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ABSTRACT An improved multiverse optimization (IMVO) algorithm is proposed herein for the fuzzy
flexible job-shop scheduling problem pertaining to the non-deterministic polynomial-time hard (NP-hard)
problem. First, we designed a hybrid initialization method to improve the quality of the initial solution, and
thereafter, introduced a self-crossing technique along with an insert-based heuristic algorithm to simulate the
process of exchanging objects between black/white holes and wormholes, respectively. Second, a universe
selectionmechanism is proposed to reduce the possibility of the algorithm falling into a local optimum. Third,
four kinds of neighborhood structures were designed to improve the local search ability of the algorithm.
In the decoding operation, we adopted the shift-left strategy to completely utilize the idle time of themachine.
Finally, numerous experiments were conducted on the three benchmark test sets of various types and sizes
to investigate the performance of the proposed IMVO algorithm. The experimental results demonstrated the
effectiveness of the algorithm, especially in large-scale instances, displaying a strong superiority with an
average maximum enhancement efficiency of 50.44%.

INDEX TERMS Fuzzy flexible job-shop scheduling problem, multiverse optimization algorithm, variable
neighborhood search, self-crossing technique, universe selection mechanism.

I. INTRODUCTION
Recent research on manufacturing systems is focused on
the job-shop scheduling problem (JSP), as it is one of the
most challenging problems to address in theoretical research.
Excellent scheduling strategies are crucial for improving the
optimality of production systems and their economic bene-
fits [1], [2]. Among these, the flexible job-shop scheduling
problem (FJSP) is a typical NP-hard problem that allows each
operation to be processed on any machine. Although FJSP
offers the flexibility of production processes compared to
traditional JSP, the uncertainties related to the actual produc-
tion process (e.g., machine failure, workpiece transportation
constraints, and personnel transfer) hinder the reliability of
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processing time. Thus, the development of a new algorithm
that closely represents the actual production scenarios of
enterprises bears strong practical significance for resolving
the issues of uncertain production and processing time of
products in FJSP.

In relevant research, the current mainstream method uti-
lizes fuzzy theory to optimize the uncertainty of operation
processing time, which is referred to as the fuzzy flexible
job-shop scheduling problem (FFJSP). If the fuzzy process-
ing time in this problem is used directly as an input quan-
tity, it may negatively impact the production planning and
scheduling, which ultimately affects the efficiency and qual-
ity of the entire production process. Therefore, adopting the
triangular fuzzy method to convert the fuzzy target values
into definite values can better reflect the actual situation,
and thus, improve the efficiency and quality of production.
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Jha et al. have successfully applied this method to practical
production scheduling, demonstrating its effectiveness [3].
Recently, owing to the complexity of the FFJSP, scholars
are primarily focusing on solving algorithms and performing
multi-objective optimization [4]. Among them, Sakawa et al.
adopted a triangular fuzzy number with a genetic algorithm
(GA) to represent the uncertain operation processing time for
solving the FFJSP [5]. Liu et al. adopted a series of trans-
formation processes to simplify the dynamic FFJSP into a
traditional static FFJSP and used an improved estimation dis-
tribution algorithm (EDA) to solve this problem [6]. Qin et al.
proposed an improved iterated greedy algorithm by employ-
ing a heuristic algorithm to generate the initial solution
and designing two classes of combined simulated annealing
algorithms to ensure the performance of the algorithm. [7].
Gao et al. proposed a two-stage artificial bee colony algo-
rithm to resolve the problems of fuzzy processing time and the
constraints of inserting new jobs in FJSP [8]. Huang et al. uti-
lized six heuristic rules to initialize the solution and proposed
an improved discrete particle swarm optimization (IDPSO)
to solve the FFJSP [9]. Liu et al. introduced the logistic
chaotic mapping model and heuristic rules in a hybrid GA to
avoid the algorithm from falling into the local optimal [10].
Zhong et al. improved the artificial crowd algorithm based on
the local search operator and crossover operator of variable
neighborhood search to obtain an adequately high search per-
formance of the FFJSP [11]. Li et al. improved the artificial
immune system algorithm to solve the FFJSP using asymmet-
ric triangular interval values to characterize the processing
time of each workpiece [12]. Li et al. propose a flexible job
shop scheduling method that utilizes a self-adaptive multi-
objective evolutionary algorithm with fuzzy processing time
as a distinguishing feature. This method effectively addresses
the flexible job shop scheduling problem while optimizing
multiple objectives, thus enhancing scheduling flexibility and
reliability [13]. J.C. et al. propose a solution method for
FFJSP, which combines global neighborhood search with a
hill-climbing algorithm and effectively mitigates the issue of
local optima. The proposed method demonstrated promising
performance in experiments [14].

In 2016, inspired by the physical multiverse theory,
Mirjalili et al. proposed a new swarm intelligence optimiza-
tion algorithm called multiverse optimization (MVO) [15].
As demonstrated, the MVO algorithm converges faster than
conventional metaheuristic algorithms such as gray wolf opti-
mizer, particle swarm optimization (PSO), GA, and grav-
itational search (GS) algorithm. This algorithm offers the
advantages of a simple framework, few controlled param-
eters, self-organization, and self-adaptability [16]. Accord-
ingly, reasonable results have been achieved in the optimal
parameter configuration of proton exchange membrane fuel
cells, optimization of support vector machine tuner param-
eters, network reconstruction, 3D flight path planning of
unmanned aerial vehicles, and prediction of oil consump-
tion [17], [18], [19], [20], [21], [22], [23]. Initially, Liu et al.

applied the MVO algorithm to solve the FFJSP [24]. To solve
the FFJSP, they simulated the object exchange process of
black/white holes and wormholes using the path relink tech-
nology and plug-in heuristic algorithm, which yielded sat-
isfactory results. As discussed, the MVO algorithm offers
diverse applicability with superiority for solving various opti-
mization problems including the FFJSP.

In the existing research, the algorithms solving FFJSP
primarily synthesized the excellent characteristics of various
algorithms and incorporated certain perturbation operators to
enhance the exploration and developmental abilities of the
algorithms. Although the population initialization fundamen-
tally adopted random or chaotic initialization, the initial pop-
ulation did not exhibit a particularly high-quality. Moreover,
the results indicated that the current algorithm easily falls into
the local optimum as the problem size expands.

Thus, to alleviate the inadequate performance of the cur-
rent algorithm and low initial population quality for solving
large-scale FFJSP, this study proposed an improved mul-
tiverse optimization algorithm (IMVO) by minimizing the
maximum fuzzy completion time. First, chaotic and greedy
algorithms were used to initialize the population and ensure
the diversity and quality of the population. Second, this
research introduced a self-crossover technology and an insert-
based heuristic algorithm to simulate the process of exchang-
ing objects between the black/white holes and wormholes,
respectively, for improving the global search capability of the
algorithm. Thereafter, four kinds of neighborhood structures
were used for variable neighborhood searches to enhance
the local search ability. In addition, this research proposes
a universe selection mechanism that facilitates rapid conver-
gence of the algorithm and reduces its possibility of falling
into the local optimal. Furthermore, this research employed
the shift-left strategy in the decoding process to completely
utilize the idle time on the machine and effectively reduce
the maximum fuzzy completion period. Finally, this research
simulated three distinct sizes and types of groups of fuzzy
job-shop scheduling examples to verify the performance and
superiority of the proposed algorithm in comparison with
the existing advanced algorithms. The contributions of this
research are stated as follows:

(a) The quality of the initial population was improved by
combining a chaotic algorithm with a greedy algorithm to
initialize the population.

(b) The process of exchanging objects between black/white
holes andwormholes in theMVO algorithmwas simulated by
two heuristic algorithms.

(c) Three sets of distinguished scales and types of FFJSP
examples were set up for the simulation experiments to verify
the effectiveness of the IMVO algorithm.

II. FUZZY FLEXIBLE JOB-SHOP SCHEDULING PROBLEM
A. PROBLEM DESCRIPTION AND HYPOTHESIS
The FFJSP is described as follows:n workpieces to be pro-
cessed on m machines; each workpiece includes one or more
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operations, and the sequence of operations is determined
in advance; each operation can be processed on multiple
machines with various processing times on each machine;
simultaneously, the processing time of a given machine is
uncertain, and this uncertainty is expressed using a fuzzy
number. The major objective of the FFJSP is to select the
most suitable machine for each operation and determine the
most optimal processing routes along with the corresponding
start times of all processes on each machine to minimize the
maximum completion time of the entire system. Similar to the
FJSP, the FFJSP is essentially composed of two subproblems,
namely, the sorting problem of the process and the selection
of the machine. The problem hypothesis of the FFJSP can be
described as follows:

1) There are n workpieces, which are not connected. The
i-th workpiece is represented asOi.
2) Each workpiece includes eiseveral intermediate oper-

ations, including a sequence constraint between the opera-
tions of the same workpiece, whereas no sequence constraint
existed between the operations of multiple workpieces.

3) Thej-th operation of the i-th workpiece is represented as
Oij.

4) There are m processing machines that can process the
workpiece.

5) For each operation, a set of machines Mij that can
process the operations.

6) The processing time of each operation on machine k is
ambiguous.

7) The workpiece must not be interrupted during process-
ing on a machine.

8) Each processing machine can handle only one work-
piece at a time.

9) The machine may be intermittently out of operation
owing to periodic maintenance. The symbols and parameters
used for model development are defined in Table 1.

B. ESTABLISHMENT OF THE FFJSP MATHEMATICAL
MODEL
The FFJSP aims to minimize the maximum fuzzy completion
time, and its objective function is expressed in Equation (1):

Cmax = min{max
∑n

i=1

∑ei

j=1
(sijk + tijk )}

= min{max
∑n

i=1

∑ei

j=1

(
cij

)
}max (1)

The constraints of an FFJSP are shown in Formulas (2–7):

tij ≥ 0, sij ≥ 0 i = 1, 2, 3 . . . n; j = 1, 2, 3 . . . ei

(2)

sij + tij ≤ si(j+1) i = 1, 2, 3 · · · n; j = 1, 2, 3 · · · ei
sij + tijk ≤ slh + inf ∗

(
1 − yijlhk

)
(3)

i = 1, 2, 3 · · · n; l = 1, 2, 3 · · · n;

j = 1, 2, 3 · · · ei; t = 1, 2, 3 · · · el;

k = 1, 2, 3 · · ·m; (4)

∑Mij

k=1
xijk = 1 i = 1, 2, 3 · · · n; j = 1, 2, 3 · · · ei (5)

xijk =

{
1, If operation Oij selects Mk

0, Otherwise
(6)

yijlhk =

{
1, IfOijis processed before OlhatMk

0, Otherwise,
(7)

where sij represents operation Oij at the start time of pro-
cessing, ei denotes the total number of operations of the
workpiece Ji, inf indicates an infinite positive number, andMij
represents the set of optional processing machines for oper-
ation Oij. Constraint relation (2) indicates that the process-
ing time of the operation must be greater than 0; constraint
relation (3) represents the sequence between the operations
of each workpiece; constraint relation (4) indicates that a
given machine can process only one workpiece at an instant;
constraint relation (5) implies that a given workpiece can be
processed only by one machine at an instant.

An exemplary instance of a three-workpiece, three-
machine FFJSP is presented in Table 2, wherein the rows
and columns in the table represent operations and machines,
respectively. The entries in the table denote the fuzzy time for
each operation to be processed on the correspondingmachine.
O11 corresponds to the first operation of the first workpiece.

C. OPERATION OF TRIANGULAR FUZZY NUMBER
As the processing time in the FFJSP problem is represented
as a triangular fuzzy number (TFN), the method of evaluating
this representation method differs from that of the general
processing time. The operational rules of TFNs primarily
include the addition operation, approximate max operation,
and ranking operation. In principle, the addition operation is
applied to evaluate the fuzzy makespan of operation, whereas
the approximate max operation is utilized to determine the
fuzzy beginning time of operation. The ranking operation is
used to sort TFNs to obtain the maximum fuzzy makespan.
For two arbitrary TFNs, e.g., X (x1, x2, x3) and Y (y1, y2, y3),
the aforementioned three operation rules can be expressed as
follows:

Addition operation: X + Y = (x1, x2, x3) + (y1, y2, y3) =

(x1 + y1, x2 + y2, x3 + y3);
Ranking operation:
1) Compare the values of F1 (X) =

x1+2x2+x3
4 and

F1 (Y ) =
y1+2y2+y3

4 . If F1 (X) > F1 (Y ), then X > Y .
2) If F1 (X) = F1 (Y ), compare F2 (X) = x2 with

F2 (Y ) = y2. If F2 (X) > F2 (Y ), then X > Y .
3) IfF1 andF2 are equal, compare F3 (X) = x3 − x1

andF3 (Y ) = y3 − y1. If F3 (X) > F3 (Y ), then X > Y .
Consider the approximate max operation: ifX > Y ,

thenX∨Y = X ; otherwise, X∨Y = Y .

III. IMPROVED MVO ALGORITHM SOLUTION DESIGN
A. MULTIVERSE OPTIMIZATION ALGORITHM
In 2016, Mirjalili proposed the MVO algorithm [15] that
stimulates the transfer of matter in the universe from white
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TABLE 1. Meaning of sym.

TABLE 2. Instances of scale 3 × 3 completely FFJSP.

holes to black holes through wormholes. TheMVO algorithm
involves relatively few performance parameters, fundamen-
tally including thewormhole existence probability andworm-
hole travel distance rate. In principle, the low-dimensional
numerical experiments deliver relatively excellent perfor-
mances. Similar to other swarm intelligence optimization
algorithms, the optimization execution process of the MVO
algorithm is segmented into two stages: exploration and
development. White holes and black holes are used for explo-
ration, whereas wormholes are used for development. The
MVO algorithm obeys the following rules in the optimization
process:

1) A higher inflation rate of the universe increases the
likelihood of a greater number of white holes.

2) Conversely, if the inflation rate of a universe is relatively
low, black holes are more likely to be formed.

3) The universe that created white holes will repel objects.
4) Conversely, the universe that created black holes will

absorb objects.
5) Regardless of the inflation rate, other universes can

transfer objects to the current optimal universe through
wormholes.

The MVO algorithm creates the initial universe iterative
loop based on the principle of black/white holes and worm-
holes. Specifically, the universe represents the feasible solu-
tion to a problem, the objects in the universe represent the
components of the solution, and the inflation rate of the

universe represents the fitness value of the solution. The
mathematical model of the algorithm is stated as follows.

The object composition of the algorithm is stated as
follows:

U =



x11 x21 · · · xd1

x12 x22 · · · xd2
...

...
...

...

x1n x2n · · · xdn


, (8)

where d denotes the number of objects (variables) and n
represents the number of universes (candidate solutions).
Since each universe manifests a unique inflation rate, the

objects in the universe will migrate through the orbits of
the white/black holes. This process follows a roulette wheel
mechanism, as expressed in Equation (9).

x ji =

{
x jk r1 < NI (Ui)

x ji r1 ≥ NI (Ui)
, (9)

where x ji denotes the position of the j-th object black hole in
the i-th universe, Ui indicates the i-th universe, and NI (Ui)
represents the standard inflation rate of the i-th medium
universe; x jkdenotes the position of the j-th object of the k-th
universe generated by the roulette mechanism.

Regardless of the inflation rate, the local variations can
be achieved and their inflation rates can be improved if the
universe objects stimulate the internal objects to travel to the
current optimal universe. The process of updating the object
positions of wormholes in the universe follows Equation
(10), as shown at the bottom of the next page, where the
travel distance rate (TDR) is a dynamic parameter; H is the
threshold, and the empirical value of H = 0.5 is taken here;
r2, r3, andr4 are random numbers in the interval [0,1]; lb
and ub represent the lower and upper limits of the variables;
Bestx ji represents the location of the wormhole corresponding
to the current optimal universe. After iteration, the optimal
location is constantly updated. When x ji+1, a new optimal
universe wormhole location is generated, and the universe
inflation rate between x ji+1 andx ji will be compared. If the
fitness value of x ji+1 is better than that of x

j
i , x

j
i+1 will replace

x ji ; otherwise, x
j
i will be preserved for the next generation.
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FIGURE 1. Coding and decoding schematic figures.

The expression of the wormhole existence rate (WEP) is as
follows:

WEP = WEP
l
L

(WEPminmax)
min

(11)

where WEPmax and WEPmin presume the empirical values
WEPmax = 1 and WEPmin = 0.2, respectively, ldenotes the
current iteration number, and L represents the maximum
iteration number. Moreover, the TDR can be expressed as
follows:

TDR = 1 −

(
l
L

) 1
p

(12)

where pindicates the precision of the mining capacity.
This study uses the improved MVO algorithm to resolve

the FFJSP, where each universe corresponds to a solution and
each object in the universe corresponds to an operation.

B. ENCODING AND DECODING
The FFJSPs consider operation sequencing and machine
selection. Therefore, we adopted two coding methods,
namely, operation sequence (OS) andmachine selection (MS)
coding. The OS coding is used to determine the order, where
the encoding algorithm represents the workpiece. In con-
trast, the number of occurrencesj indicates the OS of the
i-th workpiece and Oij represents the corresponding code.
In particular, the MS coding selects the processing machines
in sequence according to the OS, and in this process, the MS
code value indicates the corresponding serial number of the
machine from the set of machinable machines, i.e.,Mijk . The
schematic processes of coding and decoding are displayed in
Fig. 1.

An effective decoding scheme is essential for further
improving the scheduling quality. The priority constraint rela-
tionship between the operations of the same workpiece can
delay the completion of the prior operation during processing,

which causes an idle period for the machine. To this end,
Gao et al. proposed a shift-left strategy, which utilizes the
idle time of the machine by shifting the operation toward the
left. This scheme is highly effective in improving scheduling
efficiency [25], and its principle is stated below.

Assuming an idle time
[
tSk , tEk

]
for a machine, the operation

Oij performing the insertion operation in the idle time of the
machine satisfy meet two conditions:

First, the operation Oij is processed
[
tSk , tEk

]
in the idle

period of the machine Mk , and the completion timenewcij of
the operation Oij inserting machine Mk is less than the end
time of the machine Mk during this period tEk . Based on the
assumption of the FFJSP, the operation Oij can be processed
only after completing the previous operation Oi,j−1. If Oij
involves no preceding operation, then Ci,j−1 = 0. Therefore,
the start time of the operation Oij in machineMk processing
newsij can be expressed as

newsij = max
{
tSk , ci,j−1

}
. (13)

The constraint on inserting the operation into the machine
Mk processing can be expressed as follows:

tEk > newcij + tijk . (14)

Second, to ensure that the idle time processing of the oper-
ation Oijinserted in machine Mk can promote its completion
time, the condition that the completion time of the operation
Oij after the insertion of newcij should be less than the original
completion time cij, i.e., newcij < cij.

C. UNIVERSE INITIALIZATION
In solving multivariate problems with heuristic algorithms,
the mass of the initial universe often poses considerable
influence on the convergence rate of the universe as well
as the final result. Thus, the generation of a high-quality
initial universe is imminent. In this study, we adopted chaotic
initialization for the OS [26]. Chaos is a form of motion in
a nonlinear dynamic system, characterized by randomness,
ergodicity, and sensitivity to initial values [27]. Using chaotic
initialization, objects of the initial universe can be distributed
discretely in the solution space, which effectively improves
the diversity of the universe. Among several chaotic systems,
logistic chaos mapping is the most typical chaotic system,
explained by the following system equation:

X (k + 1) = u× X (k) × [1 − X (k)] . (15)

To increase the quality of the initialized universe and ensure
the diversity of the universe, we selected a certain propor-
tion R of the chaotic initialized universe. Moreover, greedy

x ji+1 =


{
Best ji + TDR ∗

((
ubj − lbj

)
∗ r4 + lbj

)
r3 < H

Best ji − TDR ∗
((
ubj − lbj

)
∗ r4 + lbj

)
r3 ≥ H

r2 < WEP

x ji r2 ≥ WEP

(10)
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FIGURE 2. Hybrid initialization universe flow.

selection was adopted in the MS, and random selection was
applied in the MS of the remaining chaotic initial universe.
The principle of greedy selection is to select the machine with
the shortest completion duration for each operation under the
process sequence generated by chaotic initialization [28].

Considering the instance of FFJSP listed in Table 2 as an
example. The concrete implementation steps of this hybrid
proportion initialization method were combined with chaos
mapping and greedy thought, stated as follows:

Step 1: Random generation of chaotic variables equal to
the total working number, as listed in Table 3. In total, seven
ordinal artifacts are presented in Table 3, and thus, seven
chaotic variables were randomly generated. The sequence of

the chaotic variables corresponds to that of the procedure
code.

Step 2: The sequence of the chaotic variables was arranged
in ascending order, and the operation code corresponding to
the chaotic variables was moved accordingly. For instance,
chaotic variable 0.78 corresponds to operation code 1 of
position 2, but the variable 0.78 occupied the sixth position in
ascending order; thus, process code 1 was rearranged to the
sixth place.

This work selects N × R initial universe for MS by the
greedy selection, calculates the completion time of the oper-
ation on all its optional machines, and selects the machine
with the shortest processing period. The MS of the remaining
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TABLE 3. The procedure of initial operation sequence.

initial universe was conducted by randomly selecting one of
the alternative machines corresponding to the operation.

The flow of the hybrid initialization methods is illustrated
in Fig. 2.

D. SIMULATION OF BLACK/WHITE HOLES AND
WORMHOLES FOR OBJECT EXCHANG
1) Self-crossing black/white hole object exchange
technology.

Liu et al. reported that the traditional parental GA focused
only on the effectiveness of the combination between var-
ious chromosomes and did not study the characteristics
of the chromosomes themselves. Upon introducing the
crossover operation of the parthenogenetic algorithm, the
results revealed that the combination of the two could effec-
tively improve the efficiency of the GA, known as self-cross
GA [29]. Inspired by this aspect of self-crossing, we propose
the black/white hole exchange technology herein. Assuming
two universes, UI and UE , that generate black holes and
white holes, respectively, the process of self-crossing of the
black/white hole exchange technology between the two uni-
verses is described as follows.

First, the object position in UI corresponding to the occur-
rence of the black hole is determined. Second, the position
of the corresponding operation of the object in UE , i.e., the
position of the white hole is determined through decoding and
coding operations. Thereafter, in-universe UI , the object at
the black hole position and that at the corresponding position
of the white hole in UI were exchanged to generate a new
transition universe, and we implemented the self-crossing
technology proposed in this study. Furthermore, if the end
condition is not satisfied, the subsequent location of the
black hole in the UI id determined, and the previous steps
are repeated. Ultimately, the best intermediate universe is
observed by comparing the expansion rate of the universe
after all exchanges. In addition, we provide an example to
illustrate the operation process of black/white hole object
exchange based on the self-crossing technology depicted in
Fig. 3.

2) Object wormhole movement technology based on
insertion.

Updating the object positions in the universe through
wormholes is beneficial because the object in the universe
stimulates the movement of the internal objects to the corre-
sponding object positions in the current optimal universe to

FIGURE 3. Black hole/white hole mass-exchange process based on
self-crossing technique.

achieve local variations and improve the inflation rate. Based
on insertion, Ruiz and Stutzle constructed an iterative greedy
algorithm using a heuristic algorithm, which is an effective
method [30], [31], [32], [33]. Inspired by this algorithm, the
IMVO algorithm uses the local insertion search to simulate
themovement of objects through thewormhole for generating
a new solution.

In this study, the coded serial number a was introduced to
locate the object position, and Equation (10) can be trans-
formed to (16) via serial number transformation. Upon intro-
ducing the mobile step 1 (= TDR× ((D − 1) × r4 + 1)),
we established the object wormhole in the optimal space
location moving a step length. For instance, 1 = –1 indi-
cates that the object is displaced by one unit toward the
left and inserted from the optimal universe object position.
Conversely, 1 = 1 indicates that it moves one unit toward
the right and inserts that object position; 1 = 0 implies that
the wormhole object insertion position is the optimal universe
object position. Based on the stated operations, the process
of moving universe objects to the current optimal universe
through wormholes is extensively simulated to identify a
superior universe. To clearly explain this process, the sim-
ulation of wormhole object movement based on the insertion
technique is depicted in Fig. 4, as in (16), shown at the bottom
of the next page. where Bestx ji represents the sequence num-
ber of the wormhole position corresponding to the current
optimal universe.
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FIGURE 4. The simulation process is based on plug-in wormhole object movement technology.

E. UNIVERSE SELECTION MECHANISM
Wu et al. applied the ‘‘elitist selection or elitism’’ strategy to
solve FJSP, which has been proven to be effective and feasible
for algorithm optimization [34]. The concept of this strategy
is to directly replicate the best objects of the population
emerging from the evolutionary process in the subsequent
generation. This approach preserves the best objects of the
current population in the next generation, thereby limiting the
algorithm to not converge to the global optimal solution.

Inspired by this, the present study improves this strategy
and applies it in the universe update iteration. Through the
mechanism of the black hole, white hole, and wormhole,
a new universe newUi is obtained by exchanging the object
of the universe Ui. If the inflation rate of the new universe
NI (newUi) is greater than or equal to the inflation rate
NI (Ubest) of the existing optimal universe, the new universe
is preserved. If the inflation rate of the new universe is less
than the inflation rate of the existing optimal universe, the size
of the random number and the relative inflation rate RNI (Ui)
are assessed. If the random number is greater than or equal to
the relative expansion rate, the new universe will be reserved.
Otherwise, the original universe will be retained.

The relative inflation rate is the ratio of the original uni-
verse inflation rate to the sum of the original and newer

universe inflation rates. The mathematical discriminant of
retaining the new universe in the subsequent iteration is
expressed in Equations (17) and (18), as shown at the bottom
of the next page, where r5 represents a random number [0,1].

F. VARIABLE NEIGHBORHOOD SEARCH STRATEGY
In the case of using a swarm intelligence optimization
algorithm to solve combinatorial optimization problems, the
algorithm can easily fall into a local optimum. However,
the variable neighborhood search (VNS) algorithm—a meta-
heuristic algorithm proposed by Mladenovic in 1997—can
improve this limitation. The basic concept of VNS is to
expand the search scope by systematically altering the neigh-
borhood structure set in the search process to continuously
obtain the local optimal solution while increasing the neigh-
borhood scope to prevent the search process from falling
into the local optimal [35]. In principle, the VNS is a local
search based on a neighborhood structure set instead of a
single neighborhood, and therefore, it is more reasonable and
effective. Owing to its positive local search ability, it has been
successfully applied to solve JSPs. By moving, exchanging,
inserting, and reversing an object, a better universe can be dis-
covered near the current universe, and the local search ability
of the algorithm can be improved. Adjusting the key operation

x ji+1 =


{
Bestji +TDR ∗

((
ubj − lbj

)
∗ r4 + lbj

)
r3 < H

Bestji −TDR ∗
((
ubj − lbj

)
∗ r4 + lbj

)
r3 ≥ H

r2 < WEP

x ji r2 ≥ WEP

(16)
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instead of any other operation in the NS can reduce the blind-
ness of the search and remarkably improve the probability of
yielding an improved solution. The longest path from the start
point to the endpoint in the disjunctive graph corresponding
to the scheduling scheme is called the pivotal path, and the
operation constituting the pivotal path is the key operationOh,
which directly determines the maximum completion time of
the scheduling scheme [36]. Accordingly, two neighborhood
structures N1 and N2 along with two random neighborhood
structures N3 and N4 were designed.

1) Neighborhood structure N1: Traverses every key oper-
ation in the universe and adjusts the key operation Oh to the
idle time between other operations associated with the

same processing machine to maximize the compression of
the maximum completion time.

2) Neighborhood structure N2: Traverses the idle time
of each key operation in the pivotal path on other optional
machines, excluding the current machine, and attempts to
move Oh to another machine with idle time for processing
to reduce the maximum completion time.

3) Neighborhood structure N3: Randomly selects an oper-
ation and exchanges this operation with the following oper-
ation. Reselects the operation if it is the terminal of the
sequence.

4) Neighborhood structure N4: An operation is randomly
selected as Ui and extracted to form U∗

i . Thereafter, the
extracted operation is inserted into all positions at which U∗

i
can be inserted to form multiple universes, from which the
optimal one is selected.

The aforementioned operations are sequentially con-
ducted. Upon adopting the new universe formed by the neigh-
borhood structure N1, the selection is reserved according to
the universe selection mechanism proposed herein, and the
neighborhood structure N1 is used until the current universe
cannot be adjusted and the search is relocated to another
neighborhood.

G. SOLVING FFJSP BY IMPROVED MVO ALGORITHM
In this study, in the case of solving the FFJSP with the
improved MVO method, the universe is initialized by hybrid
initialization to improve the diversity and quality of the
initial universe. Specifically, the coding of the universe is
expressed in the traditional two-layer form. The shift-left
strategy adopted in the decoding process can improve the
decoding performance. To improve the local search capability
of the algorithm, the VNS is introduced with four kinds of
neighborhood operations to discover the optimal universe

near the current universe. In the iterative process, the universe
selection mechanism proposed herein was used to determine
the next-generation multiverse, which ensured that the algo-
rithm satisfied the global search ability and accelerated the
convergence of the multiverse. The basic steps involved in
solving the FFJSP by the improvedMVO algorithm are stated
as follows.
Step 1: Set parameters, including the number of universes,

maximum number of iterations L, greedy initialization ratio
R, the minimum andmaximum probability of wormhole exis-
tence WEPmin and WEPmax , etc.
Step 2:Use the hybrid initialization method to generate the

initial universe.
Step 3: Calculate the fitness value of each universe and the

standardized universe inflation rate, and sort them to obtain
the current optimal universe.
Step 4: Perform the object exchange between a black hole

and a white hole; traverse all the objects in each universe;
exchange the positions of the black hole and those of the
objects in the universe selected by the roulette wheel to gener-
ate a new universe, before performing the universe selection
mechanism.
Step 5: Perform the wormhole movement mechanism; tra-

verse all objects in each universe; displace the position of the
generated wormhole to that of the current optimal universe
according to Equation 10; generate a new universe and assess
its superiority in comparison to the current optimal universe,
before implementing the universe selection mechanism.
Step 6: Perform the VNS and universe selection mecha-

nism.
Step 7: If themaximum number of iterations is attained, the

algorithm is terminated and the optimal universe is obtained
as the output; otherwise, the process returns to step 3.

H. COMPUTATION COMPLEXITY ANALYSIS
The IMVO algorithm primarily contains two components
in the iteration process. The first component is the global
search stage which includes the black/white hole stage and
the wormhole stage. The complexity of the black/white
hole stage is represented as O ((D+ m) n) and that of the
wormhole stage is denoted as O

(
Dn2

)
. The second com-

ponent is the VNS stage, and its complexity is defined as
O (2 (D+ 1) n).
Thus, the total computational complexity of each genera-

tion can be related as O((D + m)n + Dn2 + O(2(D + 1)n),
which can be simplified to O

(
Dn2

)
. According to previ-

ous studies [24], [37], the HMVO algorithm and ABCNS

RNI (Ui) =
NI (Ui)

NI (Ui) + NI ( new i)
(17)

Ui =


{
Ui r5 < RI (Ui)
newUi r5 ≥ RNI (Ui)

NI ( new Ui) < NI (Ubest )

new Ui NI ( new Ui) ≥ NI (Ubest )

(18)
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TABLE 4. Basic information of three test instances.

algorithm are similar advanced algorithms at present. Their
algorithm complexity is denoted as O

(
(P+ 1/2) n2

)
and

O
(
(3k + m+ 10) n2

)
, respectively. As observed, the magni-

tude of the complexity of the IMVO algorithm is equivalent
to that of the two advanced algorithms, which is acceptable
for solving FFJSP.

IV. EXPERIMENTAL RESULTS
This study designed three groups of experiments to verify the
effectiveness and superiority of the algorithm proposed for
solving FFJSP. The experimental data of Group A is derived
from prior research [24] that contains three instances in total.
In particular, the instance with the smallest size contained
three workpieces, three machines, and in total, 15 operations.
The instance with the largest size considered five workpieces,
four machines, and in total, 20 operations. The experimental
data of Group B were sourced from existing literature as
well [38], [39]. The experimental data of Group B included
five instances of fully flexible manufacturing engineering,
wherein fully flexible indicates that each operation can be
processed on any machine. Their sizes range from 10 work-
pieces, 10 machines, and 40 operations to 15 workpieces,
10 machines, and 80 operations. Similarly, the experimental
data of GroupCwere derived from the existing literature [40].
The experimental data of Group C contained eight instances
of incomplete flexible remanufacturing engineering, wherein
incomplete flexibility indicates that at least one operation
can be processed by using only a portion of the machines.
These data range in size from 5 workpieces, 4 machines, and
23 operations to 20 workpieces, 15 machines, and 355 oper-
ations. The basic information of the three groups of experi-
mental data are presented in the table below.

This study uses MATLAB programming language and is
executed on a computer configured with an AMD Ryzen 7

FIGURE 5. Gantt chart of optimal scheduling scheme for instance 1 of
group A.

5800H with Radeon Graphics CPU@3.20 GHz and 24 GB
RAM. Each instance is repeated 30 times, and each experi-
mental result contains the optimal result, average result, worst
result, and maximum lift rate sought by the algorithm,

where the maximum lift rate is the maximum ratio of the
results obtained by the compared algorithms with respect to
that evaluated by the IMVO algorithm in each experimen-
tal arithmetic case. To visually review the performance of
the algorithm, the fundamental parameters of each group of
experimental algorithms are listed in Table 5.

The results of Group A data simulation experiments were
compared with the optimal solution obtained by BAB [41]
and the results of the HMVO and ABCNS—the two most
advanced algorithms at present. The comparison results are
listed in Table 6, wherein the IMVO algorithm proposed
herein is similar to the two advanced algorithms instanced
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TABLE 5. Main parameters of the experimental comparison algorithm for each group.

FIGURE 6. Convergence curve of instance 1 of Group A.

earlier, which can determine the best value. The Gantt
chart of the optimal solution and its fuzzy processing time
t (x1, x2, x3) convergence curve for example 1 of Group A is
depicted in Figs. 5 and 6, respectively. The convergence curve
reflecting the optimal solution during the initialization high-
lights the effectiveness of the hybrid initialization method.
This result completely verifies that the IMVO algorithm pro-
posed herein can rapidly solve the FFJSP with high-quality
results under small-scale instances.

To further verify the effectiveness and superiority of the
IMVO algorithm for solving the FFJSP, two types of FFJSP

were verified for fully flexible and incompletely flexible
manufacturing based on relevant examples.

First, to verify the effectiveness and superiority of the
IMVO algorithm for the fully flexible FFJSP, the simula-
tions were performed on five fully flexible manufacturing
examples with Group B experimental data, and the results
of the IMVO algorithm were compared with those of seven
advanced algorithms from the published literature, includ-
ing the ABCNS [37], HMVO algorithm [24], IABC algo-
rithm [10], IDPSO algorithm [41], DHS algorithm [42],
TLBO algorithm [43], and EDA [44]. The experimental
results of Group B are comparatively presented in Table 7.

In Table 7, the results presented in bold characters repre-
sent the best results obtained from the compared algorithms.
According to these results, although the worst results of the
second and fourth instances of the proposed algorithm were
not better than all other algorithms, the optimal and average
results of the present algorithmwere better than those of other
algorithms. This indicates the superior optimization ability
of the present algorithm compared to the other comparison
algorithms. For the remaining three instances, the proposed
algorithm achieved relatively improved results. More impor-
tantly, the advantages of the IMVO algorithm become more
prominent as the process scale increases and the lifting effi-
ciency soars from 1.75% in Group B instance 1 to 10.53% in
instance 5. The Gantt chart of the optimal scheduling result
of Group B Example 5 is plotted in Fig. 7.
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TABLE 6. Comparison of experimental results of small size instances data in group A.

TABLE 7. Comparison of experimental results in group B.

In addition, the average execution time of the algorithm
is presented in Fig. 8, which indicates that the average

execution time of IMVO is minimal. Furthermore, the line
graph of certain algorithms was magnified to highlight the
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FIGURE 7. Gantt chart of optimal scheduling result of Group B Example 5.

FIGURE 8. Line chart of the average execution time of each algorithm in Group B
Example.

variations in the algorithm execution time. As observed,
the average execution time of the IMVO algorithm was
marginally less than that of the HMVO algorithm, especially
in instances 1 to 4 of the Group B experiment. Nonethe-
less, the IMVO algorithm delivered the best solution per-
formance among all the algorithms in terms of the solution
results.

Second, to verify the performance of the IMVO algo-
rithm for solving incomplete FFJSPs, eight incomplete flex-
ible remanufacturing examples with Group C experimental
data were simulated. The results obtained using the pro-
posed algorithm were compared with those of the ABCNS
algorithm [37], HMVO algorithm [24], and three heuristic
methods [45] for a total of five current advanced algorithms.
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TABLE 8. Comparison of experimental results in group C.

TABLE 9. Comparison of the execution time of group C instance
algorithms.

These three methods included the local minimum process-
ing time principle (LS), global minimum processing time
principle (GS), and maximum remaining workpiece principle
(MReW).

The average, optimal, and worst results of each algorithm
tested on the experimental data of Group C are listed in

Table 8. Based on these results, the proposed algorithm
outperformed the other five algorithms for all instances of
the incomplete FFJSP. Notably, the average maximum effi-
ciency enhancement in all instances in Group C reached
up to 50.44%. The results of the proposed algorithm from
instance 2 to instance 5 were superior to those of the current
optimal ABCNS algorithm in terms of the optimal, average,
and worst performance. From instance 6 to instance 8, the
results of the proposed algorithm were superior to those of
the current best HMVO algorithm in terms of the average,
optimal, and worst results. However, the current advanced
ABCNS algorithm was not as good as the HMVO algo-
rithm, implying that the ABCNS algorithm can easily fall
into the local optima in large-scale instances, whereas the
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FIGURE 9. Gantt chart of optimal scheduling scheme for remanufacturing instance 4.

FIGURE 10. Convergence curve of remanufacturing instance 4.

proposed algorithm surpassed these limitations. In summary,
the proposed algorithm is more advantageous for solving
incomplete FFJSPs of various scales. The Gantt chart of the
optimal scheduling result of remanufacturing instance 4 and
its convergence curve is plotted in Figs. 9 and 10.

The average execution time of IMVO and HMVO algo-
rithms for the eight instances in the Group C experiment is

presented in Table 9, wherein the average execution time
of the IMVO algorithm is superior to that of the HMVO
algorithm, especially in large-scale instances 7 and 8, except
for instance 1. In small-scale instance 1, the IMVO algorithm
required a relatively higher average execution time, primarily
because the initialization by the hybrid algorithm is time-
consuming. However, hybrid initialization can significantly
improve the population quality, which is advantageous for
rapid convergence and ensures the solution quality. Specifi-
cally, this advantage is gradually reflected with the increase in
the instance scale. As this advantage can provide an improved
solution, a slightly longer execution period can be acceptable.

Based on the comprehensive evaluation of the experimen-
tal results, the IMVO algorithm achieved superior results and
even optimal solutions for small-scale FFJSP solving at the
initialization time. In most instances, the algorithm outper-
formed the comparison algorithm both in terms of solution
results and solution time. These demonstrate the superiority
and powerful performance of the IMVO algorithm for solving
the FFJSP, which is primarily because of the high-quality
initial solution provided by IMVO during initialization. Fur-
thermore, the universe selection mechanism in the search
process and the shift-left strategy in the decoding process
ensured the rapid enhancement of the solution quality and
reduced the possibility of the algorithm falling into a local
optimum.
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V. CONCLUSION
This study proposed an improved MVO algorithm for the
FFJSP. The mathematical principles of the matter exchange
through black/white holes and wormholes in the MVO
were combined with two heuristic algorithms. In addition,
VNS and universe retention strategies were incorporated to
enhance its exploration and development capabilities. Simu-
lation experiments were performed on three groups of FFJSPs
with varying scales and types, and the results were compared
with those obtained using algorithms reported in the rele-
vant literature. The results revealed that the results of the
IMVO algorithm were superior to those of the comparison
algorithms, and the optimal results of certain instances are
depicted in the form of Gantt charts, thereby verifying the
superiority of the performance of the algorithm in this work.
In the future, we intend to continue the current development
based on the following aspects:

1) The proposed algorithm will be applied to solve the
uncertain problems related to actual production, such as
emergency job insertion and abrupt machine failure.

2) It can be employed to solve multi-objective scheduling
problems such as minimum energy consumption, maximum
machine utilization, and so on.

3) Further exploring the characteristics of the problem and
proposing more effective algorithms.
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