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ABSTRACT With the growing adoption of both residential and commercial electric vehicles (EV) and the
rapid deployment of EV charging stations, it is of paramount importance to assess the potential overloading
impact of intensive EV charging on the operation and planning of power distribution systems. Targeting at the
west Kentucky rural area, this research leverages the Distribution Resource Integration and Value Estimation
(DRIVE) and HotSpotter software tools to investigate the potential impact of EV charging on the operation
of regional distribution systems and the lifetime degradation of power transformers. The research outcome
helps identify possible distribution system overload risks andmitigation solutions tomeet future intensive EV
charging necessity under assumed EV adoption scenarios. Possible overloading in the distribution systems
and undervoltage violations are examined. In addition, the overload impact of EV charging is investigated
by conducting a multi-physics reliability analysis of a distribution transformer.

INDEX TERMS Electric vehicles, charging infrastructure, overloading, power distribution system, trans-
former reliability.

I. INTRODUCTION
Electric vehicles (EV), specifically including battery EVs
(BEV) and plug-in hybrid EVs (PHEV), are generally
charged through the utility grid. Currently, there are more
than 100,000 publicly available charging outlets across the
United States, and many more charging units will be installed
over the next decade. Table 1 summarizes the characteris-
tics and implementation cost of three various types of EV
charging units [1]. However, intensive charging during peak
power demand timemay cause overload in the regional power
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distribution system, which has not received sufficient atten-
tion in the literature.

Increased EV charging induces a lot of challenges for the
power distribution systems (PDS). EV charger load can be
responsible for reducing the stability of the PDS. Uncon-
trolled EV charging might lead to a total blackout if it is
carried out during peak load periods. For instance, a 10%
increase in EV charging load penetration can result in an
18% increase in the PDS demand [2]. Different levels of EV
penetration also exhibit the PDS thermal overloading trend,
which may lead to decreased transformer performance.When
the penetration of EV chargers increases from 20% to 80%,
the grid voltage deviation is affected in the range of 12.7%
to 43.3% [2]. EV charger penetration also incurs voltage
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TABLE 1. EV charging options [1].

deviation, leading to poor power factor (PF) and unbalanc-
ing in the PDS. The non-linear power electronics associ-
ated with the EV chargers are responsible for increasing the
harmonics content in grid current, which can deteriorate the
PF and the different assets of the utility. A study performed
in [3] shows that the EV chargers increase the RMS value of
grid line current, which in turn increases the grid losses by
approximately 40% during the off-peak charging period and
around 62% during the peak charging period. In the litera-
ture, various strategies are proposed and discussed to reduce
the aforementioned negative impacts of EV chargers on the
PDS, including designing a well-planned, coordinating EV
charging scheme, incorporating the smart metering system,
and adopting sophisticated modulation techniques and input
line filters for ameliorating power conditioning [4].

The impact of EV charging on power distribution systems
has been explored in the literature. To examine the effects of
EV on PDS, battery capacity, state of charge (SOC), and daily
energy consumption of EVs have been predicted based on
the behavior of EV owners [5]. The negative impacts of EV
charging on PDS were investigated in [6], and an automated
controller was proposed to meet the customer demand while
taking system voltage and battery state of charge into account.
Additionally, a smart load management method to regulate
EV charging has been explored in [7] to reduce power losses.
One controlled charging strategy has been proposed in [8]
to increase EV penetration by taking into account voltage
and power constraints. In [9], one regulated EV charging
method has been devised to lower overall charging costs
while complying with the distribution network limits. The
authors in [10] investigated a multi-agent control charging
approach to regulate the transformer loading and voltage
limits. The authors discussed one optimal charging approach
in [11] and one smart charging technique in [12] to regulate
the transformer voltage and phase unbalance constraints. One
systematic method was studied in [13] to understand the grid
impacts of heavy-duty charging stations by considering the
placement of the charging station. The authors conducted
one case study to investigate the impact of EV charging load
on the California distribution network, and it was concluded
that EV charging load could have a significant impact on the
PDS [14].

Various techniques are documented in past studies to
compute the maximum penetration level of EV a PDS can
handle. The maximum amount of EV loads that can be sup-
ported by the grid side’s available resources under a com-
pletely controlled charging scenario was calculated by the
authors in [15] using reliability-based criteria. In [16], one

sensitivity indices-based approach was explored to deter-
mine the increasing EV demand in specific PDS locations.
The authors studied one method for predicting the PDS
capacity for accommodating the increased EV demand while
maintaining operational limits [17]. In [18] and [19], the
probabilistic strategy was utilized to calculate the maximum
penetration level of EV to the PDS while ensuring its feasible
operation. The authors in [20] identified a few common issues
and errors when performing hosting capacity studies and pro-
posed a few techniques to address these errors and improve
the accuracy of hosting capacity outcomes. In [21] the hosting
capacity of EVs was investigated in order to predict whether
the charging demand from EVs can be accommodated by the
PDS while taking power quality issues into account (wave-
form distortion, power system stability, and RMS voltage).

To further investigate the impact of EV charging on the
PDS operation and planning, Distribution Resource Integra-
tion and Value Estimation (DRIVE), a software tool devel-
oped by Electric Power Research Institute (EPRI) in the USA,
is used in this work to evaluate the capacity of representative
feeders of a Western Kentucky distribution system, in order
to meet future EV charging necessity under assumed EV
adoption scenarios [22]. Potential overloading (i.e., thermal
congestion) on the distribution system and undervoltage vio-
lations are investigated. Additionally, the impact of EV inten-
sive charging on distribution transformers has been examined.
An EPRI software tool HotSpotter based on a probabilistic
method is employed to assess the system-wide impact of EV
charging on residential distribution transformers. A distribu-
tion transformer rated at 100 kVA is considered as a case
study to characterize the impact of system overload due to EV
charging on distribution transformers. Multi-physics analysis
is carried out to show the impact of overload on transformer
hotspot temperature (HST) and the lifetime degradation.

While there are papers analyzing EV penetration impacts
on PDS using small IEEE test systems, this paper intends
to propose a systematic method to study EV penetration
impacts on real world power grids, considering EV adoption
prediction and EV charging profiles, impacts of time-of-
use electricity rate, probabilistic analysis of EV charging on
distribution transformers, and finite element analysis of over-
loading impact on distribution transformer aging. As more
and more EVs are integrated into power distribution systems,
it will be of paramount interest to investigate the poten-
tial impact on the distribution grid and its power appara-
tuses.West Kentucky Rural Electric Cooperative Corporation
(WKRECC) has deployed advanced metering infrastructure
system so that it has load data available for analysis. That
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FIGURE 1. Overall analysis flowchart and interdependence of analysis modules.

is why the authors chose to partner with WKRECC for this
research. The proposed method and procedure for analyzing
EV impacts will be applicable to other power utilities as well.

Fig. 1 depicts the research analysis modules and their
relationship and local power company (LPC) data inputs. The
first part of this research performs the EV market assessment
for the LPC service area to provide EV penetration forecast
for the future years under study. The authors also developed
a load extraction program to identify the daily peak load
of the year and the total number of consumers served by
each transformer and by the entire feeders. Then the DRIVE
analysis is performed to determine the hosting capacity (HC)
of the feeders under study and identify potential problems
including undervoltage and thermal overloading issues due
to growing EV demand. The Hotspotter analysis identifies
the distribution transformer overload statistics by hour and
by asset type. The finite element analysis module obtains the
loss components estimate (core loss, winding loss density),
thermal analysis (hot-spot temperature estimate), and trans-
former lifetime estimation.

The same analysis procedure can be applied to another
LPC. As shown in Fig. 1, the LPC inputs include service area
EV registration data, LPC feedermodel inMilsoft, OpenDSS,
Synergi, Powerfactory, Cyme or other specified format, LPC
yearly load data and transformer-load mapping data, and time
of use scheme.

The rest of this paper is organized as follows: The Western
Kentucky EV market penetration projections and the related
load data are presented in Section II. Section III assesses the
impacts of EVs on the Western Kentucky distribution system
using the DRIVE software tool. The impact of EV charging

FIGURE 2. West kentucky rural utility grid service area.

on the distribution transformer lifetime aging utilizing the
HotSpotter and finite element analysis is discussed in Sec-
tion IV. Finally, technical challenges and potential future
research topics are discussed in Section V.

II. EV MARKET PROJECTION IN WESTERN KENTUCKY
The West Kentucky Rural Electric Cooperative Corporation
is a community-focused electric cooperative established to
deliver affordable, reliable, and sustainable energy to more
than 31,000 members [23]. Fig. 2 shows the WKRECC
service area that consists of Calloway and most of Graves,
Carlisle and Marshall Counties. The cooperative has 13 sub-
stations at 69 kV and 161 kV, and the distribution system is
rated at the 12.5 kV and 25 kV levels.

According to [24], Fig. 3 shows U.S. EV market growth
projection in three scenarios, i.e., low, medium and high
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TABLE 2. U.S. cumulative EV projections for low, medium and high scenarios [24].

TABLE 3. New vehicle registration in Calloway county.

FIGURE 3. EPRI low, medium, high EV market penetration scenarios [24].

scenarios; the number shown is for cumulative EVs in oper-
ation. It is seen that the total EV fleet size by 2027 for the
three scenarios is forecast to be 1.5 million (0.6% of the total
passenger vehicle fleet), 10 million (4%), 29 million (12%),
respectively. It is seen that the total EV fleet size by 2030 for
the three scenarios is forecast to be 2.1million (0.8%), 14mil-
lion (5%), and 40 million (15%) vehicles, respectively. The
EV fleet size by 2040 for the three scenarios is forecast to
be 5.1 million (1.7%), 44 million (15%), 113 million (38%),
respectively. The EV fleet size by 2050 for the three scenarios
is forecast to be 8 million (2.5%), 85 million (26%), 170 mil-
lion (53%), respectively. Table 2 summarizes the projections
under the three scenarios; note that the numbers in the Table 2
are estimated from Fig. 3 since such numeric values are not
provided in the reference [24].

A. EV PROJECTION FOR CALLOWAY COUNTY
Since the two feeders under investigation in this study belong
to Calloway county, the EV adoption forecast is of partic-
ular interest. Table 3 shows the new vehicle registration in
Calloway county from 2010 to 2021, according to the data
provided by WKRECC. The new PEVs registered each year
and accumulative PEVs as well as the percentage of total
vehicles is listed. To estimate the accumulative number of
vehicles, it is assumed that a vehicle has a service time of
10 years, so the total number of vehicles is about 10,580

in Calloway county, which is used here to calculate the EV
share.

It is evinced from Table 3 that EVs account for 0.3% of
all vehicles in the county. Looking at the U.S. national EV
forecast, we can see that the EV adoption at the Calloway
country is in line with the national low-adoption scenario.
Even with uncertainty, it is reasonable to believe that the
actual EV adoption will fall somewhere between the national
low- and medium-adoption scenarios.

B. EV PROJECTION FOR THE MURRAY CITY
One of the representative cities in WRECC’s service area is
the city of Murray, and this section presents a method for EV
projection in Murray. The method presented here is based on
the population projection, the average number of vehicles per
person, and the assumed EV penetration rate. Themethod can
be applied to other selected areas. If vehicle registration data
is available, then the number of vehicles can be used directly.

The number of EVs in a certain region can be estimated
by multiplying the population of that region and the count
of vehicles per person and the EV penetration rate. Taking
the city of Murray as an example, using the penetration rate,
the EV projection for the low-, medium- and high-penetration
scenarios is shown in Table 4. EV Energy consumption in
the city can thus be estimated as follows. Based on the
National Survey data, the average vehicle travels 9,579 miles
each year. The average EV efficiency of top sold EVs is
currently 250.7 Wh/mile [25]. Assume 4.9% system losses
for transmission and distribution. Then each EVwill consume
2.5 MWh/year of energy. The EV energy consumption pro-
jection in city of Murray, KY is provided in Table 5. It should
be noted that the above forecast only includes light-duty
vehicles. To include the energy consumption of EV buses and
trucks, the energy ratio of EV buses and trucks to EV cars
shall be used. Accordingly, Table 6 shows the total annual
EV energy consumption projection in Murray.

EV power demand profile in a city or area can be estimated
using the National Renewable Energy Laboratory (NREL)
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TABLE 4. EV projection in city of Murray, KY.

TABLE 5. Annual EV energy consumption projection in city of Murray, KY.

TABLE 6. Annual EV energy consumption projection in city of Murray,
KY including buses and trucks.

Electric Vehicle Infrastructure – Projection (EVI-Pro) Lite.
In the NREL EVI-Pro Lite user interface, after choosing the
State and City for analysis, the user can change a number of
assumptions including number of plug-in EVs in the fleet,
average daily miles traveled per vehicle, average ambient
temperature, percentage of AEVs among EVs, percentage
of Sedan EVs, mix of workplace charging, access to home
charging, preference for home charging, home charging strat-
egy, and workplace charging strategy. However, the list of
cities in Kentucky available for analysis by the tool does not
include the cities in the WKRECC service area. In this study,
the following assumptions are made:

• WKRECC follows the U.S. national market share pro-
jection. Although the actual market share in WKRECC
may very well differ from the national projection, the
actual market share will likely fall somewhere between
those three scenarios.

• WKRECC follows the U.S. national average driving
statistics.

C. EV CHARGING PROFILES
EV daily charging profiles are estimated using the EVI-Pro
from the NREL with the following assumptions:

• Average ambient temperature: 68◦ F.
• Plug-in vehicles that are all electric: 75%.

1) Mix of workplace charging: 20% level 1 and 80%
level 2.

2) Home charging: 50% level 1 and 50% level 2.

• Charging strategy:

1) Strategy 1: Charging Home: Immediate - as
fast as possible; workplace: Immediate-as fast as
possible.

FIGURE 4. EV charging profile, Strategy 1 - Home: immediate-as fast as
possible, work: immediate-as fast as possible.

2) Strategy 2: Home: Immediate - as slow as possible
(even spread); workplace: Immediate - as slow as
possible (even spread).

3) Strategy 3: Home: Delayed-finish by departure;
workplace: Delayed-finish by departure.

4) Strategy 4: Home: Delayed-start at midnight;
workplace: Delayed-finish by departure.

Using the NREL EVI-PRO tool, the charging profiles
for 1000 EVs with the four typical charging strategies listed
above are obtained as shown in Fig. 4, Fig. 5, Fig. 6 and Fig. 7.
In each figure, sub-figure (a) is the 15-minute charging profile
obtained from EVI-Pro tool for 1000 EVs, and sub-figure (b)
is the hourly charging profile per vehicle, calculated by aver-
aging the 15-minute power of each hour. The hourly charging
profiles corresponding to projected EVs can be obtained by
multiplying the projected EV number and the charging profile
of sub-figure (b).

Table 7 shows the numeric value of the hourly EV charg-
ing demand (kW/vehicle) under the four charging strate-
gies. Under charging strategy 1, the peak charging load is
0.8416 kW/vehicle occurring during the 20th hour of the day.
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FIGURE 5. EV charging profile, Strategy 2 - Home: immediate-as slow as
possible, work: immediate-as slow as possible.

For strategy 2, the peak charging load is 0.4879 kW/vehicle
occurring during the 1st hour of the day. For strategy 3, the
peak charging load is 1.0324 kW/vehicle occurring during
the 7th hour of the day. Charging strategy 4 has the high-
est peak load among the four strategies, with a peak of
2.9133 kW/vehicle occurring during the 1st hour of the day.

D. EV ADOPTION PREDICTION FOR THE STUDIED
CIRCUITS IN WESTERN KENTUCKY
Two system circuit models, i.e., Circuit STELLA and Circuit
E—MURRAY, from the WKRECC are collected to investi-
gate in this study. The residential EV adoption prediction for
the two WKRECC circuits is presented as follows. A yearly
population increase of 0.52% is assumed. The forecast for
the number of residential households and number of EVs
served by the two circuits are shown in Table 8 and Table 9,
respectively. Column 1 lists the year predicted, Column 2 pro-
vides the forecast of the number of residential households,
and Column 3 provides the number of estimated vehicles. The
last three columns give the forecasted number of EVs for low,
medium and high EV adoption scenarios, respectively.

FIGURE 6. EV charging profile, Strategy 3 - Home: delayed-finish by
departure, work: delayed-finish by departure.

Using the EV charging profiles obtained in the previous
section, the peak EV demand for the two circuits are shown
in Table 10 and Table 11, respectively. The columns low,
medium and high correspond to the three EV prediction
scenarios. The column Max represents the maximum peak
EV demand assuming a 100% EV adoption.

III. WKRECC CIRCUIT ANALYSIS USING DRIVE
DRIVE software tool is used in this research for evaluating
the impacts of adding energy resources including generations,
loads and storage devices to a distribution system. DRIVE
can be used for both planning and screening. According
to [26], planning aims to evaluate the ability of the distri-
bution system to accommodate new resources, which may
be distributed at multiple locations, over a period of time
such as months to years, without adversely impacting power
quality and reliability and without requiring infrastructure
upgrades. Screening examines the ability of the distribution
system to accommodate a new resource in the near term
at a particular location. The ability to add additional load
or generation is known as the system’s hosting capacity’
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FIGURE 7. EV charging profile, Strategy 4—Home: delayed-start at
midnight, work: delayed-finish by departure.

for the specified resource. DRIVE can also identify
potential mitigation solutions to increase hosting capacity,
identify optimal dispatch/deployment opportunities to maxi-
mize hosting capacity and identify how system configuration
change affects hosting capacity [27].

This study uses DRIVE to evaluate the capacity
of WKRECC circuits [Circuit STELLA and Circuit
E—MURRAY] to meet future EV charging needs under
assumed EV adoption scenarios. Possible overloading (ther-
mal congestion) on circuit and undervoltage violation are
examined. Here, models for two circuit E—MURRAY
and STELLA in OpenDSS files were collected where the
WKRECC load data obtained at various consumer locations
were summarized. In circuit STELLA, the peak load is
5.2 MW, which occurred at 6 PM on August 11, 2021. The
minimum load on that day is 2.04 MW. The corresponding
daily load profile is shown in Fig. 8. The horizontal axis
represents the hour from the first hour in the morning to the
last hour at the night of the day. In circuit E—MURRAY, the
peak load is 5.68 MW, which occurred at 12 PM on February
15, 2021. The minimum load on that day is 4.7 MW. The
corresponding daily load profile is shown in Fig. 9.

TABLE 7. EV charging profiles (kW/vehicle) for the four charging
strategies.

TABLE 8. Residential EV adoption prediction for circuit STELLA.

A. ANALYSIS FOR STELLA CIRCUIT MODEL
Using the OpenDSS software tool, Circuit STELLA is plotted
and shown in Fig. 10, where the thickness of the line is
proportional to the real power on the line.

Fig. 11 shows the centralized HC analysis results for cir-
cuit STELLA. It is seen that the maximum HC capacity is
1.4 MW, 1.3 MW and 4.3 MW without causing feeder ther-
mal, primary undervoltage and voltage deviation problems,
respectively. The locations of the circuit to place load, which
may cause potential problems, are downstream circuits that
are further away from the feederhead.

Choosing option ‘Full’ for distributed resource loca-
tion and 1Non-uniform’ for distributed resource distribu-
tion, Fig. 12 depicts the distributed HC analysis results for
circuit STELLA. The results indicate that the feeder can
host 3.7 MW additional load without causing undervoltage
problems, 2.7 MW additional load without causing thermal
problems, and 15.0 MW additional load without causing
voltage deviation problems.

Choosing option ‘Full’ for distributed resource loca-
tion and ‘Uniform’ for distributed resource distribution,
Fig. 13 depicts the distributed HC analysis results for cir-
cuit STELLA. The results indicate that the feeder can host
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TABLE 9. Residential EV adoption prediction for circuit E—MURRAY.

5.5 MW additional load without causing undervoltage prob-
lems, 5.6 MW additional load without causing thermal prob-
lems, and 15.0 MW additional load without causing voltage
deviation problems.

Choosing option 1At Existing Loads’ for distributed
resource location and 1Non-Uniform’ for distributed resource
distribution, Fig. 14 depicts the distributed HC analysis
results for circuit STELLA. In this option, the future load
is allocated at existing loads and the amount of allocation is
proportional to the existing loads. The results indicate that
the feeder can host 4.0 MW additional load without caus-
ing undervoltage problems, 3.5 MW additional load without
causing thermal problems, and 15.0 MW additional load
without causing voltage deviation problems.

Choosing option 1At Existing Loads’ for distributed
resource location and ‘Uniform’ for distributed resource dis-
tribution, Fig. 15 depicts the distributed HC analysis results
for circuit STELLA. In this option, the future load is allocated
at existing loads and the amount of allocation is uniform
across the existing loads. The results indicate that the feeder
can host 3.9 MW additional load without causing undervolt-
age problems, 3.5 MW additional load without causing ther-
mal problems, and 15.0 MW additional load without causing
voltage deviation problems.

Table 12 provides a summary of the hosting capacity
results for circuit STELLA. The 2nd, 3rd and 4th columns
indicate the hosting capacity without causing problems for
undervoltage, thermal overloading and voltage deviation cri-
terion, respectively. The smallest number will be the limiting
factor for hosting future load growth.

The ability of circuit STELLA to meet future EV charging
needs is analyzed as follows. Referring to the EV demand
prediction as shown in Table 8, it can be seen that assuming
centralized charging integration, the circuit STELLA has no
problem to meet the forecasted EV demand under the low,
medium and high EV adoption scenarios from now to the
year of 2050 for EV charging strategy 1-3. For charging
strategy 4, the peak EV demand is 3.48 MW in the high EV
adoption scenario, which is much larger than the centralized
HC of 1.3 MW. Although it is unlikely that all the EVs
will be charged at a single location, centralized HC tells us
the potential ability of the circuit to charge future EVs at a
single location, which may provide guidance for planning big
charging stations.

For all the four distributed charging integration options
except ‘Distributed-Full, Non-uniform’, the circuit STELLA
can meet the forecasted EV demand without any problem
for the three EV adoption scenarios for the four charging

FIGURE 8. Daily peak load profile for Circuit STELLA.

strategies. Even for the assumed 100% EV adoption scenario,
no issue is expected for charging strategy 1, 2 and 3 with each
of the four distributed charging integration options.

The charging integration option of ‘Distributed-At Exist-
ing loads, either Non-uniform or uniform’ seems a reasonable
assumption for future residential households.

It is noted that the HC shown in Table 12 corresponds to the
peak load of the circuit, since the peak EV charging demand
may not coincide with the peak load, Table 12 provides a
conservative estimate of HC. In other words, the HC of the
circuit would be larger than the values shown in Table 12 in
cases where the peak load of the circuit and EV charging
demand peak do not occur at the same time. For Circuit
STELLA, the peak load is in the afternoon, which is close to
the EV charging demand peak time of charging strategy 1,
but is distant from the EV charging demand peak time of
charging strategy 2, 3 and 4 that is in the morning or around
the midnight.

In cases where the HC of the circuit at each load level of the
daily profile shown in Fig. 8 is desired or needed, the function
1Time-Series Hosting Capacity (TSHC)’ of DRIVE tool can
be used to achieve this. Fig. 16 depicts the hosting capacity for
STELLA using the daily peak load profile. It is seen that the
HC is minimum at the peak load and is larger at other times
and can be quite high at light load conditions. The thermal
constraint is the limiting factor for EV adoption for circuit
STELLA.

Fig. 17 depicts the TSHC with ‘Distributed-At Existing
loads, Non-uniform’ and the four EV charging profiles under
high EV adoption scenario in 2050. Fig. 18 depicts the 100%
EV adoption scenario in 2050. It clearly indicates that circuit
STELLAhas no problem in hosting future EVs under the high
EV adoption scenario, but has issues for 100% EV adoption
scenario under charging strategy 4.

The thermal hosting capacity decreases when the ambient
temperature of the feeders increases. The derated thermal HC
(TLHC) and four charging profiles are shown in Fig. 19 and
Fig. 20 for high EV adoption and 100% adoption in 2050.
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TABLE 10. Circuit STELLA peak EV demand prediction.

TABLE 11. Circuit E—MURRAY peak EV demand prediction.

TABLE 12. Summary of hosting capacity results for circuit STELLA.

FIGURE 9. Daily peak load profile for Circuit E—MURRAY.

Here, ‘CS’ represents Charging Strategy. The ‘TLHC-90%’
is the TLHC calculated assuming that the circuit thermal
capacity is 90% of the originally rated capacity of the circuit.
The original rating is specified at 77 Fahrenheit ambient
temperature and 2 ft/second wind speed. The 50% rating
is usually used in utilities for 100 Fahrenheit ambient tem-
perature and 0 ft/second wind speed. The TLHC-100% is
obtained by DRIVE tool using the originally rated circuit
model. Derated TLHC is obtained as follows: the TLHC-
100% + Load is regarded as the original thermal capacity of
the circuit, which is multiplied by the derating factor say 90%
to yield the derated thermal capacity. The derated thermal
capacity minus the load gives the TLHC-90%.

FIGURE 10. Plot of Circuit STELLA.

In high EV adoption scenario, a thermal capacity derating
of 70% would cause thermal problems for charging strategy
4. In 100% adoption scenario, a derating of 70%would cause
thermal problems for charging strategy 1 in addition to CS4.

It is recognized that the TSHC results obtained here utilize
the daily peak load in 2021. Future load increase may include
not only EVs but also other non-EV loads. The non-EV
load will certainly affect the ability of a power system to
host EVs. Therefore, the forecast for non-EV loads for the
future, if available, should be considered in the process of
EV adoption analysis.
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FIGURE 11. Centralized HC analysis results for STELLA.

FIGURE 12. Distributed HC analysis results for STELLA-Full, Non-uniform.

FIGURE 13. Distributed HC analysis results for STELLA – Full, Uniform.

B. ANALYSIS FOR E—MURRAY CIRCUIT MODEL
Using the OpenDSS software tool, Circuit E—MURRAY is
visually plotted in Fig. 21, where the thickness of the line is
proportional to the real power on the line.

The DRIVE hosting capacity analysis is presented as
follows. Fig. 22 shows the centralized HC analysis results
for circuit E—MURRAY. It is seen that the maximum HC
capacity is 1.7 MW, 1.0 MW and 3.0 MW without causing
feeder thermal, primary undervoltage and voltage deviation
problems, respectively. The locations of the circuit to place

FIGURE 14. Distributed HC analysis results for STELLA – At Existing
Loads, Non-Uniform.

FIGURE 15. Distributed HC analysis results for STELLA – At Existing
Loads, Uniform.

FIGURE 16. TSHC for STELLA, distributed-at existing loads, Non-uniform.

load, which may cause potential problems, are downstream
circuits that are further away from the feederhead.

Choosing option ‘Full’ for distributed resource loca-
tion and ‘Non-uniform’ for distributed resource distribution,
Fig. 23 depicts the distributed HC analysis results for cir-
cuit E—MURRAY. The results indicate that the feeder can
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FIGURE 17. STELLA TSHC and EV charging profiles under the four
charging strategies, High EV adoption scenario in 2050.

FIGURE 18. STELLA TSHC and EV charging profiles under the four
charging strategies, 100% EV adoption scenario in 2050.

host 4.5 MW additional load without causing undervoltage
problems, 5.7 MW additional load without causing thermal
problems, and 15.0 MW additional load without causing
voltage deviation problems.

Choosing option ‘Full’ for distributed resource loca-
tion and ‘Uniform’ for distributed resource distribution,
Fig. 24 depicts the distributed HC analysis results for cir-
cuit E—MURRAY. The results indicate that the feeder can
host 6.7 MW additional load without causing undervoltage
problems, 11.5 MW additional load without causing thermal
problems, and 15.0 MW additional load without causing
voltage deviation problems.

Choosing option ‘At Existing Loads’ for distributed
resource location and ‘Non-Uniform’ for distributed resource
distribution, Fig. 25 depicts the distributed HC anal-
ysis results for circuit E—MURRAY. In this option,
the future load is allocated at existing loads and the
amount of allocation is proportional to the existing loads.
The results indicate that the feeder can host 5.3 MW

FIGURE 19. STELLA UVHC, TLHC with various derating percentages, and
EV charging profiles, High EV adoption scenario in 2050.

FIGURE 20. STELLA UVHC, TLHC with different derating percentages, and
EV charging profiles, 100% EV adoption scenario in 2050.

FIGURE 21. Plot of Circuit E—MURRAY.

additional load without causing undervoltage problems,
6.9 MW additional load without causing thermal problems,
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FIGURE 22. Centralized HC analysis results for E—MURRAY.

FIGURE 23. Distributed HC analysis results for E—MURRAY-Full,
Non-uniform.

and 15.0 MW additional load without causing voltage devia-
tion problems.

Choosing option ‘At Existing Loads’ for distributed
resource location and ‘Uniform’ for distributed resource dis-
tribution, Fig. 26 depicts the distributed HC analysis results
for circuit STELLA. In this option, the future load is allocated
at existing loads and the amount of allocation is uniform
across the existing loads. The results indicate that the feeder
can host 5.2 MW additional load without causing undervolt-
age problems, 7.2 MW additional load without causing ther-
mal problems, and 15.0 MW additional load without causing
voltage deviation problems.

Table 13 provides a summary of the hosting capacity
results for circuit E—MURRAY. The 2nd, 3rd and 4th columns
indicate the hosting capacity without causing problems for
undervoltage, thermal overloading and voltage deviation cri-
terion, respectively.

The ability of circuit E—MURRAY to meet future EV
charging needs is analyzed as follows. With centralized
charging integration, referring to the EV demand predic-
tion as shown in Table 9, it can be seen that the circuit
E—MURRAY has no problem to meet the forecasted EV
demand from now to the year of 2040 for EV charging
strategy 1 and 3, from now to 2050 for charging strategy 2,
and from now to about 2030 for charging strategy 4.

FIGURE 24. Distributed HC analysis results for E—MURRAY-Full, Uniform.

FIGURE 25. Distributed HC analysis results for E—MURRAY-At Existing
Loads, Non-Uniform.

For distributed charging integration, the circuit
E—MURRAY can meet the forecasted EV demand without
any problem for the three EV adoption scenarios under the
four charging strategies, except the option ‘Distributed-Full,
Non-uniform’ has a HC of 4.5 MW due to undervoltage
issue which is slightly lower than 4.6M in high EV adoption
scenariowith charging strategy 4. Even for the assumed 100%
EV adoption scenario, no issue is expected from now to
2050 for charging strategies 1 to 3.

A time-series hosting capacity analysis is performed using
the option ‘Distributed-At Existing loads, Non-uniform’, and
the results are shown in Fig. 27. It is evinced that the HC is
minimum at the peak load and is much higher at light load
conditions. It is also shown that the undervoltage HC is the
constraining HC.

Fig. 28 depicts the TSHC and the four EV charging profiles
under high EV adoption scenario in 2050. Fig. 29 depicts the
100% EV adoption scenario in 2050. It clearly indicates that
circuit E—MURRAY has no problem in hosting future EVs
under high EV adoption scenario but has issues for 100% EV
adoption scenario under charging strategy 4.

The thermal hosting capacity decreases when the ambient
temperature of the feeders increases. The UVHC, derated
thermal HC (TLHC) and four charging profiles are shown in
Fig. 30 and Fig. 31 for high EV adoption and 100% adoption
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TABLE 13. Summary of hosting capacity results for circuit E—MURRAY.

FIGURE 26. Distributed HC analysis results for E—MURRAY-At Existing
Loads, Uniform.

in 2050. In Fig. 30 and Fig. 31, ‘CS’ represents Charging
Strategy. In high EV adoption scenario, a thermal capacity
derating of 70% would cause thermal problems for charging
strategy 4. In 100% adoption scenario, a derating of 60%
would cause thermal problems for charging strategy 1 and 3
in addition to CS4.

As discussed for the circuit STELLA, it should be pointed
out here that the forecast for non-EV loads for the future,
if available, should be considered in the process of EV adop-
tion analysis.

IV. IMPACTS OF EV CHARING ON THE RELIABILITY OF
DISTRIBUTION TRANSFORMERS
In this section, the impact of EV intensive charging on the
lifetime degradation of distribution transformers has been
investigated. The HotSpotter software tool based on a prob-
abilistic method is employed to assess the system-wide
impact of EV charging on residential distribution transform-
ers. In addition, the authors also studied the overload and
aging impact of EV charging by conducting finite element
analysis of a distribution transformer.

A. HotSpotter ANALYSIS
HotSpotter is a software tool developed by EPRI that utilities
can use to pinpoint the most vulnerable customer service
transformers, which helps the utilities prioritize and manage
the EV charging to ensure the grid reliability. By analyzing
EV adoption rates, charging time and rates, and other EV
data, HotSpotter simulates load impacts on a transformer
based on its nameplate rating, peak load, the number of
customers it serves, and other characteristics [28].

Here, the input of the HotSpotter tool includes the trans-
former data as well as the parameters and assumptions of
the EV charging. HotSpotter carries out the computation for
2025 and 2035, targeting at both low and high EV penetration
as well asmanaged and unmanaged scenarios. Here, managed
charging refers to the restricted charging for certain hours,
and unmanaged charging refers to no restrictions for charging
hours. Fig. 32 shows the flowchart of the HotSpotter analysis.

1) HotSpotter DATA INPUT PREPARATION
The distribution transformer asset data and raw load data
are collected from the WKRECC in excel sheet format for
the year 2021. Then the authors developed MATLAB scripts
to extract the transformer data, including transformer rating,
number of consumers and consumer type, and daily peak load
for HotSpotter analysis. The consumer type includes residen-
tial, small commercial, large commercial, and large power.
When performing HotSpotter analysis, only residential-type
consumers are considered.

2) ASSET DATA OVERVIEW
The total number of distribution transformers provided by
WKRECC is 1,659, while the number of the analyzed distri-
bution transformerswith compatible data is 1,153. Depending
on the projected year (2025 and 2035), penetration level,
and management, there are 8 scenarios investigated in this
task, as shown in Table 14. The percentage of the distribu-
tion transformers with different power ratings is shown in
Fig. 33(a), and the average number of residents per asset is
shown in Fig. 33(b). As can be seen, the transformers with
the power ratings of 15 kVA, 25 kVA, and 50 kVA, are the
most utilized transformers with a total percentage of 94.9%.
Also, the general trend is that, the larger the transformer
power ratings, the more residents per asset. For instance, the
100 kVA transformer has 13 residents per asset, much higher
than other transformers with lower power ratings.

3) EV AND CHARGING ASSUMPTIONS
Based on four counties served by WKRECC, namely, Cal-
loway, Carlisle, Graves, and Marshall, the projected EV
adoption levels for 2025 and 2035 are assumed, as shown
in Table 15. Also, the EV fleet size (i.e., the number of
vehicles in service) and the EVs per household probabilities
are assumed, as shown in Table 16 and Table 17.

The total projected EV penetration over the next 30 years
(up to 2050) is shown in Fig. 34, and the EV charger power
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FIGURE 27. TSHC for E—MURRAY, Distributed-At Existing loads,
Non-uniform.

FIGURE 28. E—MURRAY TSHC and EV charging profiles under the four
charging strategies, High EV adoption scenario in 2050.

FIGURE 29. E—MURRAY TSHC and EV charging profiles under the four
charging strategies, 100% EV adoption scenario in 2050.

ratings along with the EV percentages in zone is shown in
Table 18. As can be seen, 7.2 kW battery EVs (BEVs) has the

FIGURE 30. E—MURRAY UVHC, TLHC under various derating percentages,
and EV charging profiles, High EV adoption scenario in 2050.

FIGURE 31. E—MURRAY UVHC, TLHC under various derating percentages,
and EV charging profiles, 100% EV adoption scenario in 2050.

FIGURE 32. Flowchart of the HotSpotter analysis.

TABLE 14. Various scenarios to be analyzed by the HotSpotter tool.

highest percentage (i.e., 36%) of EVs in zone. Additionally,
the customer charging behavior is modeled as a joint prob-
ability of miles driven and home arrival time, as shown in
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FIGURE 33. Transformer data vs. nameplate ratings (a) percentage of
transformers (b) average residents per asset.

FIGURE 34. Total projected EV penetration over the next 30 year.

TABLE 15. Assumption of the EV penetration level.

TABLE 16. EV fleet size (number of vehicles in service).

Fig. 35. This model assumes charging only once per day and
vehicles fully charged each day. Also, the managed charging
refers to no charging between 1:00 PM and 6:00 PM each day
and restart charging at 6:00 PM.

4) ASSET OVERLOAD OUTPUT IN HotSpotter
The 90th percentile of the number of transformer overload
by hours under the managed and unmanaged EV charging

TABLE 17. EVs per household probabilities.

TABLE 18. Various EV charger power ratings and the percentage of EVs in
zone.

FIGURE 35. Customers’ charging probability function vs. miles driven and
home arrival time.

scenarios are simulated and shown in Fig. 36, for both
2025 and 2035 projected low and high EV penetration levels.
As can be seen that, with the managed EV charging, the
number of overloads is significantly reduced during the 13th

and 18th hours, but is drastically increased in the 19th and 20th

hours following the end of the time-of-use (TOU) scheme.
Fig. 37 shows the 90th percentile of projected overloads
by transformer ratings under unmanaged and managed EV
charging scenarios for 2025 and 2035. As is shown, the
largest number of overloads occur for 15 kVA transformers,
followed by 10 kVA and then 25 kVA ones.

As pointed out, a high number of overloads occurred
immediately after the managed time (13 PM-18 PM) is over.
This is due to customers immediately charging after this time
period. This indicates that it is essential to design appropriate
TOU schemes in order to incentivize consumers to spread
the EV charging as much as possible to avoid transformer
overloads. Options to avoid such overloading include: (1)
actively managed charging to fill the entire time period that
the car is parked; (2) programming charging to stop at the
end of the charge window- thus shifting charging later; (3)
have multiple TOU options so that the drivers spread across
multiple charge start times.
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TABLE 19. Various EV charger power ratings and the percentage of EVs in zone.

FIGURE 36. Customersćharging probability function vs. miles driven and
home arrival time.

FIGURE 37. The 90th percentile of projected overloads by transformer
ratings under unmanaged and managed EV charging scenarios for
2025 and 2035.

It is seen from Fig. 37 (b) that 56.7% of 10 kVA trans-
formers, 12.2% of 15 kVA transformers, and 3.1% of 25 kVA
transformers have overloading for 2035 High scenario for
unmanaged case. For managed case, 100% 7 kVA transform-
ers, 43.3% of 10 kVA transformers, 10.9% of 15 kVA trans-
formers, and 2.9% of 25 kVA transformers have overloading
for 2035 High scenario.

5) ALTERNATIVE TOU ASSUMPTIONS AND OUTPUT
OVERLOAD
Impact of EV charging on transformers with alternative TOU
assumptions was also investigated. As shown in Table 19,
two alternative TOU assumptions were made, one is charging
distributed proportionally during non-controlled hours, and
another is 80% at night (12 AM-6 PM) and 20% for daytime

FIGURE 38. The 90th percentile of overloads by hours under unmanaged
and managed charging scenarios.

FIGURE 39. The 90th percentile of overloads be transformer power
ratings under unmanaged and managed charging scenarios.

FIGURE 40. The 90th percentile of overloads versus transformer power
ratings and charging management strategies, at various transformer
power ratings (the left figure), and With various charging management
strategies (the right figure).

hours (6 AM-6 PM). Accordingly, the hourly overloads under
the four various scenarios (see Table 19) is shown in Fig. 38.
It shows that the number of overloads is significantly reduced
with the two alternative TOU assumptions. Likewise, the
number of overloads at various transformer power ratings
under unmanaged and managed charging scenarios is shown
in Fig. 39. Again, the 15 kVA power transformers suffer
from the most overloading. The summed number of total
overloads over all TOU scenarios is shown in Fig. 40 (left),
and the number of overloads at various charging management
strategies is shown in Fig. 40 (right).

B. AGING ANALYSIS OF DISTRIBUTION TRANSFORMER
DUE TO OVERLOAD
In addition to the aforementioned analysis based on
the HotSpotter probabilistic assessment method, lifetime
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FIGURE 41. Topology and dimensions of the distribution transformer
under investigation.

derating of a distribution transformer is also investigated as
an examplary distribution asset at various overloading condi-
tions due to EV charging. Specifically, when a transformer
is overloaded, its power losses increase and the hot-spot
temperature (HST) in the transformer rises with respect to
the nominal condition. Such increased HST is the main
cause of winding insulation degradation which results in a
reduction of the lifetime of the transformers, and eventually
may lead to systematic failures. A 100 kVA distribution
transformer is considered as the case study in this section.
Multi-physics analysis is carried out to show the impact of
overload on transformer temperature distribution and lifetime
degradation. Specifically, AnsysMaxwell software is utilized
to extract the electromagnetic losses of the transformer i.e.,
winding ohmic and core losses based on time-stepping finite
element analysis (FEA). After that, Ansys Thermal module is
leveraged to calculate the temperature distribution and HST
of the transformer. Finally, lifetime estimation for different
loading conditions of the transformer is carried out to char-
acterize the transformer lifetime reduction.

1) ELECTROMAGNETIC ANALYSIS
The geometry of the distribution transformer under investi-
gation along with the dimensions is shown in Fig. 41. the
laminated magnetic core is used to reduce the eddy current
losses and low-voltage (LV) coils are placed inside the high-
voltage (HV) coils to minimize the leakage flux and copper
cost. Table 20 shows the main parameters for the distribution
transformer [29]. Time-stepping FEA technique is utilized to
determine the performance characteristics of the transformer.
Fig. 42 shows the FEA mesh of the 3D model which consists
of 532,678 elements.

Table 21 summarizes the loss components in transformer
parts under different loading conditions. The implementation

TABLE 20. Main parameters of the distribution transformer.

FIGURE 42. Finite element meshes of the distribution transformer model.

TABLE 21. Loss components in different loading scenarios.

of overload operation is chosen based on the IEEE Standard
C57.91 [30]. These losses are used as the input for the sub-
sequent thermal analysis and act as the heat sources in the
thermal modeling.

2) THERMAL ANALYSIS
The cooling type of the transformer is oil natural air natural
(ONAN), which circulates the oil and air naturally within the
transformer tank based on natural convection phenomenon.
Volumetric loss densities provided in Table 21 are the heat
sources for the thermal simulation. These loss components
heat up the active parts in the transformer, specifically, the
magnetic core, high-voltage and low-voltage winding. Fig. 43
shows the temperature distribution under the condition of
40 ◦ C ambient temperature in the whole geometry of the
transformer. As shown in Fig. 43, the middle leg of the core
has higher temperature compared to other sections in the core,
and the temperature along the height of the model increases
in the coils. When low-temperature oil passes through the
conductors, it is heated up and its cooling capability is
reduced. As a result, HST occurs near the top where the oil
exits. At last, the high-temperature oil dissipates its heat to
the tank and radiators and eventually is cooled down again.
The cooled oil then moves down in the tank due to higher
density and the cooling cycle continues. Another observation
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FIGURE 43. Temperature distribution of the transformer a) whole
geometry, and b) magnetic core, c) HV windings and d) LV windings at
100% loading.

FIGURE 44. Temperature distribution of the transformer a) overall
geometry, and b) magnetic core, c) HV winding and d) LV winding at 150%
loading.
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TABLE 22. Transformer HST under different loading conditions.

TABLE 23. Corresponding lifetime reduction in different loading
conditions.

is the higher temperature of LV winding in comparison with
the HV windings since the loss density in LV windings is
higher than that of the HV windings. Fig. 44 also shows the
temperature distribution in different parts of the transformer
under 150% loading condition in which the HST is increased
significantly in both LV and HV windings due to higher loss
density. Table 22 summarizes the HST in different parts of
the transformer for the considered loading conditions.

3) TRANSFORMER LIFETIME ESTIMATION
The existing IEEE standards such as C57.91 [30] recom-
mends that the relation of insulation deterioration to time and
temperature follows an adaptation of the Arrhenius model,
as follows [30]:

PUL = A× e
B

Thst+273 (1)

where PUL is the Per Unit Life, Thst is the winding hottest
spot temperature and A and B are the constants.

Also, there is another definition for lifetime which is
known by the aging acceleration factor, as follows [31]:

FAA = e
15000
383 −

15000
Thst+273 (2)

The corresponding lifetime estimation for loading condi-
tions is provided in Table 23. It is evident that the rate of lost
life is increased exponentially by the increase in the HST.
For instance, the aging acceleration factor in 150% loading
is 18.65 which means that the transformer will age 18 times
faster with respect to the nominal load. It is worth mentioning
that these numbers are obtained assuming that the transformer
is under persistent overload condition. Although this is not
the case in real-world applications, the values in Table 23 are
instructive benchmarks to understand the effects of overload
on lifetime degradation of the transformers.

C. TRANSFORMER SIZING RECOMMENDATION
From Section IV-A, the WKRECC transformers statistics is
presented in Table 24. It is evinced from the HotSpotter
analysis results shown in Section IV-A that most of the
overloading is likely to occur to transformers with ratings
of 7 kVA, 10 kVA, 15 kVA and 25 kVA. Considering the
potential prevalence of future EV charging rate of 10-20 kW

TABLE 24. WKRECC transformers statistics.

per EV, to avoid overloading for even charging a single EV,
it may be advisable to simply upgrade all transformers of 5,
7 and 10 kVA to a larger rating. It may not be economically
feasible to upgrade all 15 kVA and 25 kVA since they account
for more than 80% of the assets. Thus, it may be desirable
to use charging controllers to limit the EV charging rate for
consumers served by these transformers.

In addition, to avoid transformer overloading for these
servingmultiple consumers, appropriate time-of-use schemes
to incentivize consumers to charge their EVs at different times
and spread their EV charging as much as possible would be
helpful.

In the literature, many EV charging industry protocols
and standards are reported to discuss safety, reliability, and
interoperability issues. In this study, different EV charging
standards and protocols are documented in Table 25 [32],
[33], [34], [35], [36], [37], [38], [39], [40].

V. FUTURE RESEARCH
A. EV CHARGING STRATEGY RESEARCH
EV charging strategy plays an important role in determin-
ing the total effective EV power demand. Future research
is needed to identify smart charging strategies and provide
charging pricing programs, credits and incentives, etc.

B. CONSIDERATION OF EV DISCHARGING (V2G)
EVs could discharge energy into the power grid in
addition to charging from the power grid. In a smart charg-
ing/discharging management system, a mechanism for coor-
dination between EV charging and discharging is provided,
which reduces EV integration impact on the system and
enhances utilization of EV’s ability to provide ancillary ser-
vices to the grid. Future research could look into poten-
tial architectures, functional requirements, and optimization
algorithms for implementing novel and practical smart charg-
ing/discharging management system.

C. HIGH-RESILIENCY [CHARGER + PV + ENERGY
STORAGE] MICROGRID
Establishing amicrogrid by integrating charging station, solar
power generation, and energy storage (battery, hydrogen,
etc.), might be a secure and sustainable approach for both
utility grid and vehicle charging, especially under extreme
weather conditions or during natural disasters. Such a micro-
grid system not only can provide ancillary services to the
grid stability such as reactive power, voltage and frequency
support, but also provides a secure and reliable charging
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TABLE 25. Summary of different EV charging standards and protocols [32], [33], [34], [35], [36], [37], [38], [39], [40].

infrastructure for EVs. Fundamental systematic simula-
tion models, smart controls, and grid stability analysis,
as well as the synergistic design optimization of a general
‘charger+PV+energy storage’ microgrid system might be
necessary for utilities.

D. TRANSFORMER LIFETIME MODELING AND
PREDICTION
With an increasing number of EVs deployed into the distribu-
tion network, the charging and discharging interaction with
the distribution grid may inevitably pose overload stress on
the distribution transformers over the long term, especially
from the fast charging of megawatt-scale heavy-duty EVs
such as Class-7 and Class-8 trucks. Frequent inrush currents
from charging/discharging events may cause uneven temper-
ature distribution in the transformer windings, resulting in
winding hotspots, dielectric insulation degradation, or even
intensive grid blackout. High-fidelity online predictive relia-
bility models need to be developed and integrated for utility
stakeholders to predict and monitor the health condition of
the distribution transformers based on the deployed EVs and
real-time mission profiles. The outcome of the transformer
lifetime prediction can be integrated into the control systems
(e.g., SCADA) of the charging stations.

VI. CONCLUSION
In this study, DRIVE software tool was used to evaluate
the capacity of WKRECC circuits to meet future EV charg-
ing needs under assumed EV adoption scenarios. Possible
overloading (i.e., thermal congestion) on the circuit and
undervoltage violation are examined. Here, the impact of the
intensive charging of EVs on distribution transformers has
been investigated. The investigation based on the HotSpotter
software concludes that: (1) The TOU structure significantly
affects the transformer overloading in the system. (2) With
managed EV charging strategies, the number of transformer
overloading decreases significantly. (3) Distributed managed
charging spreads the charging and prevents the high number

of overloads immediately after TOU hours. (4) Increased
overloads observed at night by shifting 80% of demand from
the evening (6 PM to 12 AM) to night charging.

Also, in this paper, the impact of EV charging overload
on a 100 kVA distribution transformer was investigated.
Multi-physics analysis was performed in Ansys Maxwell
and Thermal module to acquire the electromagnetic losses
and temperature distribution of the transformer, respectively.
It was found that losses have increased with the increase in
the loading of the transformer. Consequently, HST has also
increased due to overload conditions. The lifetime estima-
tion for different loading conditions of the transformer was
conducted. Since the lifetime estimation is based on HST,
an increase in HST due to overloading caused considerable
lifetime degradation, which eventually leads to accelerated
aging of the transformer.
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