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ABSTRACT Edge computing is becoming increasingly popular in artificial intelligence (AI) application
development due to the benefits of local execution. One widely used approach to overcome hardware
limitations in edge computing is heterogeneous computing, which combines a general-purpose processor
with a domain-specific AI processor. However, this approach can be inefficient due to the communication
overhead resulting from the complex communication protocol. To avoid communication overhead, the
concept of an application-specific instruction set processor based on customizable instruction set architecture
(ISA) has emerged. By integrating the AI processor into the processor core, on-chip communication replaces
the complex communication protocol. Further, custom instruction set extension (ISE) reduces the number of
instructions needed to execute AI applications. In this paper, we propose a uniprocessor system architecture
for lightweight AI systems. First, we define the custom ISE to integrate theAI processor andGPP into a single
processor, minimizing communication overhead. Next, we designed the processor based on the integrated
core architecture, including the base core and the AI core, and implemented the processor on an FPGA.
Finally, we evaluated the proposed architecture through simulation and implementation of the processor.
The results show that the designed processor consumed 6.62% more lookup tables and 74% fewer flip-flops
while achieving up to 193.88 times enhanced throughput performance and 52.75 times the energy efficiency
compared to the previous system.

INDEX TERMS AI processor, application specific instruction processor, custom instruction set extension,
edge computing, embedded systems, processor core, reduced instruction set computer.

I. INTRODUCTION
Nowadays, ongoing advances in semiconductor process
technology encourage a variety of digital systems to embed
more dense circuits by reducing the resources, e.g., power
consumption and area usage, while improving the time-
related performance of basic elements for digital chip imple-
mentation. This trend emboldens recent attempts to adopt
complex algorithms to a variety of applications. Artificial
intelligence (AI) algorithms, e.g., machine learning (ML) and
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deep neural network (DNN), are complex algorithms that are
being actively applied to these applications.

Applications based on lightweight embedded systems are
one of the fields where AI algorithms are actively applied.
Edge computing has become one of the major topics in
the development of AI applications due to the benefits
of replacing the cloud execution with the local execution,
such as reduced network bandwidth usage, enhanced privacy
protection, and minimized storage waste [1], [2]. Many
ongoing studies introduce several methods for distributing the
workloads of AI algorithms to lightweight systems [3], [4],
[5]. One of the main challenges is overcoming the hardware

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 49409

https://orcid.org/0000-0001-9608-4453
https://orcid.org/0000-0003-3817-4383
https://orcid.org/0000-0002-9602-2663


H. W. Oh, S. E. Lee: Design of Optimized RISC Processor for Edge AI

constraints of lightweight systems, such as low performance
and area limitations.

Heterogeneous computing is one of the methods to
overcome these limitations. The general-purpose processor
(GPP) is essential to most digital systems, but executing
most parts of the AI algorithms with only the single GPP is
difficult because most GPPs are optimized to perform various
types of simple operations sequentially, while AI algorithms
are composed of numerous limited types of operations [6].
Therefore, not only the lightweight systems but also the cloud
computing-based high-performance systems that target the
AI application adopt heterogeneous computing with GPP
and hardware unit to accelerate arithmetic operations through
parallelization [7], [8].

The main difference in hardware acceleration between
these systems is the diversity of executable AI algorithms.
The high-performance systems include domain-general hard-
ware units such as general-purpose graphics processing unit
(GPGPU), and tensor processing unit (TPU), in general [7].
In contrast, most embedded systems usually include hardware
units for specific AI algorithms because of the resource
constraints involved in lightweight systems [9], [10]. As edge
AI systems generally target domain-specific applications,
trading off versatility for resource utilization, e.g., power
consumption and area usage, is an effective strategy for the
systems [11]. In fact, many studies have been conducted to
design modular AI processors for heterogeneous computing-
based edge AI applications [7], [8], [9].

Nevertheless, AI systems composed of modularized het-
erogeneous processors still involve drawbacks stem from
certain characteristics. Communication protocols used for
handshaking between devices, such as universal asyn-
chronous receiver/transmitter (UART), serial peripheral inter-
face (SPI), and peripheral component interconnect express
(PCIe), are one of the major characteristics that generate
the inefficiencies in the system. As the data rate of these
protocols is much slower than the parallel communication
inside the processors running on each operating frequency,
significant overheads are required for handshaking between
both processors.

The increased workload allocation for communication
results in degraded system performance. Moreover, synchro-
nizing the processors requires additional controller units for
both for communication in compliance with the protocol.
These controllers increase the area of each processor,
resulting in higher energy consumption for the entire system.
As these drawbacks, e.g., throughput degradation and electric
energy dissipation, are critical in lightweight systems [12],
minimizing the inefficiency generated by the communication
protocol is necessary.

Application-specific instruction set processor (ASIP)
based on customizable instruction set architecture (ISA)
for GPP is one of the concepts suggested to avoid the
inefficiencies caused by the communication overheads in
modularized architecture. Fig. 1 shows the system archi-
tectures of both heterogeneous computing systems and

uniprocessor systems based on ASIP. By integrating the AI
core into the core of the GPP, the roles of either the AI
processor and the GPP, which are executed separately on
previous heterogeneous computing systems, can be executed
by only a single processor. This characteristic reduces the
communication overheads and eliminates the necessity for
communication controllers as the protocol is replaced with
the on-chip communication running synchronously on the
operating frequency of the core.

The ASIP concept shares the view with the concept
based on bus topology [13], [14] that minimizes the
overheads by simplifying and boosting communication
performance through chip-level integration. Despite this
similarity, the ASIP concept has advantages in resource
utilization derived from the ISE. Through custom ISE,
the number of instructions to execute AI applications
becomes lower because a number of memory load/store
instructions, which deliver the orders to the AI accelerator
linked to the system bus, is converted to a small number
of custom instructions. This characteristic reduces the
memory usage for storing instruction codes and increases
the throughput of the system [15], [16]. This advantage
made the ASIP concept a reasonable choice despite the
difficulty of the design process originating from the core
modification.

RISC-V and MIPS are suitable ISAs for realizing the
ASIP concept. Both ISAs provide productivity in the custom
ISE definition process through the guidelines in the ISA
documentation [17], [18]. Indeed, several studies applied the
ASIP concept with one of these ISAs for systems targeting
AI applications [19], [20], [21], [22]. However, most of those
studies concentrate on applying this concept to complex
AI algorithms such as deep learning and convolutional
neural networks (CNN) [23], [24], [25], [26], [27], [28].
These heavy algorithms consume huge resources, making
them inappropriate for lightweight systems due to hardware
limitations [29]. For this reason, choosing an appropriate
algorithm that consumes affordable resources is necessary to
apply the concept to lightweight systems.

Another thing to consider is an additional workload
for rewriting the source codes of the application. Custom
instructions are not created by compiling the source codes
written in general syntaxes of compilers. Hence, software
developers need to mutate the legacy source codes to the
new inline assembly codes to operate the AI core. Defining
the custom ISE similar to the ISA of previous AI processors
is necessary because conserving the previous mechanism
lowers the additional workloads for rewriting the source
codes.

In this paper, we propose a uniprocessor system
architecture for lightweight AI systems. To minimize the
communication overhead between the AI processor and the
general-purpose processor, we selected the AI processor
suitable for lightweight embedded systems and defined the
custom ISE to design the architecture that integrates the GPP
and the AI processor into a single processor.
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FIGURE 1. (a) The heterogeneous system architecture. (b) The ASIP-based system architecture.

The ISE is compatible with MIPS ISA, which includes
reserved coprocessor definitions for the design-specific ISE.
Further, we designed the integrated core architecture of
the processor that executes the ISE. The core architecture
includes the processor core and the AI core, which are
operated by the synchronous clock.

According to this architecture, complex communication
is replaced with simple data transferring through commu-
nication based on multiple internal wires and buffers in
only a few clock periods. To verify the system and the
core architecture, we designed the processor to a register-
transfer level (RTL) written in Verilog HDL and build up
the verification environment with a field-programmable gate
array (FPGA) implementation.

Next, we developed the software library containing
inline assembly codes that perform the same operation
as the legacy library functions, which are developed for
the previous modular AI processor. Finally, we evaluated
the proposed architecture and the designed processor by
executing sample applications that are already verified for
the heterogeneous computing system with the previous AI
processor.

The main contributions of this work are listed as follows:
• Customized ISE to minimize the overhead caused by the
complex communication protocol in the modularized AI
system.

• TheAI coprocessor architecture andAI core architecture
optimized for 32-bit MIPS core.

• The core architecture for GPP with integrated AI
coprocessor compatible with customized ISE.

• The unified processor architecture designed to RTL.
• The software library to control the AI coprocessor.
• Evaluation of the processor architecture by realizing the
designed processor to a field-programmable gate array
(FPGA) implementation.

In order to describe our work clearly, the rest of the
paper is categorized as follows. Section II reviews the related
works that motivated our research. Section III explains the
base architecture of the target modular AI processor, which
is used to extract and optimize the AI core for the AI
coprocessor. Section IV presents the custom ISE definitions
and operations, which are based on the operation of the AI
processor. Section V presents the integrated core architecture
with the detailed operation of custom ISE, as well as unified
processor architecture with integrated core architecture. Sec-
tion VI describes the verification environment and evaluates
the proposed architecture. Section VII concludes our research
by summarizing our work and outlining the future endeavors
to extend this work.

II. RELATED WORKS
A. FPGA-BASED LIGHTWEIGHT CNN ACCELERATORS
Many studies have been conducted to apply edge comput-
ing for AI, using FPGA-based heterogeneous computing
methods. Kim et al. [30] proposed hardware acceleration
for lightweight systems based on SqueezeNet [31], which
is a lightweight CNN model for embedded systems. The
authors transformed 32-bit floating-point arithmetic to 8-bit
integer arithmetic to reduce the intensity of SqueezeNet and
designed the parallelized architecture. Xia et al. [32] propose
SparkNet, which utilizes depthwise separable convolution
to reduce the intensity of the CNN. To optimize the
CNN for the embedded systems, the authors of this work
quantized the parameters to 16-bit integers and designed
the accelerator with pipelined architecture, applying optimal
multilevel parallelism. Despite the astonishing performance
of the CNN-based heterogeneous accelerators proposed in
these studies, the baseline intensity and numerous parameters
of multi-layered neural networks still make challenging to
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adopt these works on ultra-lightweight embedded systems
due to power consumption, energy dissipation, and area usage
originating from calculation logics and external memory.

B. LIGHTWEIGHT ML ACCELERATORS
As the CNNs are not suitable for resource-limited ultra-
lightweight systems, lightweight ML accelerators and pro-
cessors have been designed and introduced. General Vision
introduces a neuron-inspired pattern recognition chip based
on k-nearest neighbor (k-NN) algorithm, the CM1K, which
is an application-specific integrated circuit (ASIC) [33].
Abeysekara et al., and Suri et al. [34], [35] developed
heterogeneous systems for AI applications with lightweight
GPP and the CM1K. These works overcome the computing
performance limitations of the lightweight GPP but still
have drawbacks related to energy dissipation and throughput
degradation originating from the complex communication
protocol.

To address these issues, Intel proposes a processor module
named Curie, including pattern matching engine (PME) that
accelerates the k-NN algorithm and are manipulated by
bus transactions [36]. Although manipulating the accelerator
through a bus topology increases the throughput performance
and reduces the energy dissipation, this method still has
memory access overheads originating from bus transactions.

On the other hand, several studies proposed utilizing burst
access in bus topology to reduce memory access bottlenecks.
Borelli et al. [37] proposed the k-NN accelerator for
heterogeneous computing that uses the scratchpad memory
through direct memory access (DMA) connected to an
advanced extensible interface (AXI) stream port inside
the processing system. Hussain et al. [38] designed the
accelerator using a parallel first-in-first-out (FIFO) module
to reduce memory access bottlenecks by burst transactions.
In both architectures, data transactions between the GPP
and the accelerator are processed through burst read and
write operations, making the data transactions faster. Li et
al. [39] represent the k-NN accelerator accessed by the main
processor through the AXI slave interface and compose
the scratchpad memory as dynamic random access memory
(DRAM). In this study, the accelerator directly controls
the DMA with burst operations to manipulate the DRAM
controller through the AXI stream master port. These studies
significantly reduced the memory access bottlenecks but are
not optimized for ultra-lightweight embedded systems, as
these designs exploit not only the on-chip memory but also
the external memories, resulting in a heavier system in terms
of area usage, power consumption, and energy dissipation and
leading to throughput degradation due to longmemory access
latency.

Different from these works, we concentrate on these terms:

• Designing an optimized architecture to reduce bottle-
necks of the memory access, which is required for AI
computation, by eliminating structural overheads caused
by bus transactions while avoiding the use of external

memories, which make the system heavier, making the
system inappropriate for ultra-lightweight systems.

• Optimizing the internal architecture of the k-NN calcula-
tion logic through parallelism directly reflecting the data
rate and timing constraints of the general-purpose core
inside the processor.

• Provide the reconfigurability that reflects the k-NN
parameters to adopt the AI core by varying constraints
of the lightweight systems.

III. BACKGROUND: INTELLINO AI PROCESSOR
Before designing the processor based on the proposed
system architecture for edge AI applications, we chose the
appropriate AI processor, Intellino, which is designed for
heterogeneous computing systems. Intellino is a reconfig-
urable AI processor based on the k-NN algorithm, which is
a lightweight ML algorithm based on distance calculation
and operates with the SPI, which is a common interface
for high-speed communication in lightweight embedded
systems [40], [41].

Fig. 2 shows the top architecture of the Intellino, which
consists of the SPI slave controller, packet decoder and
encoder, neuron controller, and classifier. As the Intellino is
the slave device, which cannot operate independently, the SPI
slave controller performs communication dependent on the
generated clock, i.e., serial clock (SCK), from the host. After
receiving the one-byte SPI frame, the controller sets the signal
called rx_cplt and delivers the received data to the packet
decoder. The packet decoder converts the received data to the
instruction for the neuron controller by buffering the data and
observing the specific byte sequences based on the protocol
of the Intellino.

The instruction set for the neuron controller is defined as
the operations based on register map definition. Thus, the
single instruction for the neuron controller is represented as
the control signals for the register file, such as register address
(reg_addr), register write enable (reg_we), register write
data (reg_wd), and register read enable (reg_re). The neuron
controller generates the control signals and data signals for
neuron cells and sends the calculation results of the k-NN
algorithm generated by the classifier. The neuron cells and
the classifier make up the k-NN calculator.

Fig. 3 shows the architecture of the k-NN calculation
process. The k-NN algorithm is calculated by searching the
category-distance pair, which has the shortest distance from
the inference data vector, from the pre-trained dataset. The
k-NN calculator of the Intellino has an architecture that
performs the calculation efficiently. At first, the distance
data of each dataset and current inference data vector
are calculated by each neuron cell. Next, The classifier
submodule calculates the categorywith the lowest distance by
comparing the distance data using the lower distance selectors
that are constructed to a multi-level inverted tree structure.
Through this structure, the data pair with the lowest distance
is derived by the selector in the last level.
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FIGURE 2. Top architecture of the Intellino.

FIGURE 3. The architecture of the k-NN execution logic of the Intellino.

Fig. 4 shows the internal architecture of the k-NN
submodules. The main role of the neuron cells is storing
the pre-trained dataset while in the training process and
calculating the distance between the stored vector and the
input data stream while in the inference process. To store the
dataset, each neuron cell has a scratchpad memory (SPM)
for data vector, register for category data, and register for
checking the validity of the stored data in SPM and category.
These storages are sequentially written by one byte when the
data in the neuron cell identifier (NID) register (ncell_idx)
in the neuron controller matches the identifier of the current
neuron cell and the appropriate write enable signal is set by
the neuron controller. Removing the stored data is executed
by clearing the flag set by the neuron controller. Distance
calculation runs similarly to the dataset storing. The distance
accumulator in each neuron cell calculates the distance
between components in the stored vector and inference
vector on the current component index and accumulates the
calculated distance to the previous distance value. As the
inference process proceeds through byte sequence writing,
the total distance calculation occurs simultaneously with
the reception of the last component of the inference vector.
At the time, the classifier takes the data batches, which are
composed of the valid flag, category, and calculated distance,
from the neuron batch and passes the two batches to the
selectors at the first level. The selector chooses the data batch
from two batches. Basically, the selector chooses the batch

containing a lower distance than others when both batches are
valid. In the condition that one of the batches is not valid, the
selector chooses the valid data batch. Through several steps,
the shortest data pair is derived from the multiple batches.

According to the architecture, the accuracy performance of
the k-NN algorithm depends on the count of the dataset and
the length of the data vector. Intellino adopts reconfigurable
architecture with two customized parameters that reflect the
dependents: 2n as the number of neuron cells and 2m as
the length of the data vector. This characteristic provides
flexibility to compose the system with the Intellino for a
variety of lightweight embedded systems. Nevertheless, the
communication overheads are still generated by the SPI-
based protocol as the speed of the k-NN calculator, which
operates by parallel wires synchronous to the internal clock, is
much higher than the speed of the protocol, which operates by
serial communication synchronous to the slow external clock.
Therefore, eliminating the overheads to improve throughput
and minimize the area by embedding the k-NN calculator of
the Intellino into the processor core is an appropriate strategy.
To achieve this in our work, we designed an integrated core
architecture that utilizes the Intellino as the coprocessor,
which is operated by the custom ISE that we defined.

IV. ISE FOR THE AI PROCESSOR
In MIPS ISA, the custom ISE is defined as custom
coprocessor instructions. The MIPS processor can contain up
to four coprocessors according to the MIPS ISA definition.
Except for the coprocessor 0, which is an interrupt and
exception controller, and the coprocessor 1, which is defined
for floating-point extension, the operation of the coprocessor
varies by the designer. Fig. 5 shows the schematized
concept of the custom coprocessor. The coprocessor in MIPS
ISA is the concept represented as the additional core that
executes instruction codes on the custom ISE that shares
the instruction fetch (IF) process and memory read/write
(MEM) process. In common, the custom coprocessor embeds
register files (CPnR) as shown in figure 5. Some coprocessor
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FIGURE 4. (a)The internal architecture of the neuron cell. (b)The internal architecture of the lower distance
selector.

FIGURE 5. The concept of the custom coprocessor in MIPS ISA.

embeds the additional register files to control the coprocessor
(CPnCR). These characteristics provide functional safety on
the compiled binary originating from source codes written in
a high-level language, which specifies the role of each register
in general-purpose registers (GPR), by ensuring functional
independency of both cores. To form data communication
between the MIPS core and the coprocessor, the MIPS ISA
offers guidelines for defining the sample instructions that
perform data transferring between the cores. Additionally, the
MIPS ISA defines the sample instructions to provide direct
communication between the CPnCR and the GPR.

A. CUSTOM ISE
Before defining the custom ISE for the core integration of
Intellino, firstly, we set the identification number of the
custom coprocessor to two. Next, we defined the custom
ISE based on the register map of the original Intellino.
Table 1 shows the instructions of the ISE. The instructions are
descended from the sample move instructions and memory
access instructions which are guided by the MIPS ISA

TABLE 1. List of instructions on Intellino coprocessor.

documentation. The main difference between the sample
instructions and the ISE is the additional functions on write
operations for the register file. The register map of the
coprocessor is the same as the register map of the original
Intellino. Hence, the instructions that contain writing the data
to the CP2R, MTC2, and LWC2 perform certain operations
similar to those of the neuron controller in the original.
By this functionality, the mechanisms of the Intellino are
conserved while the packet decoding and encoding process
in the communication protocol is clearly eliminated.

Table 2 shows the information of the CP2Rs in the CP2
register file. Though almost every operation of the registers is
the same as the original Intellino, some features are changed
for optimization. The main difference between the original
operations and newly defined operations is the default unit of
the data transfers. Though the processor core relies on 32-bit
operation, changing the 8-bit operations to 32-bit operation
increases the throughput to four times faster than the original.

Basically, the training process and inference process of
the Intellino are based on the iterative move operations that
write the vector data to the address of the COMP register
and LCOMP register, the MTC2 and LWC2. Writing the data
to the COMP or LCOMP register in this state redirects to
saving four component data, which is 32-bit, to the SPM in
the neuron cell that has the same identifier as the NID value,
addressed by the COMPID value. Further, every neuron
cell performs the distance calculation for each based on the
accumulation of the current distance value between the input
component and the stored component. In case of the NID
value exceeds the maximum identifier value (2n−1), nothing
is stored in any neuron cell but the distance calculation is
still executed. Consequently, the NID value indicates not
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TABLE 2. Register map of the Intellino.

Listing 1. Assembly codes for training based on the custom ISE.

only the neuron cell to train but also the current state of the
whole coprocessor. Through this attribute, both the storing
of the vector to the neuron cell in the training process
and calculating the distance in the inference process are
executed by the same iterative move operations. The variance
between the training process and the inference process is
that the training process ends with the writing operation of
the category for training data to the neuron cell and the
inference process ends with the reading operation of the
derived category and distance. Another important attribute is
that the operations to overwrite certain values to the COMPID
register and NID register are highly infrequent because of the
certain operations that automatically change the value in the
register not addressed by the instruction, move operations for
writing to the COMP, LCOMP, CAT, FORGET, CLEAR.

Listing 1 and 2 show examples of source code for the
AI coprocessor executed by custom ISE and for the original
Intellino executed by the SPI communication, respectively.
Both source codes execute the training of single data from
the dataset to the neuron cell. The length of the vector is
configured as 128 and each of the COMPID values and the
NID are regarded as respectively zero and the value lower
than 2n−1. Both codes share the steps that storing the training
vector in the SPM through sequential writing and sending the
category value. Despite the source codes having similar steps,
the codes based on custom ISE provide much more simplicity
than those based on the original AI processor due to the
exclusion of the numerous function calls for the complex
communications protocol.

Listing 2. The source codes for training based on the original
architecture.

V. SYSTEM ARCHITECTURE
Fig. 6 shows the proposed system architecture. The system
consists of the AI ASIP for calculation, sensors for receiving
inference data, and a display interface to interact with the
users. The ASIP adopts the Harvard architecture, which
has two paths, the data path and the instruction path, to
avoid bubble insertion generated by sharing the same path
on instruction fetching and memory access instructions.
Compared to high-performance systems, which generally
adopt the modified Harvard architecture, the exclusion of
caches reduces area usage and energy consumption because
of the elimination of the overheads caused by cache misses
and avoiding the area occupancy by the cache. As the
memory requirements of the lightweight AI are generous,
the reduction of the available memory resources provided
by the cache is acceptable. The integrated core on the
ASIP processes the input data for inference by executing
the program including the custom AI instructions through
the internal AI coprocessor. The output controller displays the
inference result calculated by the AI coprocessor, allowing
the users to perceive the result directly. In accordance with
this architecture, the throughput of the AI algorithm is
improved compared to the systems based on the previous
heterogeneous architecture. Further, the data flow of the
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FIGURE 6. The proposed system architecture for lightweight AI systems.

architecture provides privacy protection and network band-
width reduction due to the edge computing architecture.

A. INTEGRATED CORE DESIGN
To provide the ASIP based onMIPS ISAwith customAI ISE,
we designed the AI coprocessor for a 5-stage pipelined MIPS
core that is compatible with the 32-bit MIPS processor [42]
and integrated the coprocessor into the MIPS core. The key
aspects we considered in the design of the coprocessor are as
follows:

• Conserving the logic related to the main operating
mechanisms to ensure the functionalities of the legacy
features that are enabled on the original AI processor.

• Optimizing the main calculation logic and memory
architecture of the Intellino to the 32-bit parallel data
transfer in the MIPS processor.

Fig. 7 and 8 show the data flow when executing the custom
ISE instructions. The AI coprocessor, i.e., CP2, is designed
to compose the coupled architecture with the pipelines in the
basic MIPS core. The fetch stage in the pipeline is shared by
both the basic core and CP2 as the instruction path is only
one in the core. The other stages and pipeline registers for
each stage exist for both the base core and the coprocessor to
ensure synchronized operation.

As shown in the figures, the Intellino is held in the write-
back stage. The stage to commit the 32-bit data to the Intellino
register is the same as the time to commit to the GPRs.
Through this architecture, the core integration of the Intellino
is done without additional data forwarding logic.

The latency for AI instruction to reach the AI processor
from the instruction fetch stage is five cycle periods of
the operating clock frequency because of the pipelined
architecture. In the training process, this characteristic does
not generate throughput degradation as the pipeline operates
without any interruption. In the inference process, in contrast,
the throughput is reduced. This is because the data transfer
instructions from the Intellino to the other units such as
move from coprocessor 2 (MFC2) and store word from
coprocessor 2 (SW2) complete the communication on the

FIGURE 7. Data flow of the MTC2, MFC2 instructions on the core pipeline.

FIGURE 8. Data flow of the LWC2, SWC2 instructions on the core pipeline.

decode stage. To receive the appropriate inference results, the
insertion of the five delay slots, which are the slots to fill
with independent instructions next to the target instruction,
is required.

Typically, methods to embed the additional forwarding
logic are applied to remove the delay slots. Nevertheless,
we adopt this architecture because adding the data forwarding
logic directly affects the overall performance of the processor
according to the base core architecture that data propagation
of each stage passes through the data forwarding logic.
In the worst case, the five no operation (NOP) instructions
are inserted into every inference process. The throughput
decrease by these bubbles is acceptable as the communica-
tion performance based on the operating frequency, which
remains unchained due to the coprocessor architecture, is
far ahead of the communication performance of the original
heterogeneous architecture.

B. AI CORE OPTIMIZATION
Fig. 9 shows the optimization of the distance calculation logic
for 32-bit parallel communication. The distance calculation
works by sequentially accumulating the absolute distance
value between the current vector components addressed by
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FIGURE 9. Optimization of the distance calculation for the 32-bit parallel
communication.

the COMPID register. In the case of the original AI processor,
the distance calculation requires only one subtractor, absolute
logic, and adder as the communication protocol unitizes the
data packet to 8 bits. In the case of the AI coprocessor,
in contrast, the communication is held with 32-bit parallel
data wires. This means that the four vector components
are simultaneously transferred to the calculation logic.
To perform the distance calculation without additional bubble
generation, we parallelized the sequential accumulations in
the original intellino into four by duplicating the subtractor
and absolute logic and adding the adders with a tree structure.
With this architecture, the throughput of the optimized
Intellino is improved as the distance is perfectly synchronized
to the basic core pipeline.

C. ASIP DESIGN
We designed the processor including the optimized AI
coprocessor to realize and verify the concept of lightweight
ASIP for AI applications. Fig. 10 shows the architecture
of the processor. The processor including the integrated
core architecture with interrupt controller (CP0), floating-
point unit (CP1), and the designed AI core (CP2), enables
the execution of the custom AI ISE and other features
such as hardware interrupt and floating-point acceleration.
The memory composition in Harvard architecture, which
separates the instruction memory and data memory, is
replaced by embedding the random access memories (RAM)
with one read or write data path and one read-only data
path, which imitates the mechanism that the instruction fetch
stage and memory stage access the memory simultaneously.
To provide reconfigurability of the memories, the connection
between the master device of the system bus, the integrated
core, and the system bus passes through the joint test action
group (JTAG) controller. By sending the JTAG signals, the
host device takes control of the system bus from the integrated
core. This enables memory access from the host device to
replace the current programwith another.Moreover, the serial

FIGURE 10. The architecture of the designed ASIP.

interface is provided to receive the training/inference data
from the other input devices. Finally, the VGA controller and
video RAM access peripheral are included to visualize the
result.

VI. IMPLEMENTATION RESULT
To verify the proposed system architecture, we first evaluated
the processor designed to apply to the system by RTL
simulation running on Verilator 5.009 version, which is an
open-source RTL simulation tool. The simulation of the
MIPS-Intellino processor has two cases: optimized assembly
codes, and source codes with library functions written in
C programming language. Both cases are built to operable
machine codes by utilizing the GNU compiler collection
(GCC) version 5.3.0 and supposed the operating frequency
of the processor to be 50 MHz, which is a recommended
frequency of the target MIPS processor and has not been
modified. The simulation of the original Intellino has
only one case, the SPI-based communication protocol with
an 8 Mbps data rate, which is the recommended data rate of
the Intellino.

We used the MNIST dataset [43], which is a test set
of handwritten digits, for the k-NN training and inference
process. The simulation environment and source codes for
each case are provided on the website [44].

Fig. 11 shows the time measurement results of the
training process. According to the simulation, the C library
functions and optimized assembly codes showed approxi-
mately 165.59 times and 193.88 times enhanced performance
compared to the original Intellino, which is based on SPI,
on average. Both the throughput ratio of the operations
compared to that of the original Intellino tends to converge
to 200 when the vector length value increases. This is
because the ideal throughput ratio between the 8 Mbps
SPI communication and the 32-bit parallel communication
running on 50Mhz is 200 and the increase in the vector length
does not inflate the ancillary instructions such as setting the
starting pointer of the data, setting the category value. As a
result, the throughput performance of the training process
on MIPS-Intellino remarkably exceeded those of the original
Intellino.
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FIGURE 11. The required time for the training process in each case.

After the simulation, we realized the designed processor by
FPGA implementation. Fig. 12 shows the architecture of the
verification system, which is based on the Zynq-7000 system-
on-chip (SoC) mounted on the Digilent ZedBoard. The
SoC consists of the general-purpose processor (PS) and the
programmable logic (PL). The PS includes the complex block
for the modern operating system (OS) such as the memory
management unit (MMU) and a variety of peripherals.
Certain peripherals, e.g., GPIO, in the PS is connectable
to the programmable logic. This architecture facilitates the
input/output process and the verification process of the
designed digital circuit by making use of the convenient
features the OS environment provides. Thus, we adopted the
method of running the modern OS, Linux, on the PS and
taking control of the design implemented on the PL block
by the OS. The Linux distribution we utilized for the PS is
PetaLinux 2021.1, and a detailed guide for running PetaLinux
on the Zynq-7000 SoC is provided in [45].

To realize the method, firstly, we synthesized and imple-
mented the MIPS-Intellino processor to the PL block of
the Zynq-7000 SoC and linked the GPIO and the UART
of the PS to the JTAG controller and the UART in the
designed processor. Next, we developed the software that
writes the program to the RAM in the designed processor by
imitating the JTAG protocol through GPIO and programmed
the test software compiled by the cross compiler built with the
GNU C compiler (GCC) to the designed processor. At last,
we checked the results of the test software running on the
MIPS-Intellino through the serial communication software
running on the PS.

To evaluate the area usage of the designed processor
architecture, we performed synthesis and implementation
using Xilinx Vivado 2022.2 for the designed coprocessor
and the original AI processor with various AI configurations.
The jobs were configured to target the PL block of the
Xilinx xc7z020clg SoC with additional settings to avoid
the utilization of pre-fabricated hard blocks, such as DSP
blocks and block RAMs. Hard blocks in FPGAs provide
performance enhancements and area reduction, operating
more similarly to ASIC than FPGA [46]. Thus, utilizing
these blocks is regarded as contracting the gap, e.g.,

FIGURE 12. The architecture of the verification system.

area, power, and propagation delay, between ASICs and
FPGAs [46]. However, in terms of purpose that uses the
FPGA implementation as the prototyping of the digital
logic circuit before ASIC implementation, utilizing these
blocks makes the performance analysis fuzzier as the FPGA
prototype operates as ASIC-FPGA hybrid architecture [47].
Therefore, to provide an approximately clear and comparative
analysis on the different digital circuits for chip fabrica-
tion, synthesizing with only general-purpose blocks that is
regarded as correspondence to the standard cell library is
required.

Fig. 13 shows the resource usage of the implementation
results between the previous AI processor and the designed
AI coprocessor. The result presents that the FPGA implemen-
tations of the coprocessor requiremore look-up tables (LUTs)
than those of the original AI processor. On average, the
coprocessor uses approximately 6.62%more LUTs compared
to the original. This is because the ancillary components of
the coprocessor, the pipeline stages, use more LUTs than
the ancillary components of the original processor, the SPI
slave controller and the packet decoder. The gap between the
LUTs usage of the coprocessor and the original decreases as
the vector length parameter increases. As these components
do not affect by the AI configurations such as vector length
and the neuron cell count, the increase in the configuration
parameters makes the area share on the AI logic and the
memory higher, diminishing the impact of the gap between
ancillary components. The usage of other physical resources,
flip-flops (FFs), F7 multiplexers, and F8 multiplexers, of the
coprocessor shows each of 74%, 40.72%, 19.53% reduced
values than the original AI processor. According to this result,
the area usage performance of the coprocessor is suitable
for replacing the modularized architecture. When reflecting
on the physical area reduction through the SoC architecture,
which removes the external wires for communication, the
advances in area usage performance become higher.

In the case of power and energy, the implementation
results show that the designed AI coprocessor has far better
performance than the original Intellino. Fig. 14 presents the
energy-related performances of both designs. As shown in
the first graph, the AI coprocessor consumes 3.58 times the
dynamic power on average compared to the original. This
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FIGURE 13. Resource usage comparison between the coprocessor and the original Intellino.

TABLE 3. Comparison between other k-NN accelerators.

FIGURE 14. Power and energy comparison between the coprocessor and
the original Intellino. (a) Maximum dynamic power consumption.
(b) Energy dissipation per one operation. (c) Relative energy efficiency of
the coprocessor compared to the original Intellino.

attribute results from the parallelized architecture consisting
of the increment in memory bandwidth and the optimization
of the distance calculation logic. The device static power
statistics are the same for all configurations and designs,
resulting in 0.103 W, as these attributes only depend on
the target FPGA. Although the coprocessor requires more
power than the standalone Intellino, the energy efficiency
of the coprocessor surpasses the original, as shown in the
second graph and third graph. This is because the energy
dissipation (EDP) required for one operation is proportional
to not only the power consumption but also the elapsed time
for one operation such as the training process and inference
process. As a result, the coprocessor shows 52.75 times
the energy efficiency on average compared to the original,
demonstrating the advances in energy efficiency.

Finally, we analyzed the timing reports of the coprocessor
implementation. In spite of the increment in the propagation
delay in the distance calculation logic issued by the paral-
lelization, the recommended operating frequency of the target
MIPS processor, 50 MHz, is preserved. This is because the
increased delay is still less than the critical path of the basic
core, 32-bit ALU operating with forwarded input. Thus, the
performance of the basic instruction execution is preserved
though the instruction set is extended by embedding the
additional coprocessor for custom AI ISE. As a result,
replacing the modularized AI coprocessor with the ASIP with
integrated core architecture has benefits in both throughput
and area usage while demeriting the flexibility of the system
composition.

Table 3 presents a comparison between other k-NN
accelerators designed for lightweight systems. The results
show that the AI coprocessor we designed has significantly
higher data rate performance than the others, while also
offering a wide range of configurability in k-NN parameters
and acceptable power consumption.

VII. CONCLUSION
In this paper, we propose a uniprocessor system architecture
based on ASIP for lightweight edge AI systems in order to
reduce the communication overhead caused by the complex
protocol and asynchronous operations of the heterogeneous
architecture. To realize the proposed system architecture,
we designed the ASIP supporting custom ISE based on the
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MIPS ISA, which presents the guidelines for defining the
custom ISE. The ISE we defined is optimized to mutate the
target AI processor for heterogeneous computing, Intellino,
a reconfigurable lightweight AI processor based on k-
NN algorithm. The ASIP is designed with the integrated
core architecture that contains the custom coprocessor that
synchronously operates with the base core. By placing the
core logic to execute the AI algorithm on the write back stage,
the necessity of the additional forwarding logic is removed.
Further, specified optimizations for communication which
is based on multiple parallel wires, e.g., parallelization of
the distance accumulation in the k-NN algorithm, boost the
throughput remarkably with a little demerit in area usage
performance.

According to the simulation results, the designed pro-
cessor achieved up to 193.88 times enhanced throughput
performance compared to that of the original modularized
AI processor. In addition, resource shares of each component
were reduced, except LUTs, which were 6.62% higher on
average in compliance with implementation results. Consid-
ering the elimination of the external wires for communication
due to the uniprocessor architecture is not reflected, the
advantages of area usage are assumed to be higher. Therefore,
adopting the proposed system architecture is reasonable for
lightweight systems that have a fixed application and are
hugely affected by the throughput.

In future work, we plan to advance our work through two
separate stages. At first, we will eliminate the necessity of
bubble insertion intrinsic in the current coprocessor archi-
tecture that reduces the throughput performance. This objec-
tive can be achieved by optimizing the microarchitecture
such as reconstructing the data processing and propagation
structure in the pipeline architecture and adding the data
forwarding logic to avoid stalls. Second, we will adopt
the proposed coprocessor architecture for other complex AI
algorithms that are more complicated than k-NN, extending
the proposed architecture for high-performance systems.
Ultimately, we aim to fabricate the most advanced ASIP
designed by future works onto a chip to prove the feasibility
and performance enhancements of the proposed system
architecture.
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