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ABSTRACT In this article, an automatic vehicle parallel parking algorithm, consisting of path planning,
controller design, and state estimation is developed. The path is planned using clothoid sequences and
a straight line, which avoids stopping the car to reorient the wheels. The control inputs, including speed
and steering angle, are a function of traveled distance. This method enables the car to park from different
initial poses, achieving reduced parking time and the ability to park in one or two maneuvers, in smaller
than standard places. An evolutionary optimization algorithm is used to calculate the best speed parameter
according to the defined criteria. The proposed technique utilizes the Unscented Kalman Filter (UKF) to
estimate the traveled distance, resulting in a smaller error compared to the conventional Extended Kalman
Filter (EKF). The research aims to introduce an optimal automatic parking algorithm to improve the existing
methods in terms of parking duration, the required space size for parking in the maximum of two maneuvers,
and path continuity. Finally, the fidelity and improved performance of the proposed method are assessed in
various probable conditions using the powerful Monte Carlo simulations.

INDEX TERMS Automatic parking, Kalman filter, Monte Carlo method, optimization, path planning.

I. INTRODUCTION
The use of advanced control methods has seen extensive
growth in modern vehicles over the past decade. Among
the existing control methods, automatic parking algorithms,
known as park assist, have attracted considerable attention.
Parallel parking, in particular, can be an arduous task due
to blind spots and the challenge of reversing, especially for
drivers with less experience.

One of the main goals of vehicle control is to assist the car
driver in driving the car safer in a comfortable way, which can
be achieved through automatic control of parking the vehicle.
Depending on the form of a parking spot, there are generally
three types of parking maneuvers: vertical, diagonal, and
parallel, with the latter being the most difficult for drivers.
Most automakers have recently implemented the automatic
parallel parking system on their cars. In early solutions,
some automakers, such as Toyota and Volvo, have employed
semi-automatic systems that only control the steering wheel,

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

leaving the driver to control the gas, brake, and gear them-
selves [1], [2]. Automated parking assistance systems have
continued to evolve, with newer solutions now being offered,
such as fully automatic parallel parking that eliminates the
need for any driver involvement [3]. The efficiency of the
automatic parking system depends on the path planning
method, controller design, and state estimation. In this arti-
cle, an innovative method for vehicle automatic parking is
presented.

A. STATE OF THE ART
Two types of path planning methods, online and offline, are
available for automatic parking, depending on the control
paradigm used. In the online method, the path is planned
while the car is moving and can detect obstacles to prevent
collisions. Fuzzy control is an example of this method [4],
[5], [6], [7]. In [4], linguistic commands are used for fuzzy
control. In [5], fuzzy control is applied to select an appropri-
ate path from a series of existing maneuvers according to the
surrounding environment.
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In [7], a genetic algorithm is used to fine-tune the fuzzy
logic parking algorithm. Although these methods are suitable
for dealing with uncertainty in the surrounding environment,
drawbacks of fuzzy control include the need for expert knowl-
edge and difficulty in generalization. Additionally, a dynamic
environment can render a previously planned parking tra-
jectory incorrect, requiring the parking planner to quickly
and accurately replan. To address the challenges of speed
and optimality in online path planning, the direct stitching
method and the computational stitching method have been
proposed in [8]. Other challenges include the need for highly
accurate sensors and a higher computational burden com-
pared to offline path planning. In the offline method, the path
is planned in advance, resulting in a lower computational
burden. This method has been explored in [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], and
[22]. In [9] and [10], a path without collision is initially
designed, which is then converted into an acceptable path and
followed by considering the limits of motion. However, this
method has a high error rate as a disadvantage, which may
cause inaccurate tracking. To solve this problem, an iterative
backward and forward motion can be used to guide the car to
the desired point [11], [12], although this approach prolongs
the time of the parking maneuver. Research in [13] has pro-
posed parallel and forward vertical parking paradigms. The
number of maneuvers for parallel parking is selected under
vertical parking to create a target line set for each number of
maneuvers.

In [14], a retrieving method is presented in which the path
is first designed virtually for the car to pull out of the park-
ing spot. Then, the final maneuver is obtained by following
the path in the opposite direction. This algorithm eliminates
repetitive maneuvers, reducing the error in the offline path
planning system and decreasing the parking duration. In this
method, two circular arcs are exerted to plan the path for
parallel parking with the capability to park in small places.
A path consisting of a straight line along with two circular
arcs was employed in [15], where the car was able to park
from different initial poses. These paths ( [14], [15]) are
segmented and the car stops at the junction of two path
segments to reorient the front wheels, which causes the tires
to wear, the tread to be lost, and puts pressure on the steering
column, thus increasing the parking duration. Also, due to
wheel rotation in the stop mode, the car may slip, which can
cause an error in tracking. The polynomial curve was used
in [16] and [17] to resolve this problem, which makes a rather
smooth path. However, this method cannot be generalized for
different initial poses.

In [18] and [19], the path is planned by converting the
circular arcs to clothoid sequences to prevent the vehicle
from stopping to reorient its front wheels at junction points.
The Audi Company has used this method for path plan-
ning [23]. It is shown that the path consisting of the clothoid
sequence can also be generalized for the various initial poses,
in the vehicle’s automatic parking [20]. The problem with
this method, however, is the need for a larger parking spot.

In [21] time-optimal parallel parking is presented which
utilizes an Interior-Point Method (IPM)-based simultaneous
dynamic optimization methodology to solve the optimization
problem numerically. Despite the accuracy of this method,
the computation time is not short enough to be used in
practical systems. To solve this problem, a real-time near-
optimal approach based on IPM is applied [22]. Another issue
that needs to be addressed is collision avoidance, which has
been tackled using the Interior Point Method (IPM) in the
presence of irregularly placed obstacles. First, a time-optimal
dynamic optimization problem is formulated, followed by the
introduction of an IPM-based simultaneous approach to solve
the problem [24]. Other studies, such as [25], have employed
the Gauss Pseudo-spectral Method (GPM) andModel Predic-
tive Control in the planning layer and tracking layer, respec-
tively, for autonomous parallel parking problems in narrow
spaces. This demonstrates that the tracking performance of
this method is superior to traditional solutions like PID,
despite the fact that the exact number of maneuvers has not
been considered. Reinforcement learning has been applied
for motion planning in various fields, as seen in [26], which
involves data generation, data evaluation, and training of the
network using selected data. In [27], other researchers have
studied a deep neural network-based control structure for the
automatic parking maneuver process, which was designed
and implemented.

Some scholars have based their studies on the DDPG
algorithm to study the automatic parking strategy, which
has higher requirements for the car’s path tracking sen-
sor [28]. To reach good actions and reduce the require-
ments for automotive sensors, an automatic parking model
has been proposed in [29], which is based on the car’s
parking kinematics model and deep reinforcement learning.
Traffic congestion and mismanagement are other issues for
which data-driven solutions have been proposed to tackle
them. These data-driven solutions utilize the already available
infrastructure of surveillance cameras installed at parking
lots, thus overcoming the limitations of sensor-based solu-
tions. In [30], an intelligent parking management system has
been developed, which employs deep learning to address the
limitations of data-driven solutions by leveraging the high
performance and fast inference capability of YOLO v5 for
vehicle detection.

The motivation of this study is to propose an optimal auto-
matic parallel parking algorithm that improves the existing
methods in terms of parking duration, space requirement (a
maximum of two maneuvers), path continuity, and measure-
ment error reduction.

B. THE CONTRIBUTION OF THIS PAPER
In this paper, a novel method for automatic parallel parking
of vehicles, including path planning, controller design, and
estimation of traveled distance is proposed. For this purpose,
a path is initially planned considering the system’s motion
limitations. The control inputs are then adjusted to follow the
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designed path. The kinematic and motion constraints of the
car are initially examined to generate a path that a car-like
vehicle can move on it. A retrieving method is used for path
planning; first, a path is designed to get the car out of the
parking spot, then followed in the opposite direction to get
the car into the parking spot. The path consists of clothoid
sequences and a straight line, forming a continuous path with
no stops for wheel rotation, enabling the car to park from
different initial poses. In this problem, the control inputs,
including the vehicle speed and steering angle, are only a
function of the traveled distance. The contributions of this
paper are in three subjects:

• A new method is proposed for the speed design so
that the car can park with one or two maneuvers in
smaller spots in addition to reducing the parking dura-
tion. An evolutionary optimization method is proposed
accordingly. Given the need to minimize both the time
and the length of the parking spot, the problem is amulti-
objective one. The use of the Multi-Objective Particle
Swarm Optimization (MOPSO) algorithm is proposed
for multi-objective optimization.

• The Unscented Kalman Filter (UKF) is suggested to
estimate the traveled distance, which has a lower error
than the conventional Extended Kalman Filter (EKF).

• Performance of the proposed parking system is then
examined using the powerful Monte Carlo simulation
for different conceivable states compared to other exist-
ing methods, and about 40% reduction of the parking
duration and 25 centimeters in the required length of
the parking spots are revealed by these simulations. The
efficiency of UKF and EKF estimators are compared by
the Monte Carlo method, supporting the conclusion that
the Mean Squared Error (MSE) of the UKF estimator
is at least 3 times less than the EKF estimator. Several
simulations indicated the high fidelity of the proposed
algorithm.

In Section II, a general explanation of the problem is pre-
sented, followed by a description of our proposed solution.
In Section III, the control inputs of speed and steering angle
are designed. The MOPSO algorithm is used to select the
speed parameter in Section IV. The estimator is designed
in Section V to estimate the traveled distance in each step.
Section VI presents the simulation results, and Section VII
concludes the paper. The parameters of the path are calculated
in the Appendix.

II. PROBLEM STATEMENT
In this section, the stages of automatic parallel parking and the
overall block diagram of this system are initially explained,
followed by a description of the proposed solution to this
problem. In a typical automatic parking process, first, a suit-
able place should be found, and the initial pose of the vehicle
is calculated. Then, a proper path is designed and finally,
control inputs are to be set to follow the path. Therefore,
automatic parking generally includes three steps:

• Perception: In this step, the dimensions of the parking
spot and the pose of the vehicle are recognized. The
ultrasound sensor, light sensors, or cameras are usually
used for this step [31].

• Path Planning: In this step, a suitable path for parking
is planned according to the parking spot dimensions,
vehicle pose, and control constraints.

• Execution of the Maneuver: At this stage, the planned
path of the previous step is followed by adjusting the
control inputs.

A. THE OVERALL AUTOMATIC PARKING SYSTEM
In this subsection, the general system of vehicle automatic
parking is explained. Further, the kinematic model of the
vehicle and its motion constraints are investigated. In this
research, the car parking problem is considered in a parallel
mode, and it is assumed that the dimensions of the parking
spot and the initial pose of the vehicle have been determined.
First, a path is planned offline to design the automatic parking
algorithm. Then, the control inputs are generated to follow the
path. The control inputs (ν, δ), the speed and steering angle,
are given to the system in each step to control the output of the
system (x, y, θ). Using the wheel speed sensors, the vehicle
displacement and its angle variations (1, ω) are calculated
in each step or can be calculated using the output of the
system. The estimator then determines the traveled distance
(d) using the displacement and angle variations. The control
inputs are also produced according to the traveled distance
estimation. The overall model of the car’s automatic parking
system is shown in Fig. 1. According to the general model
of the designed system, the vehicle model and its motion
constraints must first be evaluated to design an appropriate
path and control the vehicle properly. Continuing the process,
the kinematic model of the car and its motion limitations are
examined. Fig. 2 displays the modeling of the vehicle on the
coordinate plane. According to this figure, (x,y) is the position
of the center of the rear axle, θ is the vehicle orientation, δ is
the angle of the virtual wheel in themiddle of the front axle, δr
and δl respectively indicate the angle of the right and left front
wheels of the vehicle, a is the wheelbase and 2b denotes the
vehicle wheels width. The speed ν is an important indicator
which MPSO is proposed for optimization in this paper. The
problem is multi-objective, and MPSO has been applied to
deal with multi-objective optimization problems which will
be more explained in Section IV. The kinematic model of the
car-like vehicle is as follows (a discrete-time version of these
equations is used in the simulation results section):

ẋ = v cos θ

ẏ = v sin θ

θ̇ =
( v
a

)
tan δ

(1)

The first two equations are for the geometrical motion of the
vehicle and the third one denotes the relationship between the
steering angle and vehicle yaw rate. This problem has some
motion limitations as follows:
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FIGURE 1. General block diagram of the vehicle automatic parking.

FIGURE 2. Vehicle modeling at the coordinate plane.

• Nonholonomic constraint: The system is nonholonomic
as the control inputs are fewer than configuration vari-
ables [32]. The nonholonomic feature restricts move-
ment, making it difficult to control the car. Thus, the car
will not be able to move on every path.

• Wheel angle limitation: The wheel’s angle has a maxi-
mum value of δmax. According to Fig. 2, the minimum
radius of rotation in the middle of the rear axle is as
follows:

Rmin = a
/
δmax (2)

This problem also has another wheel angle limitation that
requires a certain time to rotate the wheels from zero to δmax.
This time is obtained from the equation tmin = δmax/νδ ,
where νδ is the maximum steering velocity of the steering
wheel. For the intended vehicle, this is set to νδ = 20o/s.
If this rotation occurs while the car is moving, the minimum
length for the rotation of the wheels from zero to δmax is
calculated from the equation Lmin = νlongitmin, where νlongi is
the maximum designed linear velocity. In [21] and [22], this
limitation is considered negligible, which is not acceptable in
practical scenarios.

• Speed limitation: The vehicle kinematic model includes
geometric equations of the system which is suitable for
low-speed applications (for example, speeds less than
5 m/s). The dynamics of the system is used for higher
speeds. Therefore, the speed function design for a car
parking system has limitations such as not exceeding a
certain threshold [33].

FIGURE 3. Flowchart for the implementation of the proposed method.

Motion constraints should be considered for path planning to
enable the car to move along the designed path.

B. THE PROPOSED SOLUTION
The flowchart of the proposed method is demonstrated in
Fig. 3. First, a suitable place is found to perform the parking
maneuver. Then, the dimensions of the parking spot and the
initial pose of the vehicle are measured. In this research,
it is assumed that the dimensions of the parking spot and
the initial pose of the vehicle are determined. The path is
initially planned recursively, for a state where the car is at
the parking spot, intending to leave the place (the center of
the rear axle of the car is considered as the origin of the
coordinates in this case). Then, the designed path is followed
in the reverse direction. In this method, the motion constraints
are considered. The path consisting of two circular arcs is
a routine path for parallel parking. One disadvantage of this
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FIGURE 4. Comparison of the circular arc with the combination of two
clothoid curves (Lmin) and a circular arc (Larc).

FIGURE 5. Clothoid curve.

method is that it causes the wheels to halt rotation at junction
points, which brings about wheel wear and puts pressure on
the steering column, besides increasing the parking duration.
Another suggested path is consisting of clothoid sequences
along with a straight line. This is a continuous-curvature path
and the parking maneuver can be done from different initial
poses. Each clothoid sequence is included of one clothoid
curve and two circular arcs (see Fig. 4). The clothoid is a
curve in which the curvature has a linear relationship with
the curve length. Fig. 5 shows a clothoid curve. The length
and curvature of the path are dependent on the maximum
clothoid speed. The parameters of the path are calculated
in the appendix. The parking maneuver with two clothoid
sequences and a straight line is depicted in Fig. 6. The max-
imum speed of the clothoid is an important parameter in the
optimization of path planning. This speed is calculated offline
just once for each car. Then, a path is planned for parallel
parking according to the measurements and the maximum
clothoid speed.

The correction point is then calculated. If this point is
on the left side of the starting point, the parking operation
can be accomplished with one maneuver and the car can
be parked by only moving backward. If the correcting point
is on the right side, the vehicle must first move forward to
reach the correction point and then continues themaneuver by
moving backward. Therefore, two maneuvers will be needed
to park the car. The execution step is done by designing the

FIGURE 6. The parking path consisting of two clothoid sequences and a
straight line.

controllers and the estimator. First, the control inputs are
generated to follow the path. These controllers are produced
according to the traveled distance. Then, the traveled distance
is estimated using UKF. At the end of this procedure, the
vehicle will be parked in the desired location.

In the following sections, three subjects are described:
designing control inputs, using the MOPSO algorithm to
calculate the optimal speed, and designing the estimator.

III. DESIGNING CONTROL INPUTS
In this section, the design of control inputs is presented,
including the speed and steering angle as functions of the
traveled distance. These controllers are designed to follow
the planned path from the previous section. Since the length
of the clothoid curve is dependent on speed, the length and
curvature of the path are changed following any changes
in the speed. Therefore, designing an appropriate speed is
important. More details are provided below.

A. DESIGNING THE STEERING ANGLE
The steering angle is a function of the traveled distance and
consists of two parts. According to Fig. 6, the movement
initially occurs on a straight line with a length of d0 and a
steering angle of zero:

∀d ∈ (0, d0)δ(d) = 0 (3)

The parking maneuver is continued in two parts, each of
which is a clothoid sequence. Three possible modes may
occur for each of these curves [20]. In this case, the path
must be designed to initially increase the steering angle and
remain constant for a while after reaching its maximum and
then decrease to zero. The required time to reach the max-
imum value of the steering angle depends on the clothoid
component A. The time during which the steering angle stays
at its maximum is also dependent on the length of the circular
arc. Given the Larc and Lseq obtained from the appendix, the
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steering angle will be calculated from the following equation:

δ(d) =


kδ
∣∣arctan (a/R)∣∣ d ∈ [0,Lmin]

kδ
∣∣arctan (a/Rmin

)∣∣ d ∈ [Lmin,Lmin + Larc]
kδ
∣∣arctan (a/Ri)∣∣ d ∈ [Lmin + Larc,Lseq]

(4)

where kδ is +1 and −1 for turning the wheels to the left
and right, respectively. Rmin is the minimum radius of the
circle. R and Ri are also defined as R = (A2min/d) and Ri =

(A2min/(Lseq − d)).

B. DESIGNING THE SPEED FUNCTION
In this subsection, an innovative method is proposed to design
the speed function which can reduce the parking duration
as well as the length of the required space. To obtain the
optimal controller, the advantages and disadvantages of path
planning methods are examined. The path comprised of two
circular arcs is the most optimal route in terms of the required
space length for car parking. The problem is the rotation
of the wheels in a stopped mode, which causes wear of the
tires, loss of tread, and pressure on the steering column, thus
increasing parking duration. In the method of path-planning
with clothoid sequences, the wheels rotate while moving.
Therefore, the problem of stopping mode is fixed, but this
method increases the size of the required space for parking
the car. The clothoid curve is the reason for the increased
length since the length of the clothoid curve depends on the
maximum linear velocity; as this speed increases, the length
of the clothoid curve increases as well. Consequently, the
curvature of the clothoid sequence decreases, requiring the
car to have a larger space for parking. At very slow speeds,
the length of the clothoid curve also reduces and approaches
zero, and the path formed by the clothoid sequence is aligned
almost on the planned path with the circular arc. Therefore,
the designed path with the clothoid sequence is the optimal
method at very low speeds in terms of the required space for
car parking. If the length of clothoid curves can be reduced,
so does the length of the required space for parking. The
proposed method is to reduce the maximum speed for each
of the clothoid curves (Vclothoid ) and increase the maximum
speed for the rest of the path (Vmax). This method of speed
design reduces the required space for parking the car as well
as the parking duration.

As stated, the correction point is initially calculated to do
the parking maneuver. Then, the car moves from the starting
point (xEinit , yEinit ) to the correction point (xEcorrect , yEcorrect )
without turning the steering wheel and continues the parking
maneuver by following two clothoid sequences. If this point
is to the left of the starting point, the parking operation can
be done with one maneuver; otherwise, two maneuvers are
required to park the car. The number of maneuvers here refers
to the movement of changing the car’s direction. In parking
with one maneuver, the vehicle is only moving backward, but
in parking with two maneuvers, the car first moves forward
to reach the correction point. Then, the parking maneuver

proceeds by moving backward. The proposed speed function
for one maneuver is defined as follows:

ν(d)

=



max(−Vmax, −
√

λ ) d ∈ [0, d0 − Ld ]

−

√
−λ + V 2

max d ∈ [d0 − Ld , d0]

min(−Vclothoid , −
√

λ ) d ∈ [d0, d0 + Lmin]

max(−Vmax, −

√
λ + V 2

clothoid ) d ∈ [d0 + Lmin, d1]

min(−Vclothoid ,−
√
−λ +V 2

max) d ∈ [d1, d2]

max(−Vmax, −

√
λ + V 2

clothoid ) d ∈ [d2, d3]

min(−Vclothoid ,−
√
−λ +V 2

max) d ∈ [d3,Ltotal−Lp]

−

√
−λ + V 2

clothoid d ∈ [Ltotal−Lp,Ltotal]

(5)

where

λ = 2|ac|1d
d1 = d0 + Lmin + Larc1/2
d2 = d0 + Lseq1 + Lmin

d3 = Ltotal − Lmin − Larc2/2

,


Lseq1 = 2Lmin + Larc1
Lseq2 = 2Lmin + Larc2
Ltotal = d0 + Lseq1 + Lseq2

Lm =
V 2
max

2 |ac|
,Lp =

V 2
clothoid

2 |ac|
,Ld =

V 2
max − V 2

clothoid

2 |ac|
(6)

In the above equations, ac is acceleration. Only the first two
phrases of (5) are changed in designing the speed of car
parking with two maneuvers. This speed function can be
defined for d < d0 as follows:

v(d) =

{
min(Vmax,

√
2|ac|1d) d ∈ [0, d0 − Lm]√

−2|ac|1d + V 2
max d ∈ [d0 − Lm, d0]

(7)

The Vmax is considered as large as possible to design the
optimal speed function. The Vclothoid should be selected as
such tominimize both the time and required space for parking
the car. Since the parking duration and the required space for
parking are correlated inversely, the Vclothoid must be selected
to optimize both of them as much as possible. The proposed
method for this purpose is presented in the next section.

IV. MOPSO ALGORITHM FOR OPTIMAL SPEED
CALCULATION
This section describes how to optimally calculate Vclothoid .
This velocity is calculated offline just once for each car.
There are two criteria to consider: time and required space for
parking the car. The Vclothoid must be selected to minimize
these two criteria as much as possible. Given the reverse
relationship between these two criteria, the problem is multi-
objective. The MOPSO algorithm has been suggested for this
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problem, as it has the advantage of an intelligent selection
of a set of random samples that speeds up the algorithm.
Finally, a set of the best answers will be obtained using the
algorithm. In this section, the MOPSO algorithm and the
way it can be used for optimal calculation of the Vclothoid are
explained.

The MOPSO method is used for multi-objective optimiza-
tion provided by Coello et al. in 2004 [34]. In this method, the
particle set is randomly selected, and the problem is solved
for each of these values. Then, the non-dominated answers
are stored while the dominated ones are deleted. Another
set of particles is selected intelligently, and the problem is
solved with these values. Again, the non-dominated answers
are stored, and the dominated answers are eliminated. This
algorithm is repeated until the set of answers can be plotted
as a proper graph. If the variables are chosen correctly, the
Pareto Font set, a set of the most optimal answers, will be
obtained.

The MOPSO algorithm is as follows in general:
1) Initiating the initial population of particles
2) Examining the particles and separating the non-

dominated members of the population and storing them
in the repository

3) Tabulating the discovered target space
4) Selecting a guide from the repository members

(REP[i]) and updating the speed (VEL[i]) and the posi-
tion (POP[i]) using the following equations:

VEL[i] = W × VEL[i] × R1 × (PBEST [i] − POP[i])

+ R2 × (REP[i] − POP[i])

POP[i] = POP[i] + VEL[i] (8)

where the PBESTS[i] is the best personal memory of
each particle andW is the inertial weight, while R1 and
R2 are random numbers in the interval [0,1].

5) Updating the best personal memory of each particle
6) Adding non-dominated members of the current popu-

lation to the repository
7) Eliminating of dominated members from the repository
8) If the number of repository members is more than the

specified capacity, additional members are deleted, and
the table is rearranged.

9) If the termination condition is fulfilled, go to Step 3;
otherwise, the algorithm will be ended.

The method presented in [35] is used to optimally select
the coefficients of this algorithm. Once these coefficients
are obtained, they do not need to be recalculated. These
coefficients are defined as follows:
W = χ

R1 = χφ1

R2 = χφ2,

χ =
2k

|2 − φ −

√
φ2 − 4φ|

φ = φ1 + φ2 ≥ 4, 0≤k≤1

(9)

A proper choice for coefficients can be as follows: k = 1,
φ1 = 2.05, and φ2 = 2.05.

FIGURE 7. Flowchart of the proposed method for choosing the maximum.

The flowchart of the proposed method for calculating
the maximum optimal clothoid velocity (Vclothoid ) is pre-
sented in Fig. 7. In this problem, the Vclothoid should be
designed to optimize the car automatic parking algorithm,
which should be done in the smallest possible place and
in the shortest duration. Considering the multi-objective
nature of the problem, the use of the MOPSO algorithm
was suggested as a fast algorithm that achieves a set of
optimal answers (Pareto Front). From the set of answers,
an appropriate answer is chosen according to the opti-
mization criteria. More details are given in the simulation
section.
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V. ESTIMATOR DESIGN
The estimated traveled distance at each step is used to control
both the speed and steering angle of the car. An accurate
estimator should be used to properly control the vehicle.
To this end, the Unscented Kalman Filter (UKF) is used for
the first time. In this section, the advantages of the UKF
estimator are discussed first, followed by an explanation of
this filter. The section also explains how to use the filter
to estimate the traveled distance. In the simulation section,
a comparison is made between the proposed filter and the
standard Extended Kalman Filter (EKF) which points to the
superiority of the filter used in this work.

The Kalman Filter is a simple, optimized, and robust filter
used for estimating and tracking problems. The UKF filter,
like the EKF, is presented to solve nonlinear problems. In the
EKF filter, the distribution of states is approximated with the
Gaussian Random Variable (GRV). Moreover, this approxi-
mation is linearized which causes a high error in the mean
and covariance of the previous state. The UKF solves this
problem by selecting a set of minimum sample points for
the Gaussian random variable approximation. These sample
points completely maintain the mean and the covariance of
the Gaussian random variable. Therefore, it causes less error
in the estimation of states. The UKF filter is easier to use
than the EKF filter and provides a more accurate estimation
of states [36], [37]. To continue the process, the UKF filter
function is explained:

Suppose that the system equations and observation are
defined nonlinear: {

xk+1 = F(xk , υk )
yk = H (xk , nk )

(10)

y = g (x), a nonlinear function of the variable x (with dimen-
sions of L), is considered with a random distribution, where
x̄ and Px are the mean and covariance of x, respectively. The
matrix χ is introduced in Equation 9 to compute the statistical
characteristic of y. This matrix has 2L + 1 sigma vectors χi
(with corresponding weightsWi).

χ0 = x̄

χi = x̄ +

(√
(L + λ )Px

)
i
i = 1, . . . ,L

χi = x̄ −

(√
(L + λ )Px

)
i−L

i = L + 1, . . . , 2L

W (m)
0 = λ

/
(L + λ )

W (c)
0 = λ

/
(L + λ ) + (1 − α2

+ β)

W (m)
i = W (c)

i = 1
/
{2(L + λ )}i = 1, . . . , 2L (11)

where,
(√

(L + λ )Px
)
i
is the ith row of the root of the square

of the matrix and λ is the scaling parameter, which is defined
as follows:

λ = α2(L + κ) − L (12)

α is defined as the distribution of sigma points around x̄,
which is usually small and positive (e.g., 0.01). κ is the second

scaling parameter and is usually considered as zero. β is used
for the previous distribution composition of x (for Gaussian
distribution, β = 2 is optimal). Sigma vectors are developed
with the following nonlinear function:

γi = g(χi) i = 0, . . . , 2L (13)

The mean and covariance of matrix y are defined using the
weighted samples mean and covariance of the previous sigma
points as follows:

ȳ ≈

2L∑
i=0

W (m)
i γi,Py ≈

2L∑
i=0

W (c)
i [γi − ȳ][γi − ȳ]T (14)

According to the presented explanations, the process of the
UKF algorithm is described in the following:

- The initial conditions of the algorithm are defined as
follows:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)T ]

x̂a0 = E[xa] = [ x̂T0 0 0]T

Pa0 = E[(xa0 − x̂a0 )(x
a
0 − x̂a0 )

T ]=

P0 0 0
0 Pv 0
0 0 Pn


(15)

- For each k ∈ {1, . . . ,∞}, the sigma points are calculated as
follows:

χa
k−1 =

[
x̂ak−1 x̂

a
k−1±

√
(L + λ )Pak−1

]
(16)

- The time update is performed with the following equations:

χx
k|k−1 = F[χx

k−1, χ
υ
k−1]

x̂−

k =

2L∑
i=0

W (m)
i χx

i,k|k−1

P−

k =

2L∑
i=0

W (c)
i [χx

i,k|k−1 − x̂−

k ][χ
x
i,k|k−1 − x̂−

k ]
T

γk|k−1 = H [χx
k|k−1, χ

n
k−1]

ŷ−k =

2L∑
i=0

W (m)
i γi,k|k−1 (17)

- Then come the measurement update equations:

Pỹk ỹk =

2L∑
i=0

W (c)
i [γi,k|k−1 − ŷ−k ][γi,k|k−1 − ŷ−k ]

T

Pxkyk =

2L∑
i=0

W (c)
i [χi,k|k−1 − x̂−

k ][γi,k|k−1 − ŷ−k ]
T

κ = PxkykP
−1
ỹk ỹk

x̂k = x̂−

k + κ(yk − ŷ−k )

Pk = P−

k − κP−1
ỹk ỹk

κT (18)
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FIGURE 8. Parallel parking using different clothoid speeds.

In the equations above, xa = [ xT vT nT ] T and
χa

= [ (χx)T (χυ )T (χn)T ] T , Pv and Pn represent
the system covariance noise and the measurement noise,
respectively.

In car automatic parking problems, the traveled distance
(d) must be estimated from the beginning to the desired step.
To this end, the traveled distance and the vehicle orientation
change are initially estimated in each step, and the total
traveled distance is then calculated accordingly. Therefore,
the state vector will be as xk =

[
1k ωk

]T . If 1RR and 1RL
indicate the displacement of the right and left rear wheels
of the vehicle, respectively, and 1FR and 1FL , respectively
represent the displacement of the right and left front wheels
of the vehicle, as shown in Fig. 2, δr , δl ,and δ respectively
indicate the angle of the right, left and the virtual front wheels
of the vehicle; thus, the measurement equation is defined as
follows [38]: 

tan(δ) = aω
/
1

1RL = 1 − bω
1RR = 1 + bω
1FL cos(δl) = 1 − bω
1FR cos(δr ) = 1 + bω

(19)

Therefore, the observation vector will be defined as y =

[tan(δ), 1RL , 1RR, 1FL . cos(δL), 1FR. cos(δR)]T , which is a
nonlinear function of the state vector. Using the UKF algo-
rithm, the state vector values x =

[
1 ω

]T are estimated in
each step. Finally, the total traveled distance for each step is
defined:

dk+1 = dk + 1k (20)

Note: parking algorithms in tiny spots and parallel parking
are not defined for obstacle avoidance (as in another sim-
ilar research [20], [21] and even for a human driver). The
assumption is that the parking spot is identified and clear.
this does not mean that in the case of the presence of an
obstacle there will be a collision. Since there is no space for
collision avoidance maneuvers in parallel parking, in the case
of obstacle detection, a new spot should be identified, and the
parking maneuvers are repeated.

VI. SIMULATION RESULTS
This section presents the simulation results of the proposed
method for the vehicle automatic parallel parking. The whole

system was implemented in MATLAB and executed on a
Laptop (Intel Core-i5-7200U CPU with 8GB RAM that runs
at 2.5 GHz). The sample time was considered 0.01 seconds.
Simulation of each parallel parking took less than 2 seconds.
The maximum optimal clothoid velocity was initially cal-
culated offline using the MOPSO algorithm, allowing the
parking algorithm to be accomplished without any online
implementation complexity. Then, various scenarios are pre-
sented to examine the performance of the proposed method.
In the first scenario, the tracking ability of the proposed
system is tested. In the next two scenarios, the car parking is
evaluated with one or two maneuvers using the new method.
In the fourth scenario, the Monte Carlo analysis is used to
evaluate the performance of the system to start the parking
from different poses. In the final scenario, the Monte Carlo
analysis is eventually used to compare the UKF and EKF
estimators.

An optimization algorithm is needed to select a proper
Vclothoid to simultaneously reduce both the time and the
required space for parking the car. For this purpose, the
MOPSO technique is proposed as described in Section IV
(see Fig. 7). In [20], a clothoid sequence was used for path
planning, and themaximum speed for the entire path was con-
sidered as 0.6. In this paper, the proposed method is to reduce
the maximum speed for each of the clothoids (Vclothoid ) and
increase the maximum speed for the rest of the path (Vmax).
Initially, theVmax is considered as large as possible. The value
of 3 m/s is appropriate, and in this case, the car’s dynamics
can be ignored. The length and the curvature of the path are
dependent on the Vclothoid . Fig. 8 shows the planned path
for 10 different Vclothoid values. The faster the Vclothoid , the
smoother the path. Thus, a larger parking space would be
needed for parking as well.

In the case of the MOPSO algorithm, the range of Vclothoid
is assumed to be between 0.1 and 0.6 m/s, and the number
of replicates, particles, and repository capacity is considered
to be 100, and 150, respectively. According to these values,
the Pareto Front set (the set of optimal solutions) is displayed
in Fig. 9. The closest answer to the optimization criterion is
chosen from the optimal solutions. The points in the middle
of the figure are suitable, which reduce both the duration and
the required space for parking, simultaneously. From these
points, the one that decreases the required space length by
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FIGURE 9. Pareto Front set along with the optimal point of choice.

TABLE 1. Parameters of renault ZOE [39].

25 centimeters is chosen. This point is indicated in Fig. 9
with a solid circle. The speed corresponding to this choice
is 0.3 m/s. By choosing this speed, both the time and the
required space length for parking the car will be optimized as
much as possible. In the following scenarios, the maximum
speed was 0.6 m/s for the whole path in the old method.
In the new method, two values for maximum speeds are:
Vclothoid = 0.3 and Vmax = 3m/s. It should be noted that
the optimized speed is suitable for the considered vehicle,
i.e., the Renault ZOE. Detailed specifications of this car
are shown in Table 1. Suitable maximum clothoid speeds
for other vehicles can be calculated easily by the proposed
technique.

A. SCENARIO 1: THE TRACKING ABILITY OF THE
DESIGNED CONTROLLER
In this scenario, a sample of an automatic parking maneuver
using the proposed method is examined. In this case, the
tracking ability of the proposed method is depicted in Fig. 10
in which the vehicle can follow the planned path quite well.

B. SCENARIO 2: PARKING THE CAR WITH ONE
MANEUVER
In this case, the car can be parked only by moving backward.
In Fig. 11, the parking with one maneuver on the XY plane is
plotted for both methods. The proposed method in this paper
is compared to a similar class parking approach proposed
in [20]. It is tried to demonstrate the abilities of the proposed
approach (new method) in tiny space parking. The approach
proposed in [20] is called the old method. The initial pose is
as follows: x=11, y=3.5 meters with an angle of -10 degrees.

FIGURE 10. The tracking ability of the designed controller.

FIGURE 11. Parallel parking in one maneuver: Comparison of the
introduced method with the old method.

FIGURE 12. Comparison of the speed and steering angle values in two
methods for automatic parking with one maneuver.

Based on the calculations, the coordinates of the correction
point are obtained as (8.2,4). In this case, the correction point
occurs on the left side of the initial pose of the vehicle.
Therefore, only one maneuver is needed. Considering the
possibility of a collision between the right front corner of
the car and the highest front corner of the parking spot, the
movement path of this corner of the car is plotted. As seen
in Fig. 11, the car corner is more distant from the border of
the parking spot in the new method. Thus, the new method
requires less space for the parking maneuver compared to
the old method proposed in [20]. The space requirement
is reduced by 25 centimeters in this case. In Fig. 12, the
obtained results of those methods are displayed, including the
speed and steering angle. A negative speed refers to backward
movement for parking maneuvers. In this figure, the reduc-
tion of the vehicle parking duration is seen as 7.5 seconds for
the newmethod due to utilizing an optimized speed via apply-
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FIGURE 13. Parallel parking in two maneuvers: A comparison of the
proposed method with the old method.

FIGURE 14. Comparison of the speed and steering angle values of two
methods for parking with two maneuvers.

ing the proposed MOPSO algorithm. Hence, in the proposed
method, the required space for parking the car is reduced by
25 centimeters and the parking duration has decreased by
32%, simultaneously.

C. SCENARIO 3: CAR PARKING WITH TWO MANEUVERS
In this example, the initial pose of the car is considered to
be x=0 and y=4 at 0 degrees. Based on the calculations, the
coordinates of the correction point are (8,4). In this case, the
correction point occurs on the right side of the initial pose.
Thus, the car must first go straight to the correction point
and then continue the parking by moving backward. Fig. 13
compares the parallel parking with two maneuvers by the
new and old methods. According to the figure, the vehicle
can be parked in a smaller space by using the new method,
saving approximately 25 centimeters. Fig. 14 also compares
the design of the controllers of the two methods. As shown in
this figure, the velocity is positive at first for both methods,
and then becomes negative afterward, which in turn refers to
moving forward and backward. As in the previous example,
the steering angle is initially zero that later becomes positive
and then negative. This figure also shows a 50% reduction in
the parking duration for the proposed method.

D. SCENARIO 4: EVALUATING THE PERFORMANCE OF
THE PROPOSED METHOD USING THE MONTE CARLO
APPROACH
As the length of the curves depends on the maximum velocity
of the clothoid, the required space length for all maneuvers

(regardless of the error) would be a specific amount by choos-
ing a constant clothoid velocity. For example, if the value of
Vclothoid is reduced from 0.6 to 0.3, the length of the required
space for parking the car decreases by 25 centimeters for each
starting point. The Monte Carlo method has been proposed
and used to calculate the average parking duration. In the
following, the Monte Carlo method is explained. Then, the
performance of this system is evaluated.

The Monte Carlo method examines the statistical function
of the system and has many applications, one of which is to
evaluate the system’s performance in the presence of uncer-
tainty. In this method, the range of selecting the variables is
specified, and then, a large number of system variables are
generated randomly and independently with a normal distri-
bution, and the system output uncertainty is examined [40],
[41], [42], [43]. The Monte Carlo method can be summarized
in the following four steps:

1) Extracting and defining the scope of possible inputs
2) Generating random inputs within the defined range
3) Simulating the system’s behavior for randomly selected

inputs
4) Performing a statistical analysis of the results

In this problem, the initial pose of the car for the parking
maneuver is uncertain. The Monte Carlo method can be used
to evaluate the performance of the systemwith the uncertainty
of the vehicle initial pose. Thus, a lot of initial poses are
randomly generated, and the system performance is exam-
ined for each of these situations. Due to the complexity of
the problem, in this case, 1000 different initial poses are
selected randomly. These 1000 samples are selected in a
range in which all the operations would be successful. The
parking maneuver is performed for each of these starting
points and the statistical specifications of these 1000 samples
are computed. The range of variations for this study is as
follows: 

−2 < xinit < 17 (m)
4 < yinit < 8 (m)
−10 < θinit < 10 (deg)

(21)

For example, Fig. 15 shows the parking maneuver for 5 dif-
ferent random initial poses in one or two maneuvers. The
simulation statistical results for 1000 random starting points
are indicated in Table 2. According to the results, the average
parking duration is reduced by 42% and the average length
of the required space for the car parking is decreased by
25 centimeters. Given that the length of the standard parking
spot is 6.1 meters, the vehicle can be parked with one or
two maneuvers in locations with standard dimensions using
the proposed method, which was not possible by the old
method.

E. SCENARIO 5: COMPARISON OF NONLINEAR FILTERS
PERFORMANCE
In this scenario, the performance of the nonlinear UKF is
compared with the EKF filter, with equal noise conditions
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FIGURE 15. Automatic parking maneuver starting from different poses.

TABLE 2. Evaluating the presented method with the old method.

FIGURE 16. Comparison of MSE of EKF and UKF estimators for 5 random
initial poses.

considered for the two systems. The Monte Carlo method
is used to compare 1000 samples of the performance of
estimators which are used to estimate the traveled distance.
Fig. 16 exhibits the MSE of estimating the traveled distance
by two estimators for 5 random samples, in which, the noise
covariancematrix of the system and observations are diagonal
with the intensities of 10−8 and 10−5, respectively. In addi-
tion, Table 3 highlights the statistical comparison of these
methods.

From Fig. 16 and Table 3, it is evident that the UKF esti-
mator has significantly lower error than the EKF estimator.
Hence, the UKF filter is a more suitable estimator in this
scenario. The error of the UKF filter mainly depends on
the first component of the system’s covariance noise matrix,
and a smaller value of this component results in lower filter
error. Although the error also depends on other components
of the covariance noise of the system and the observations, the
maximum error of UKF is only 3.5 centimeters in 1000 sam-

TABLE 3. Comparison of the final situation errors of EKF and UKF.

ples, which is negligible. Therefore, the UKF filter is a more
appropriate choice for estimating the traveled distance.

VII. CONCLUSION
This work proposed an optimized algorithm to address the
problem of automatic parallel parking for vehicles. The
method includes path planning, controller design, and trav-
eled distance estimation. One feature of the paper is the
design of an optimal maneuver to enable the car to park
in smaller spaces with one or two maneuvers, significantly
reducing the parking duration. The UKF filter has also been
used to estimate the traveled distance, which is a simple,
robust, and optimal filter with a reasonable error. Different
simulations have been carried out for the proposed method,
which demonstrates the effectiveness of the method. It is
important to note that the assumption is that a clear parking
spot has been identified, as there is no room for collision
avoidance maneuvers during parallel parking. If an obsta-
cle is detected, a new parking spot must be found, and the
parking maneuver needs to be repeated. The proposed tech-
nique involves mostly offline calculations, and its algorithm
allows for relatively fast online implementation. For future
research on parking in smaller spaces, one could build upon
the proposed method to further reduce the number of required
maneuvers and increase the speed of parking maneuvers,
ultimately improving efficiency in parking. A similar process
can be applied for the optimal design of vertical parking or
automatic path generation in limited spaces.

APPENDIX
At first, the parameter Amin must be calculated according to:
A2min = RminLmin. The parking maneuver consisting of the
clothoid sequence is shown in Fig. 6. Obtaining the exact
path inevitably involves calculating µ and R1. First, a point is
considered on the path. Every point on the clothoid path with
component A has the following characteristics [16]:

qr :


xr = A

√
πCf ( A

R
√

π
)

yr = A
√

πSf ( A
R
√

π
)

θr =
A2

2R2

δr =
1
R

(22)

where Cf and Sf are Fresnel integrals, equal to Cf (x) =∫ x
0 cos((π/2)u2)du and Sf (x) =

∫ x
0 sin((π/2)u2)du, respec-
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tively. The proposed point is located at a distance of Lmin from
the origin of the coordinates, at which the radius is equal to
Rmin. In this case, the coordinates of the center of the circle
Cl in Fig. 6 are calculated as follows:

xcl = xr − R sinθr , ycl = yr + R sinθr (23)

Therefore, µ and R1 will be calculated as follows:

R1 =

√
x2cl + y2cl, µ = arctan

(
xcl
/
ycl
)

(24)

The correction point is obtained from the following
equation:

3R21 − d2CE + 2dR1 cosα = 0 (25)

where:
dCE =

√
(xCl − xEcorrect )2 + (yCl − yEcorrect )2

α = arccos
(
(yEcorrect − yCl)

/
dCEdCE

)
− µ + θEinit

yEcorrect = yEinit − (xEinit − xEcorrect ) tan θEinit

(26)

According to Fig. 6, the angles and lengths of each of the
curves are calculated using (7) and the law of cosines:

θcr = cos−1

(
5R21 − d2CE

4R21

)
θcl = θcr + α + cos−1

×

d2CE + R
2

1 −

(
x
2

Ecorrect + y
2

Ecorrect

)
2dCER1

− π

αclotho = cos−1

(
R2min + R21 − (x2r + y2r )

2RminR1

)
(27)

Therefore, the length of the entire curve path is calculated as:{
Larc = Rminαarc

Lseq = Larc + 2Lmin
, αarc = αtot − 2αclotho (28)
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