionmacro×Recallmacro
Precisionmacro+Recallmacro

(6)

Inference time (s) =
Tfinal−Tinitial

Ns
(7)

where C = number of classes, Tfinal = final inference time
for X in Dts or Dtr,aug,k , Tinitial = initial inference time for
X in Dts or Dtr,aug,k , and Ns = total number of X in Dts or
Dtr,aug,k .

IV. RESULTS
As mentioned in the previous chapter (Refer Quantitative
Evaluation), the F1-score was utilized as the primary evalu-
ation metric since F1-score was expressed as the harmonic
mean of precision and recall. The research objective is to
detect the infected oil palm tree from the TLS data. Table 8
illustrates the five-fold stratified cross-validation results,
while Table 9 illustrates the test results of the Baseline model
and the five pre-trained CNN models in two modes (feature
extractor and fine-tuning) on the palm tree infection detection
task (H class and NH class). According to the validation
results (see Table 8), the fine-tuned ResNet50 topped other
models in the classification task, achieving up to 0.886 macro
F1-score with approximately 37 ms of inference time. For the
test results (see Table 9), although the fine-tuned ResNet50

achieved a relatively high macro F1-score (0.778) compared
to the other models, the fine-tuned DenseNet121 outper-
formed the fine-tuned ResNet50, achieved 0.798 macro F1-
score with approximately 92 ms of inference time.

It was also noted that from the Macro F1 score, baseline
model performed better than all feature extractor models and
some fine-tuned models. This trend was also observed in
Figure 6.

V. DISCUSSION
In this study, the application of CNN to classify oil palm tree
images into H and NH classes were explored and studied.
A plain vanilla CNNwas developed as the baselinemodel and
selected five state-of-the-art pre-trained CNNs (MobileNet,
EfficientNet B0, VGG16, ResNet50, and DenseNet121) for
the classification task.

A. COMPARISON BETWEEN DIFFERENT CNNS
As discussed within the methodology, the purpose of choos-
ing the 5 CNN models mentioned in Table 6 was to explore
multiple CNN architecture families in order to have a general
sense as to which model architecture performed better under
the specific application. The finding will allow opportunities
to further research using deeper model when the research is
scaled up when more data become available.

Among all of the models chosen for this study, ResNet
and DenseNet were the top performers (see Figure 5 showing
ResNet performed best during SFFCV while Figure 6 show-
ing DenseNet performed best during the model testing stage).
Figure 8 (page below) shows the confusion matrices for both
ResNet during SFFCV and DenseNet during model testing.
It was noteworthy that ResNet model during SFFCV has quite
a high count of false negative, while DenseNet performed
relatively well during testing phase, with low incidence of
false positive and false negative. However, both false negative
and false positive cases are not ideal since a false positive case
would allow G. Boninense to spread continuously without
being detected, whereas a false negative case will cause a
waste in disease control resources.

It was hypothesized that ResNet and DenseNet performed
well owing to their architectural novelty. Consider an image
xo that is fed forward through a CNN. The CNN comprises
L layers, each of which adopts a non-linear transformation
Hℓ (·), where ℓ indexes the layer. The output of the ℓ th layer
is represented as xℓ. Conventional CNN connects the output
of the ℓ th layer as input to the (ℓ + 1)th layer [39], which
yields the layer transition: xℓ = Hℓ(xℓ−1). ResNet (Residual
Neural Network) were developed to address the vanishing
gradient problem by adding a skip connection that bypasses
the non- linear transformation with an identity function xℓ =

Hℓ (xℓ−1) + xℓ−1. It was observed that the gradient can flow
directly through the identity function from later layers to the
earlier layers in ResNet.

Likewise, DenseNet (Dense Convolutional Network) was
developed to further optimize the data flow between lay-
ers. DenseNet introduced direct connections from any layer
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TABLE 8. The SFFCV performance of the baseline model and five ImageNet pre-trained CNNs in terms of accuracy, macro precision, macro recall, macro
F1-score and inference time. The results based on Macro F1-score suggested that the ResNet50 achieved the highest performance compared to other
CNNs. The inference time listed are less than 0.1 second thus the differences are negligible.

FIGURE 5. The macro F1-score of the baseline model and the selected five ImageNet pre-trained CNNs obtained from SFFCV. Square pattern plot indicates
the baseline model, the crosses (‘x’) plots indicate models that act as feature extractors while the diagonal lines plots indicate fine-tuned models. The
overall plot suggests that fine-tuned models achieve higher stability and performance compared to those which act as feature extractors.

to all consequent layers. The ℓth layer obtains the feature
maps of all previous layers, x0, . . . , xℓ−1, as input: xℓ =

Hℓ([x0, . . . , xℓ−1]), where [x0, . . . , xℓ−1] denotes as the con-
catenation of the feature maps yielded in layers 0, . . . , ℓ −

1 [35].
It was observed that the baseline model performed surpris-

ingly well in Dts (see Figure 6). Despite the simplicity, the
baseline model outperformed all selected pre-trained CNNs
as feature extractors and some fine-tuned models. Therefore,
the ability of simple vanilla CNN should not be underesti-
mated in exploring the implementation of CNN in different
applications.

B. COMPARISONS BETWEEN FEATURE EXTRACTION AND
FINE-TUNING
Despite the fact all models can segregate healthy oil palm
trees from non-healthy trees with up to 0.7 macro F1-score,
it was discovered that fine-tuned models performed better
than those models that acted as feature extractors. Feature
extraction relies on the learned knowledge of the fθ from
Dsource to extract salient features from Dtarget . On the other
hand, fine-tuning optimizes the θ in the fθ with micro steps,
adjusting the feature representations of the classifier to be
more applicable to the Dtarget. As a result, fine-tuned models
can achieve a better performance than non-fine-tunedmodels.
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FIGURE 6. The macro F1-score of the baseline model and the selected five ImageNet
pre-trained CNNs obtained from Dts. The square pattern plot indicates the baseline model, the
crosses (‘x’) plots indicate models that act as feature extractors while the diagonal lines plots
indicate fine-tuned models. The overall chart suggests that fine-tuned models achieve higher
scores compared to others. Surprisingly, the baseline model outperforms all CNNs that act as
feature extractors and some fine-tuned models.

For each model, the best model weights were selected
during model training to perform model inference on the
test set. However, according to accuracy and loss curves for
the 2 best performing pre-trained CNNs, namely DenseNet
121 and ResNet50 (see Figure 7), it was observed that the
training loss curve of the fine-tuned models (see second
column in Figure 7) decreased gradually with experience
while the validation loss curve decreased to a point and
stagnated or even showing a trend of increase. This trend
proved that fine-tuning the models with large learning rates
resulted inmodel overfitting. Additionally, it was also noticed
that fine-tuning the pre-trained models suffered from longer
training time.

There were many ways to implement the fine-tuning tech-
niques to the model. Fine-tuning in this research was done
by unfreezing the whole feature extractor (i.e. having no
frozen layers) while keeping the learning rate at the minimum
(0.00001). Grid search was not done in the search of the opti-
mum number of frozen layers in each model. This ablation
study can be further studied in future.

C. LIMITATIONS OF STUDY
In this study, the application of CNN in classifying oil
palm trees into H and NH classes was thoroughly explored.
As reviewed, no prior study adopted the TLS dataset for
deep learning research purpose. Hence, the results are only
applicable to the study dataset. For the experiment, five
CNNs (MobileNet, EfficientNet B0, VGG16, ResNet50, and
DenseNet121) were selected and pre-trained with the Ima-
geNet dataset. Early CNN architectures such as AlexNet [39]
and GoogleNet [40] were omitted since these architectures

were considered to be outdated. Thus, the study findings
would be more meaningful and comparable. Two experimen-
tal modes were conducted: (1) pre-trained model as feature
extractor and (2) fine-tuning the whole pre-trained model.
However, the option of selecting specific convolutional block
to be fine-tuned while maintaining the parameter θ of the
remaining block was not investigated since selecting the
optimal layers for fine-tuning was considered to be resource-
extensive [41].

D. CHALLENGES OF STUDY
This study encountered two significant challenges, namely
imbalanced data and model overfitting. The proportion of the
H and NH classes in the dataset was unequal (see Table 1).
Fitting imbalanced data into the CNNmay cause the model to
be prone to predict the higher proportioned class. To combat
this issue, class weighting technique was implemented to give
the minority class a more significant weight in the BCEloss
to impose a greater penalty on the minority class. For the
second challenge, horizontal and vertical flipped images were
artificially induced into Dtr to form Dtr,aug. Furthermore,
real-time random augmentations (rotation, brightness, zoom)
were applied to Dtr,aug during model training. In addition,
dropout layers in the C(·|Wb) that randomly nullify input
units at a specific rate during model training were also imple-
mented to combat model overfitting issue.

E. COMPARISON TO OTHER STUDIES
Compared to other BSR studies, the trend of small dataset
leading to model overfitting can be observed.
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FIGURE 7. The accuracy and loss graphs of the two best performing pre-trained CNNs during the SFFCV stage, i.e. (a) DenseNet121 and
(b) ResNet50, that act as feature extractors (first column) and fine-tuned (second column) in Dts. Best performing models were chosen based on
the Macro-F1 score during SFFCV stage. It was noted that fine-tuned models suffered from model overfitting owing to the limited samples in Ds.

FIGURE 8. The confusion matrix of the best performing pre-trained CNNs (i) ResNet50 in SFFCV and (ii)
DenseNet121 in Dts.

P. Ahmadi et al. (2022) utilized an UAV together with a
NIR and collected a total of 287 oil palm tree canopy image

samples. The images were then classified into three disease
levels. The images were then analyzed and classified using
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TABLE 9. The test performance of the baseline model and five ImageNet pre-trained CNNs in terms of accuracy, macro precision, macro recall, macro
F1-score and inference time. The results suggest that the DenseNet121 outperformed other CNNs in the classification task. The inference time listed are
less than 0.1 second thus the differences are negligible.

ANN model. The training accuracy achieved was 97.52%
for healthy palm trees, while the testing accuracy dropped
to 72.73%. Similar can be said for early infected palm trees,
with the training accuracy of 88.50% and testing accuracy of
57.14%. A model that is accurate during training while not
being very accurate during testing is a sign of an overfitted
model [22].

While increasing the sample size, the accuracy of
training and testing can be substantially improved.
L.Z Yong et al. (2023) demonstrated that by applying
VGG16 model on 1610 original images at 938nm wave-
length, which 1127 images were used for training and
483 images for testing, provided an accuracy of 91.93% and
F1 score of 91.72%. Despite showing very promising results,
this is not suitable for commercial use as this research is for
nursery application only [24].

Therefore, it is recommended to analyze TLS images
using CNN models but a significantly larger TLS dataset
is required. As shown, CNN and deep learning is a viable
method and even with limited dataset, macro F1-score of
around 0.8 can be achieved. With a significantly larger
dataset, it may be possible to utilize similar CNN models
to accurately classify the oil palm TLS images into differ-
ent infection levels (T0, T1, T2 and T3 sub-classes), thus
detecting the oil palm trees that are infected but showing little
symptoms for being in the early infected stage.

VI. CONCLUSION
From the study, it can be seen that CNN is a viable method
to detect G. boninense infection from a sample of oil palm
canopy TLS images. The best performing CNN models dur-
ing the performance test were ResNet50 and DenseNet121,
which gave a macro F1-score of 0.778 and 0.798 respectively.
It was concluded that DenseNet121 was the best performing
fine-tuned CNN model as compared to the baseline model
and the other 4 CNN models tested during the model testing
phase.

It was noted that baseline model performed relatively well
compared to all feature extractionmodels and even some fine-
tuned models. The capability of baseline CNNmodels should
not be underestimated.

However, it was noted that fine-tuned CNNmodel suffered
from model overfitting owing to the limitation on the dataset.
To potentially improve the training and testing process, more
data is needed as CNN works better when more images are
provided [25], [26], [27].

The current model is only capable of discriminating TLS
dataset into 2 classes, which is H and NH class. The ultimate
goal of using deep-learning to classify the TLS images is to
potentially classify the images into different infection level,
namely T0, T1, T2 and T3 in order to detect oil palm trees
that are infected early to allow early intervention and prevent
the spread of G. boninense.
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VII. FUTURE WORK
For future work, it is recommended to have a significantly
larger TLS dataset in order to improve the reliability of the
deep learning model. It is also recommended to test the
dataset using other CNN models such as the Inceptions,
NASNets, ConvNeXt, EfficientNetV2s etc. to determine if
other models will work better using similar dataset.

Besides, to improve the fine-tuning technique, it is recom-
mended to conduct ablation study to determine the optimum
number of frozen layers in each model.

The ultimate goal of BSR infection classification is to
classify images of oil palm trees into different infection class
in order to accurately capture the trees that are infected at
the early stage. The purpose of this is to allow effective
sanitization and early disease control efforts. Therefore it is
recommended to also attempt multiclass classification using
deep learning to observe if CNN can be used on TLS dataset
to accurately classify the TLS images into different infection
severity classes, thus finding if the model can accurately
detect early infected oil palm trees.
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