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ABSTRACT As is well known, the classification performance of large deep neural networks is closely
related to the amount of annotated data. However, in practical applications, the quantity of annotated data is
minimal for many computer vision tasks, which poses a considerable challenge for deep convolutional neural
networks that aim to achieve ideal classification performance. This paper proposes a new, fully supervised
low-sample image classificationmodel to alleviate the problem of limitedmarked sample quantity in real life.
Specifically, this paper presents a new sample intrinsic consistency loss, which can more effectively update
model parameters from a ‘‘fundamental’’ perspective by exploring the difference between intrinsic sample
features and semantic information contained in sample labels. Secondly, a new uncertainty weightingmethod
is proposed to weigh the original supervised loss. It can more effectively learn sample features by weighting
sample losses one by one based on their classification status and help the model autonomously understand
the importance of different local information. Finally, a sample generation model generates some artificial
samples to supplement the limited quantity of actual training samples. The model adjusts parameters through
the combined effect of sample intrinsic consistency loss and weighted supervised loss. This paper uses 25 %
of the SVHN dataset and 30% of the CIFAR-10 dataset as training samples to simulate scenarios with limited
sample quantities in real life, achieving accuracies of 94.59 % and 91.27 % respectively, demonstrating the
effectiveness of our method on small real datasets.

INDEX TERMS Low-sample image classification, deep convolutional neural network, sample intrinsic
consistency loss, uncertainty weighting method, image generation model.

I. INTRODUCTION
The initial research on image classification [1] relied on
manually identifying image features such as shape, color,
and texture to classify images accurately. Today, deep neu-
ral networks (DNNs) have gained widespread attention for
their ability to map low-level features to higher levels and
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abstract out higher-level features to discover the underlying
distribution patterns of training samples. Through continuous
research in recent years, large-scale deep neural networks [2],
[3], [4], [5], [6] have acquired more powerful function repre-
sentation and feature extraction capabilities and have made
significant breakthroughs in real-world applications such as
image classification [7], image segmentation [8], and object
detection [9]. However, these successes are not only due to the
continuous improvement of deep learning methods but also
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to the abundant availability of well-labeled training data for
network training, which is even more crucial.

Researchers have proposedmany classificationmodels [7],
[10], [11], [12], [13], [14] for autonomous image classifica-
tion, aiming to reduce the labor and additional cost required
for image annotation work [15], [16], [17], [18]. It is well
known that the performance of these deep neural networks is
closely related to the number of labeled samples. However,
annotated data are often scarce for some classification tasks
in daily life. In some cases, collecting data is even more dif-
ficult than annotating data [19], which leads to small sample
datasets becoming the norm in everyday life and limits the
effectiveness of large neural networks for these tasks. There-
fore, this paper focuses on addressing the problem of the
severely limited amount of annotated data in fully supervised
classification tasks.

In recent years, image generation models have been a hot
topic for their ability to create artificial images that resemble
actual samples by learning the underlying distribution of the
data. These generated dummy images improve the image
classification performance of the model by complementing
the smaller number of real examples in the model train-
ing process. Nowadays, Generative Adversarial Networks
(GAN) [20] and Variational Autoencoders (VAEs) [21] are
almost the dominant image generation models. VAEs gen-
erate never-before-seen images by learning the underlying
distribution of samples and mapping it to image space.
It consists of two parts, an encoder and a decoder, and this
encoder-decoder framework has been widely used for image
generation. Recently, many proposed methods have utilized
the principle of Variational Autoencoders (VAEs) to generate
images [22], [23], [24]. Generative adversarial networks con-
sist of generators and discriminators. The generator generates
‘‘convincing’’ fake photos, while the discriminator predicts
the probability that the generated images come from the entire
training set. As the generator and discriminator compete, the
generator eventually produces images that resemble the train-
ing samples. Unsupervised and semi-supervised learning has
achieved unexpected results by using generative adversarial
networks and many variants based on them [25], [26], [27],
[28] to generate some artificial images resembling actual
examples to complement the original pictures.

In some specific computer image classification tasks in real
life, only a small amount of labeled data is available for model
training, which may affect the classification performance
of large neural networks. Therefore, this article proposes a
fully supervised low-sample classification model to solve this
problem. Specifically, a new sample intrinsic consistency loss
(SICL) is proposed to explore the difference between sample
label connotation information and intrinsic sample features.
Secondly, a new uncertainty weighting method (UW) is pro-
posed, which can precisely weight the loss of each sample
based on its classification situation. Finally, the image gener-
ation model generates some artificial samples to supplement
the limited labeled samples. Our main contributions are as
follows.

1) This paper proposes a new low-sample image clas-
sification model that can achieve good classification
results even with a limited number of labeled samples.
It effectively alleviates the problem of deep neural
network classification performance degradation caused
by insufficient labeled data in real-world scenarios.

2) A new sample intrinsic consistency loss is proposed in
this paper, which can effectively update model parame-
ters by exploring the differences between sample label
connotation information and intrinsic sample features.

3) This paper also proposes a new uncertainty weighting
method, which can precisely weight each sample loss
according to its classification situation, aiming to make
the model understand the importance of different local
features of the sample.

4) In addition, a new image generation model is proposed
based on ACGAN, which can generate high-quality
labeled samples more effectively and expand the size
of the dataset.

II. RELATED WORK
Although image classification methods based on deep learn-
ing differ, they all adopt some basic common principles,
which can also be understood as technical means in algo-
rithm training, including the type of loss function and image
generation methods. This section introduces some common
basic strategies and their principles in image classification
methods and proposes preliminary improvement strategies
for the areas we believe need modification.

A. SAMPLE SEMANTIC RELATIONSHIPS
Recently, researchers have increasingly focused on the
abstract features of image samples inside the network.
Li et al. [29] proposed a new data enhancement method to
cope with the problem of limited data by studying the internal
components of sample networks to improve the classification
performance of EEG processing. López et al. [30] improved
the overfitting network phenomenon caused by unbalanced
data by exploring the intrinsic features of the data. Mantoo
and Khurana [31] proposed an Android malware detection
system based on inherent data features, achieving 97.5 %
accuracy.

Many semi-supervised models have also achieved good
image classification performance by studying the seman-
tic information between different samples within the net-
work [32], [33]. They enforce the consistency of the semantic
information of two sub-images obtained from an unlabeled
image in the network to learn the sample features. However,
this enforced consistency needs a valuable metric to measure
it. Therefore, this article takes the actual label mapping of
the network internal samples as the ‘‘metric,’’ compares it
with the sample features extracted from the network internal
samples, and uses it as the sample intrinsic consistency loss.

For example, now give three students a test paper to
do together. Previously, semi-supervised image classifica-
tion studied the semantic information of samples within the
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FIGURE 1. The general framework for auxiliary classifier generative adversarial network (ACGAN).

network, just like two students discussing their answers after
completing the test paper to discover mistakes and correct
them. In contrast, the sample intrinsic consistency loss is
like the third student correcting his problems by comparing
them with the answers of the test paper itself. So it seems the
sample intrinsic consistency loss is more ‘‘explicit.’’

B. MODEL TRAINING LOSS
In existing classification models, the predicted sample values
are always made to better fit the actual sample labels by
minimizing the cross-entropy loss [34]. The cross-entropy
loss is defined as follows.

LC = −
1

batch_size

batch_size∑
j=1

n∑
i=1

yji log y′

ji (1)

Here, batch_size and n represent the minibatch containing
B samples and the total number of image categories, respec-
tively. yji and y′ji represent the actual label of the sample and
the predicted sample label, respectively, and LC represents
the difference between the existing label and the predicted
label of the sample. However, the cross-entropy function only
makes relatively general statistics on the differences between
all samples’ actual and predicted labels. This may lead to
misclassified samples needing to be classified into the correct
category in future model training.

Xu et al. [35] derive a semantic loss function that bridges
the gap between the neural output vector and the logical
constraints. This loss function captures how close the neural
network is to satisfying its output constraints. Improving on
the softmax loss function, Maharjan et al. [36] proposed a
brain tumor detection scheme with an accuracy improvement
of nearly 2% and a processing time reduction of 50 ms.

Chen et al. [37] proposed a correlated entropy-induced loss
function (CLF) to improve model performance and exper-
imentally demonstrated that CLF can make deep learning
models more robust.

Focal loss [38] and reduced focal loss [39] make the model
pay more attention to the difficulty distinguishing features of
training samples, which undoubtedly plays an important role.
However, using uncertainty-weighted methods to weight the
original supervised loss, it is possible to adjust the loss of
each sample according to its specific classification situation.
The weighted supervised loss is more targeted, and the model
parameters can be updated more effectively during the train-
ing process behind the model.

C. AUXILIARY CLASSIFIER GENERATIVE ADVERSARIAL
NETWORK (ACGAN)
Generative adversarial networks [20] (GAN) consist of a
generator and a discriminator. During the ‘‘co-growth’’ of
the generator and discriminator, it generates fake images
that resemble the actual training samples (without labels).
The auxiliary classifier generative adversarial network
(ACGAN) [28], on the other hand, can independently gen-
erate artificial images (carrying brands) similar to the actual
training samples. This solves the extra labeling work required
because the GAN generates unlabeled samples [20], as shown
in Fig 1. The numbers of the networks in the generator and
discriminator indicate the size of the convolution kernel, the
number of sample feature channels, and the step size of the
convolution, respectively. Specifically, it first integrates the
information of randomly generated labels and random noise
Z into the generator to generate some counterfeit ideas. These
phony images resemble the underlying distribution of training
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FIGURE 2. The general framework of our low-sample image classification model.

images and carry brands. Then, these fake images Xfake(data),
and authentic images Xreal(data) are fed to the discriminator
simultaneously. The discriminator needs not only to recog-
nize the authenticity of the pictures but also to classify them.
Finally, with the competition between the generator and the
discriminator, the generator produces a labeled false sample
Xfake(data) similar to the actual training sample.

LS = E
[
log P (S = real | Xreal) + log P (S = fake | Xfake)

]
(2)

LT = E
[
log P (C = c | Xreal) + log P (C = c | Xfake )

]
(3)

where LS and LT represent the discriminator’s ability to
recognize image authenticity and correctly classify all data,
respectively, the generator is trained to maximize LT − LS
(the parts of LS and LT about the actual image Xreal(data)
are independent of the generator), i.e., the generator wants
to maximize LT and minimize LS. To make the generated
information more realistic, the generator tries to reduce the
probability that its generated data Xfake(data) will be dis-
criminated as false. At the same time, the generator wants
to maximize the likelihood that the generated data will be
correctly classified. The discriminator is trained to maximize
LT+LS, which maximizes its ability to organize and identify
true and false data accurately.

D. SHARED DISCRIMINATOR ARCHITECTURE
The output of a traditional classifier for image classification
using adversarial generative networks is a k+1 probability
distribution [28], [40], [41]. Like ACGAN [28], the dis-
criminator consists of two ‘‘head’’ or final layers, one for

image category classification and the other for distinguishing
between true and false images. The kth+1st output of the
discriminator indicates the probability of whether the image
is true or false. However, combining two tasks (distinguishing
true from false and classifying) may degrade the performance
of both functions [19]. The authors of Triple Generative
Adversarial Networks [42] claim that if the discriminator
contains two incompatible tasks: image classification and
discriminating true from false, then the performance of both
functions is degraded. In recent years, many approaches using
adversarial generative networks for image classification have
started utilizing individual networks with separate classifica-
tion and discriminative branches [43], [44], [45]. Therefore,
this paper will build a new independent network branch struc-
ture for image classification based on ACGAN, which can
ensure that the two tasks of identifying the authenticity of
images and classifying images do not conflict.

III. PROPOSED METHODS
Fig 2 shows the general framework of our proposed image
classification model for the low-sample dataset, which con-
sists of a generator (G), a discriminator (D), and a classifier.
During the formal training of the model, the image

generation model first generates labeled artificial samples
Xfake(data) in batches (i.e., in sets during the training pro-
cess) to supplement the actual number of restricted samples
Xreal(data). The synthetic examples may be fuzzy or even a
random combination of pixel points during the initial training
process. Still, as the training process iterates, the generated
fake images become more and more perfect. Then, we feed
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all the images into the classifier and adjust our model param-
eters under the combined effect of the intrinsic consistency
loss of the samples and the supervised loss after uncertainty
weighting. This eventually allows our model to achieve rela-
tively good classification results despite the limited number
of pieces. During the iterative process, each small batch of
generated fake images Xfake(data) is immediately input to the
classifier, so the generated images are not saved.

A. SAMPLE INTRINSIC CONSISTENCY LOSS (SICL)
Both authors [32] and [33] argue that the sample features
within the network contain more semantic information, and
they achieve good results in their respectivemodels by explor-
ing this information. But they both learn sample features
by comparing the differences between the intrinsic charac-
teristics of two sub-pictures of the same unlabeled sample
obtained by random perturbation. We correct the inherent
qualities of the example by mapping the label information
carried by the example to the internal network as the ‘‘stan-
dard’’ so that we can ‘‘target’’ and learn the sample features
more fully and accurately.

We use a case-level GramMatrix to represent the structured
relation among various samples. Assuming a mini-batch with
B samples, we denote the activation map of layer L as Fl ∈

RB∗C∗H∗ W, where H and W are the spatial dimensions of the
feature map, and C is the number of channels. We reshape
the feature map Fl to Kl

∈ RB∗CHW and then compute the
Case-wise Gram Matrix Gl as follows:

Gl
= Kl

·

(
Kl

)T
(4)

The similarity between the activations of the i-th and j-th
samples in the input mini-batch is represented by the inner
product of the vectorized activationmapK l

(i) andK
l
(j), denoted

by Gij. We obtain the sample relation matrix Ql by applying
L2 normalization to each row Gli of the Case-wise Gram
Matrix Gl .

Ql
=

[
Gl
1∥∥Gl
1

∥∥
2

, · · · ,
Gl
B∥∥Gl
B

∥∥
2

]T

(5)

Similarly, we use the label intrinsic relationship matrix Ll

to represent the intrinsic information similarity of the labels
corresponding to these B samples.

Ll =

[
Ll1∥∥Ll1∥∥2 , · · · ,

LlB∥∥LlB∥∥2
]T

(6)

Sample intrinsic relationship loss requires the sample
intrinsic semantic information to be consistent with the sam-
ple label connotation information to ensure the semantic rela-
tionship between samples. We define the proposed sample
intrinsic relationship loss as follows:

LIS =

∑
x∈{Xfake,Xreal}

1
B

∥∥∥Ql − L l
∥∥∥2
2

(7)

where x is the actual samples from the training set and some
artificial samples generated, by minimizing LIS during the
training process, the network is enhanced to capture more
robust and discriminative sample features, which helps to
extract additional semantic information. The feature map
obtained from the deeper layer contains more advanced infor-
mation compared to the one obtained from the middle layer.
As a result, the feature map before the final average pooling
layer is utilized to compute the intrinsic feature matrix Gl for
the sample.

B. UNCERTAINTY-WEIGHTED LOSS (UW)
The original supervised loss [34] calculates only the differ-
ence between the actual and predicted labels of the samples
and then narrows their differences during the subsequent
training of the model so that the predicted labels of the exam-
ples are consistent with their actual labels. Focused loss [38]
makes the model more focused on the features of complex
samples by weighting the original supervised loss but does
not determine whether the sample-by-sample classification
is correct. In contrast, our model can judge its classification
results sample by sample and adjust our model parameters for
the specific classification of each sample, as shown in Fig 3.

First, the actual training samples Xreal(data) and the gen-
erated artificial samples Xfake(data) are fed into the classifier
to obtain the sample prediction values. Then the probability
corresponding to the sample prediction value is compared
with the pre-set threshold (note that this threshold constantly
changes).

Ptmax ≥ T (8)

here Ptmax represents the probability corresponding to the
sample prediction label, and T is our pre-set threshold value.
Because the model’s performance gets more robust as the
number of training rounds increases, the threshold we set
increases as the number of training rounds increases.

T = (1/N) +

(
τ −

1
N

)
/ epoch ∗ epochs (9)

here the epoch and epochs represent the number of current
training rounds and the total number of training rounds,
respectively. N is the total number of sample categories;
refer to [33], we set τ to 1. If the probability of the sample
prediction value is less than this threshold, a smaller weight
is directly assigned to this sample loss front. Conversely,
proceed to the subsequent conditional judgment. The sample
predicted value is compared with the accurate sample label,
and a smaller weight is assigned if it is consistent, and a more
considerable weight is assigned vice versa.

Pmax = Preal (10)

here Pmax and Preal represent the image prediction labels
and the actual sample labels, respectively. The weights are
assigned to the expressions as follows.

Weight =

{
LW =

(
1 − Ptmax

)2
HW = 1

(11)
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FIGURE 3. The framework for using uncertainty weighting methods for original supervisory.

FIGURE 4. The general framework of the ACGAN-based image generation model.

The uncertainty-weighted loss ensures that the model can
thoroughly learn their sample characteristics sample by sam-
ple and update the model parameters more efficiently. Its
formula is as follows.

LS =

{
Lw × LC if Pmax = Preal and Ptmax ≥ T

Hw × LC otherwise
(12)

here LC is the original supervised loss, LS and LIS are the
uncertainty-weighted loss and the sample intrinsic consis-
tency loss, respectively.

C. IMAGE GENERATION MODEL
As mentioned earlier, the performance of both func-
tions is degraded if the discriminator is given two tasks
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TABLE 1. The accuracy of our method compared with previous approaches on the test set using different proportions of SVHN dataset as training samples.

TABLE 2. The effect of the SICL and UW methods in training models using different percentages of SVHN datasets.

FIGURE 5. The accuracy of our method compared with the classifier and EC-GAN on the test set using 10% of the SVHN dataset as
the training sample for the model.

simultaneously, i.e., image classification and determining
image authenticity [19], [42]. Therefore, we created a new
independent network branch based on ACGAN [28] to clas-
sify the generated and authentic images. As shown in Fig 4,
this model separates the two tasks of image classification and
judging image authenticity, which ensures that the generated
samples match more closely with the underlying distribu-

tion of the actual samples and classify the training samples
more accurately. The loss function (D) of the discriminator is
defined as follows:

L(D) = BCE (D (Xfake ) , 0) + BCE (D (Xreal ) , 1) (13)
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TABLE 3. The accuracy of our method compared with previous approaches on the test set using different proportions of CIFAR-10 dataset as training
samples.

FIGURE 6. Using a 5% SVHN dataset as the model’s training sample, our
method’s accuracy performance is compared with previous methods.

The loss function of the generator(G) is defined as:

L(G) = BCE (D (Xfake ) , 1) (14)

The independent network branch loss function for the clas-
sification of images is:

L(C) = CE
(
C (Xfake ) , y′

)
+ CE (C (Xreal ) , y)

)
(15)

where Xreal and y represent the actual training samples with
their labels, respectively, Z and y′(the labels required by the
generator (G) to generate the fake example Xfake(data) are the
random noise and randomly generated labels. G(Z) represents
the generated artificial sample Xfake(data) (data). BCE is the
binary cross-entropy, and CE is the cross-entropy [27].

D. TOTAL MODEL TRAINING LOSS
Therefore, the total loss of our low-sample image classifica-
tion model is.

L = (LS (Xreal ) + LIS (Xreal ))

+ λ (LS (Xfake ) + LIS (Xfake )) (16)

Specifically, the first half of the formula is the overall loss
of the actual training samples, and the second half is the
widespread loss of the artificial samples. λ is the coefficient

that balances the loss of the authentic samples and the loss of
the synthetic samples. Xreal and Xfake are the actual training
samples and the artificial samples (carrying labels) gener-
ated during model training. LS is the weighted supervisory
loss after weighting the original supervisory loss using the
uncertainty weighting method, and LIS is the sample intrinsic
consistency loss.

IV. EXPERIMENTS AND ANALYSIS
In this section, we train our model with different proportions
of samples from two large datasets (CIFAR-10 dataset and
SVHN dataset) to simulate actual constrained samples in real
scenarios and evaluate our approach based on the experimen-
tal results.

A. EXPERIMENTAL PARAMETER SETTINGS AND DETAILS
As mentioned, EC-GAN also tries to address the problem of
poor model performance caused by small sample datasets.
Therefore, our code is modified from EC-GAN and imple-
mented in PyTorch, using a learning rate of 0.0002 [26],
a normalized value of 0.5, and an Adam variant of the SGD
optimizer [46] in the algorithm. We set the parameter λ in
Equation 12 to 0.1 concerning EC-GAN [19]. For image
enhancement, we use a random crop of 4 × 4 and a random
rotation of 10 degrees, and an L2 regularization of 0.001 [47]
or weight decay. During training, we manipulate the num-
ber of samples involved in model training by adjusting the
dataset’s percentage size to evaluate our method’s effective-
ness on small sample datasets.

This paper compares our approach with three previous
models, EC-GAN, Shared ResNet Discriminator, and Shared
DC Discriminator. Where our model and EC-GAN, Shared
ResNet Discriminator both use the ResNet-18 neural net-
work [14] as the classifier in the left column, and Shared DC
Discriminator uses the deep convolutional neural network as
the classifier. The right column of each method shows the
classification results after adding various image generation
models. It is worth noting that Shared ResNet Discriminator
and Shared DCDiscriminator use the original ACGAN as the
image generation model.
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FIGURE 7. (a) Artificial samples with labels generated by our model (the SVHN dataset). (b) Some of the
actual images in the SVHN dataset.

FIGURE 8. Using a 10% CIFAR-10 dataset as the model’s training sample,
our method’s accuracy performance is compared with previous methods.

B. SVHN DATASET
The SVHN dataset [48] is obtained by collecting door num-
bers from Google Street View, and each sample contains a
set of ‘‘0-9’’ Arabic numerals. The training and test sets have
73257 and 26032 images, respectively (as shown in Fig. 7(b)).
During the training period, we use 5%, 10%, 15%, 20%, and
25% of the SVHN dataset as training samples to train our
model to simulate real scenarios with limited datasets and
then evaluate our performance on the test set.

Table 1 shows that our method improves accuracy by
1.54% compared to the best-performing EC-GAN when
using 5% of the SVHN dataset as training samples. Our
method outperforms other models regardless of the percent-
age of the SVHNdataset used as training samples. Comparing
our approach with sharing ResNet discriminator and sharing
DC discriminator shows that introducing an independent net-
work for image classification on top of ACGAN is practical.

As shown in Table 2, when we train the model using differ-
ent percentages of SVHN datasets, both the sample-intrinsic
consistency loss (SICL) and uncertainty weighting methods
proposed (UW) in this paper have about 1% improvement
over the original ResNet classification network. The model
performs best when the two methods are combined, demon-
strating the sample’s intrinsic consistency loss effectiveness
with the uncertainty weighting method.

Fig 5 shows the image classification results of our model,
classifier, and EC-GAN for each round after training with
10% of the SVHN dataset as the training sample. It can be
seen that our model can achieve better classification results in
the early stage of training. And the best classification results
are performed at the end of the training compared with the
classifier and EC-GAN, which shows that our model can
improve the accuracy and robustness of classification.

As shown in Fig 6, we use a 5% SVHN dataset as the
training sample to train our model, which aims to mimic the
sample-constrained scenarios in realistic scenarios. As can
be seen, our model achieves the most optimal classification
accuracy compared to various previous models. Even when
compared with the best-performing EC-GAN model, our
model improves by 1.54 percentage points over it.

As shown in Fig 7: it is easy to see that most of the
SVHN artificial images (with labels) generated have the same
underlying distribution as the actual training images. It has
different figures and critical features.

C. CIFAR-10 DATASET
The CIFAR-10 dataset [49] is a small dataset for recognizing
generic objects and image classification, which contains ten
classes of RGB color images collected by Alex Krizhevsky
and Ilya Sutskever, students of Hinton. The training and test
sets contain 60,000 and 10,000 photos, respectively (Fig-
ure 9(b)). During the training period, we used 10%, 15%,
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FIGURE 9. (a) Some artificial CIFAR-10 (with labels) samples generated during model training are displayed.
(b) Some of the actual images in the CIFAR-10 dataset.

20%, 25%, and 30% of the CIFAR-10 dataset to train our
model to simulate natural scenes with a limited dataset and
evaluated our model on the test set.

Table 3 shows that our method outperforms Shared ResNet
Discriminator and Shared DC Discriminator when using
10% of CIFAR-10 data as training samples, proving that
our image generation model is more ‘‘perfect.’’ In addition,
compared with the recently proposed small-sample image
classification model EC-GAN, our model outperforms it
by 1.86% when using 10% CIFAR-10 data as the train-
ing sample. Moreover, our model achieves better classifica-
tion performance regardless of the percentage of CIFAR-10
samples used as training samples, proving our method’s
effectiveness.

Fig 8 shows a schematic comparison of the accuracy of
each model, given that we use 10% of the SVHN dataset
as the training sample. As can be seen, our model achieves
the best classification accuracy compared to various previous
models. And compared with the best-performing EC-GAN
model, our model also improves by 1.86 percentage points
over it.

According to the results in Table 4, the sample-intrinsic
consistency loss (SICL) and uncertainty weighting methods
(UW) proposed in this paper can improve the performance
by about 1% each when the models are trained using different
proportions of SVHN datasets (relative to the original ResNet
classification network). The model performs best when these
two methods are combined, indicating that the sample intrin-
sic consistency loss and uncertainty weighting methods are
effective.

We take out the CIFAR-10 data generated in the last round
of the model to compare with the actual samples; as shown in
Fig 9, most of the CIAFR-10 pieces with labels generated by
our model are clear and have the essential characteristics of
each category.

TABLE 4. The effect of the SICL and UW methods in training models using
different percentages of CIFAR-10 datasets.

V. DISCUSSION
In the above experiments, limited training samples are simu-
lated by adjusting the proportional size of the SVHN dataset
and CIFAR-10 dataset used to participate in model training.
Our model achieves 89.15% and 94.59% accuracy with 5%
and 25% of the SVHN dataset as training samples, respec-
tively, and 82.17% and 91.27% accuracy with 10% and 30%
of the CIFAR-10 dataset as training samples, respectively.

These experimental results demonstrate that generating
artificial images to supplement actual training samples during
model training is effective. Using the sample-wise consis-
tency loss to explore the differences between sample label
information and intrinsic sample features and weighting
the original supervised loss with the uncertainty weighting
method is effective. However, from the experimental process
and results, as the number of training samples used in the
model increases, the improvement of our model’s classifica-
tion performance becomes less and less noticeable. This may
be due to the low quality of the generated artificial images.
Therefore, our future work should consider developing more
reliable artificial samples to supplement small-scale datasets
in real-world tasks to improve the model’s classification abil-
ity with small-scale training samples in real scenarios.
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VI. CONCLUSION
This paper proposes a new fully-supervised low-sample
image classification model to improve the poor classification
performance of models caused by low-sample or sample-
limited datasets in real-world scenarios. This paper presents
two new methods: Sample Intrinsic Consistency Loss (SICL)
and UncertaintyWeighting (UW). During training, the model
will generate some artificial samples to supplement the lim-
ited number of actual labeled samples and update the model
parameters more effectively through the joint action of Sam-
ple Intrinsic Consistency Loss (SICL) and weighted super-
vised loss. The experimental results show that our method is
practical and effective in improving the image classification
of small-scale datasets. In addition, the proposed Sample
Intrinsic Consistency Loss and Uncertainty Weighting meth-
ods can be combined with other classification models to
enhance their performance.
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