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ABSTRACT Non-Intrusive Load Monitoring (NILM) is a method to determine the power consumption of
individual appliances from the overall power consumption measured by a single measurement device, which
is usually the main meter. Increase in the adoption of smart meters has facilitated large scale implementation
of NILM, which can provide information about individual loads to the utilities and consumers. This will lead
to significant energy savings as well as better demand-side management. Researchers have proposed several
methods and have successfully implemented NILM for residential sectors that have a single-phase supply.
However, NILM has not been successfully implemented for industrial and commercial buildings that have
a three-phase supply, due to several challenges. These buildings consume significant amount of power and
implementing NILM to these buildings has the potential to yield substantial benefits. In this paper, we pro-
pose a novel deep learning-based approach to address some of the key challenges in implementing NILM
for buildings that have a three-phase supply. Our approach introduces an ensemble learning technique that
does not require training of multiple neural network models, which reduces the computational requirements
and makes it economically feasible. The model was tested on a three-phase system that consists of both
three- phase loads and single-phase loads. The results show significant improvement in load disaggregation
compared to the existing methods and indicate its applicability.

INDEX TERMS NILM, neural networks, deep learning, ensemble learning, load disaggregation.

I. INTRODUCTION
The gradual depletion of fossil fuel reserves and the escalat-
ing threat of global warming caused by their emissions have
driven the world towards energy conservation. Studies have
indicated that optimal usage of appliances in the domestic
sector can reduce the energy consumption by 20% to 15% [1].
However, consumers will not be able to optimize their usage
pattern based on the monthly electricity bill that shows the
aggregated power consumption.

Secondly, implementation of demand response schemes by
the power utility can reduce the peak demand, which will
flatten the demand curve and reduce the capacity cost of the
power system [2]. Demand response schemes can also be
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used as a solution to mitigate the solar duck curve problem,
which will enable more solar photovoltaic (PV) to be inte-
grated into the electric grid [3]. However, demand response
cannot be effectively implemented based on the aggregated
power consumption data of every consumer.

In addition to this, changes in the power consumption
pattern of a device due to improper maintenance, a possible
fault or a mistake by the user cannot be identified from the
overall consumption data.

These cases require the monitoring of appliance level
power consumption. The most feasible method of monitoring
is non-intrusive load monitoring (NILM), where power con-
sumption is measured by a single metering device installed
at the main feeding panel and is disintegrated into appli-
ance level consumption [4]. Since only a single measure-
ment device is utilized, it requires less hardware, which
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results in lesser maintenance, and is less disruptive to the
consumer.

The topic of NILM was introduced by George Hart in the
1980s, considering only the active power [4]. In his approach,
switching on and off of an appliance is detected based on a
predefined threshold difference in the power consumption.
A major shortcoming in his approach is that it can only
disaggregate ON/OFF state appliances and it cannot distin-
guish appliances that consume similar active power. Later on,
by combining reactive power and active power, such devices
were also identified and distinguished. However, it failed to
identify loads that consumed less than 150W power.

Further research in NILM branched out based on the fre-
quency range of measurement. They can be categorized as
high frequency (MHz range), mid frequency (KHz range)
and low frequency (less than 1Hz) [5]. Electrical devices are
known to generate electrical noise at frequencies significantly
higher than the fundamental frequency. This noise is pro-
duced briefly during device turn on and off cycles and in
some cases, continuously, during the operation of the device
due to the utilization of switched-mode power supplies that
provide DC power to internal electronics. Some researchers
have explored the utility of collecting these higher frequency
signals(high and mid frequency signals) to implement NILM.

NILM based on high frequency was introduced by Patel et
al. [6] based on the noise of the voltage signal. High frequency
signal acquisition devices are expensive and prone to error
due to radio signal interferences. Mid frequency based NILM
provides good compromise between cost and accuracy [5].
Most of mid frequency based NILM are highly complex, and
the computations required to label the load combination is a
bottleneck to implement in an embedded platform

To mitigate these limitations and issues, machine learning
based approaches were developed [18], [19]. J. Kelly and W.
Knottbelt, developed a NILM model based on deep learning
for the first time which showed significant improvements
in load disaggregation compared to the existing machine
learning based models [7]. Their model utilized sequence-to-
sequence learning. The sequence-to-sequence model makes
the predictions for all the time steps in the given input time
series window. So, for a given range of time steps to predict,
it has to iterate only once. This results in a neural network
that is faster and consumes less resource but has higher error.
In addition to this, it was developed on Vanilla Deep neural
network architecture instead of convolutional neural network
(CNN) or recurrent neural network (RNN), which loses the
spatial data from the input data. This resulted in reduced
performance of the output.

In 2017, C. Zhang proposed a CNN based sequence-
to-point neural network model which performed far better
than sequence to sequence models [8].The sequence-to-point
model makes the prediction for one step at a time. This
step will probably be located in the center time of the time
series data window that was fed to the model. Therefore,
for a given range of time steps to predict, the model has

to iterate for each sample in the window for the prediction.
This requires a higher number of calculations for the same
amount of data input, since they need to predict multiple
times (outputting a single point each time) for a window
of data to get the predictions for the entire window. This
process is time consuming and requires high computational
power. In comparison, sequence-to-sequence models can be
trained faster, and their prediction time is lower, compared to
sequence to point models.

Regardless of the benefits and drawbacks, several
sequence-to-sequence and sequence-to-point models were
developed and implemented for the domestic sector, which
has a single-phase supply. However, only a few models were
developed for industrial and commercial buildings that have
a three-phase supply. Most of the existing research on NILM
for 3-phase systems focused only on the challenges related
to implementation of NILM. These buildings consume sig-
nificantly high power and implementing NILM can reap a
lot of benefits. However, development of NILMmodels were
limited due to various challenges and complexities [9].

The presence of multiple loads that are similar in nature
poses a significant limitation to implement NILM in com-
mercial and industrial buildings. In these scenarios, distin-
guishing between loads becomes challenging, and this can
lead to errors in load identification. Additionally, the number
and complexity of the loads are often much higher than those
in residential sector, which makes it more challenging to
develop and implement an accurate and robust NILM system.

Another obstacle in implementing NILM for a three-phase
system is the identification of continuously operating loads.
These types of loads do not have clear on/off cycles, which
makes it extremely difficult to determine their energy con-
sumption patterns. As a result, the identification of continu-
ously operating loads requires sophisticated algorithms that
can accurately differentiate them from other loads.

If the same NILMmodel is deployed across multiple build-
ings, which consists of a larger number of more complex
appliances, the performance of a NILM model decreases
significantly. To mitigate this problem, customNILMmodels
must be developed for each client building, which can be
computationally expensive and economically infeasible for
three-phase systems.

Lastly, collecting data from commercial and industrial
buildings without disrupting their operations is another sig-
nificant challenge. These buildings are typically in use
throughout the day, which makes it challenging to collect
data without causing disruption. The process of data col-
lection must be carefully planned and executed to minimize
disruption. This research focuses on addressing some of these
challenges and develop a NILM system that is accurate and
robust.

Our work has contributed to Non-Intrusive Load Mon-
itoring by addressing challenges related to disaggregating
single phase and three-phase loads, improving accuracy and
efficiency of demand-side managementÂ systems.
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This paper is organized as follows. Section II describes in
detail, the challenges that are addressed in this research. Sec-
tion III describes the proposed approach. Section IV describes
the preparation of data for training and evaluation. Section
V illustrates the experimentation carried out and the results.
Section VI concludes the outcome of this research.

II. CHALLENGES ADDRESSED
This research addresses several challenges related to disag-
gregation of both single-phase and three-phase loads in a
three-phase system. This section is divided into two subsec-
tions. The first subsection discusses the challenges related
to disaggregation of single-phase loads and the second sub-
section discusses the challenges related to disaggregation of
three-phase loads.

A. CHALLENGES IN DISAGGREGATION OF SINGLE-PHASE
LOADS
NILM for single-phase systems is a well-researched topic
and several deep learning-based models with good accuracy
already exist. However, the available single-phase NILM
models take only one phase as input. This becomes a prob-
lem in three-phase systems, as the model must determine
the phase to which the target appliance (appliance that is
meant to be detected by NILM) is connected. One solution
to overcome this problem is to request the consumer to
manually determine the phase and give the aggregate power
consumption of that phase as input to the single-phase NILM
model. However, an average resident does not have sufficient
expertise to determine the phase to which the appliance is
connected. In addition, if the appliance is moved to a different
location of the building, it might be connected to a different
phase and it will not be detected.

To mitigate this problem, neural network for a target
appliance can be implemented to all three phases separately.
Hence, there will be three neural networks to detect and deter-
mine the power consumption of one target appliance. This is
not computationally efficient since the target appliance will
be detected by only one of the three neural networks and the
other two neural networks operate without having the target
appliance in their respective phases.

Another problem arises due to the presence of three-phase
loads. Generally, single-phase appliances tend to have signif-
icantly lower power consumption in comparison to 3-phase
appliances. Hence, their activations may get drowned-out
amongst the larger 3-phase activations in the aggregate wave-
form. This makes it harder for the neural network to identify
the presence of the single-phase activations in the crowded
aggregate power consumption waveforms.

B. CHALLENGES IN DISAGGREGATION OF THREE-PHASE
LOADS
Three key issues related to implementation of NILM for
three-phase systems are addressed in this research. The first
one is the presence of multiple similar loads. A three-phase
system might consist of multiple appliances of the same type

and even the same model as well. There are two different
cases related to this challenge. The first case is when there
are two appliances of the same type (such as two air condi-
tioners) that have different power ratings or from different
manufacturers. In this case, there will be unique patterns
in the activations of these similar appliances that can be
detected by the neural network. The second case is where
there are multiple appliances of the same power rating and
manufacturer. This case is more difficult to handle since the
activation patterns of these applianceswill be nearly the same.

The second challenge is to identify continuously operating
loads. In NILM research related to single-phase systems, con-
tinuously operating loads such as routers and smoke detectors
are usually ignored since it is difficult to detect whether they
are ON or OFF and they don’t consume significant power.
It is difficult to detect their ON/OFF state because they are
ON for most of the day and will have very random ON or
OFF events. In 3-phase systems, there may be continuously
operating loads such as exhaust fans that consume a signifi-
cant amount of power. They cannot be ignored and the NILM
model should be able to determine their power consumption
as well.

The general idea in developing a deep learning based
NILM model for a single phase system is to train a dedi-
cated neural network for each target appliance, which can
be deployed across multiple consumers. This paradigm is
accepted under the assumption that the power consumption
pattern and the power rating of a target appliance is similar,
regardless of the manufacturer. However, this paradigm is
not valid for a three-phase system. Appliances connected
to a three phase supply in commercial and industrial build-
ings are much higher in number and are more complex in
nature [9]. Therefore, the decrease in performance when the
same NILMmodel is deployed across multiple buildings will
be significant. To mitigate this problem, NILM models must
be custom made for each client building, which incurs high
computational cost. This makes NILM for a three phase sys-
tem economically infeasible. These three issues are addressed
in this research.

III. PROPOSED APPROACH
In our proposed method, a measurement device is attached to
the three-phase supply which records the power consumption
data of each phase separately and sends it to a server in the
cloud.This raw aggregate power consumption data is prepro-
cessed in this server and is disaggregated into appliance level
power consumption by a deep learning model.

The deep learning model consists of dedicated neu-
ral networks that are trained for a target appliance. The
pre-processed aggregate data is given as input to each neu-
ral network, which estimates the power consumption of the
target appliance that it was trained for. The estimated power
consumption of each appliance is sent to a web application
where the consumer can check the power consumption of
each of the target appliances in their building. The overview
of this model is illustrated in Fig. 1.
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FIGURE 1. Model overview.

In order to solve the issues related to disaggregation of
single-phase loads discussed in subsection A of section II,
we feed the aggregate power consumption data of all the
three phases as input to a single neural network. This neural
network model learns to determine the power consumption
of that target appliance no matter which phase it is connected
to. By passing all three phases as input to the neural network,
it will learn to use the differences between the aggregates
of each phase to accurately predict the power consumption
of the target single-phase appliances. This will improve the
accuracy and is computationally efficient as well.

The second issue due to presence of three-phase loads is
automatically solved by feeding all three phases as input to
the neural network. The neural network learns to use the
differences between the aggregates of each phase to separate
the total power consumption of all the 3-phase loads from the
aggregate waveform, leaving only the power consumption of
the single-phase loads. This makes it much easier to detect
the power consumption of the target single phase device.

Presence of multiple similar loads and continuously oper-
ating loads are two key challenges in disaggregation of three-
phase loads, as discussed in subsection B of section II. This
is mitigated by including continuously operating loads and

loads that have very similar activation functions, in the train-
ing dataset. The performance of the neural network in these
particular scenarios are evaluated and the network architec-
ture is modified to improve the accuracy.

In order to reduce the computational cost and make NILM
for three phase systems economically feasible while main-
taining the desired level of accuracy, a novel ensemble
learning method is introduced, together with a sequence-to-
sequence model.

The proposed method is non-intrusive as it does not require
any additional hardware to be installed. Instead, it makes use
of easily accessible smart meter data. As no extra equip-
ment or monitoring devices need to be built, this method is
economical and practical. Without directly measuring each
appliance’s energy use, the model is able to break down each
individual energy usage. This is accomplished by examining
the unique patterns and signatures of each appliance’s energy
use as they are reflected in the data from smart meters.
Thus, the suggested paradigm is a viable and non-intrusive
approach to energy disaggregation, with the potential to be
widely adopted byÂ theÂ industry.

This section is divided into three subsections. Subsec-
tion I describes preprocessing of the dataset. Subsection
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II describes the neural network architecture. Subsection III
describes the novel ensemble learning method proposed to
improve the performance of disaggregation by the neural
network.

A. DATA PREPROCESSING
Data preprocessing is carried out on the raw power measure-
ment data, to make it suitable for neural networks. The pre-
processing pipeline does the following process [7], [8], [10].

1) Extract the appliance and main power consumption
data from the dataset
In this step, we extract the relevant data from the raw
power measurement data that we need for our analy-
sis. We only keep the data related to the main power
consumption and the appliance power consumption.

2) Take the records only when both appliance and main
power sensor are active.
Here, we filter out the data that is not relevant to us.
We only keep the data where both the appliance and
main power sensors are active. This ensures that we
have accurate data to work with.

3) Break the time series data when there is a gap in sensor
reading.
When there is a gap in sensor readings, we need to
break the time series data into separate chunks. This is
because the neural network needs a continuous stream
of data to work with. Breaking the time series data
ensures that we have continuous data without any gaps.

4) If the time sample length is less than the desired length;
pad the remaining time points with zero padding.
Sometimes, the time series data that we have may
not be long enough for our analysis. In such cases,
we pad the remaining time points with zero padding.
This simulates an all-power-off scenario and ensures
that we have enough data to work with.

5) Resample the data to get a sample from aggregate
power and appliance power on a constant sampling
time interval.
Resampling is the process of changing the rate at which
data is sampled. In this step, we resample the data to get
a sample from aggregate power and appliance power on
a constant sampling time interval. This ensures that we
have a consistent sample rate to work with.

6) Normalize the data.
Normalization is the process of scaling the data to a
common range. In this step, we normalize the data to
ensure that it is within a common range. This ensures
that the neural network can work with the data effec-
tively.

7) Split the data for training and validation.
In this step, we split the data into training and validation
sets. This ensures that we have enough data to train the
neural network and that we can validate its performance
on data that it has not seen before.

8) Split the data into clusters of window size time-series
data.
In this step, we split the data into clusters of window
size time-series data. This ensures that we have enough
data to work with and that the neural network can
analyze the data effectively.

9) Group the data into batches.
In this final step, we group the data into batches.
This ensures that we can feed the data into the neural
network efficiently and that the neural network can
analyze the data effectively.

B. NEURAL NETWORK ARCHITECTURE
Since the aggregate power is measured over time, it is a time
series data. CNN can be used for time series data by treating
the time dimension as the spatial dimension and applying 1D
convolutions. The mathematical model for a CNN used for
time series data is as follows.

Let X be an input time series with T time steps and D
dimensions, represented as a tensor of size T × D. The CNN
consists of L layers, where each layer l is defined by a set of
parameters (weights and biases).

The output of the l th layer, denoted as Zl , is computed as
shown in equation 1.

Zl = fl(Wl ∗ Al−1 + bl) (1)

Here, Al−1 is the output of the previous layer (Al−1 = Zl−1
for l > 1, and A0 = X). Wl is a set of learnable convolutional
filters of size Kl × Dl−1 × Dl , where Kl is the kernel size,
Dl−1 is the number of dimensions in the input feature map,
and Dl is the number of filters in the current layer. bl is a set
of learnable biases of size Dl . fl is the activation function.

The output of the final layer L, denoted as Y, is computed
as shown in equation 2.

Y = softmax(Wf ∗ AL−1 + bf ) (2)

Here, Wf is a set of learnable weights of size DL−1 × C,
where C is the number of classes. Softmax is the activation
function that converts the output into a probability distribu-
tion over the classes. bf is a set of learnable biases of size
C.

Based on this mathematical model, we developed a 2-stage
sequence-to-sequence CNN based on the Wavenet (devel-
oped by Google) [17]. This wavenet model has been uti-
lized in both stages of our neural network model. In the
first stage, the wavenet model is deployed as an ON-OFF
classifier. The classifier predicts whether the target appliance
is ON or OFF with a probability value. Such a stage exists
in previous NILM research as well [11]. However, the power
consumption predicted by the NILM model is multiplied by
the output (0 or 1) of the ON-OFF classifier. Therefore, when
the ON-OFF classifier wrongly predicts that the appliance
is OFF, the output of the NILM model as a whole will be
zero, even if the regressionmodel correctly predicts the power
consumption of the target appliance. Therefore, any errors
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in the ON-OFF classifier prediction will heavily affect the
accuracy of the NILM model. In addition, it is assumed that
when the appliance is in OFF state it won’t consume any
power, which may not be the case in some situations.

In our architecture, the ON-OFF classifier’s output (which
is a probability value) is fed as an additional input to the
Regression stage (that is, the stage that predicts the power
consumption of the target appliance), as shown in equation 3.

G(x) = R(x,C(x)) (3)

Here x is the input 3-phase aggregate power consumption
data, C(x) is the output of the ON-OFF classifier, R(x,C(x))
the output of the regression stage, and G(x) is the overall
output of the NILM model.

The intuition behind this is that this additional ON-OFF
input allows the regression stage to learn how to use the
ON-OFF probability prediction as a guide, rather than blindly
multiplying its output with this binary ON-OFF prediction.
This way, even if the ON-OFF model gives an erroneous pre-
diction the regression model can still output the correct value.
This creates a stronger connection between the ON-OFF
stage and the regression stage.

For this classifier, sigmoid activation function is used. The
mathematical function of the sigmoid activation is shown in
equation 4.

Sigmoid =
1

1 + e−x
(4)

As this function would limit the output between 0 to 1 with
an infinite order of continuity, this can be easily presented as
a probability of the appliance being switched on.

In the second stage, the wavenet model is deployed as
a regresser, which predicts the power consumption of indi-
vidual appliances. The aggregate power consumption data
and the output of the ON-OFF classifier are fed as input
to this regression model. The regression model processes
these two information and predicts the power consumption
of individual devices.

C. ENSEMBLE LEARNING
Ensemble learning is utilized to improve the accuracy of dis-
aggregation. Traditional ensemble learning methods require
multiple neural networks to be trained. The predictions from
the neural networks are combined using methods such as
bagging, boosting, and stacking [8]. This requires high com-
putational power and longer training time. For a deep learning
based NILM, separate neural networks must be trained for
each target appliance that needs to be monitored. Therefore,
implementing ensemble learning for each target appliance is
not feasible.

To mitigate this problem, we propose a novel ensemble
learning method that does not require multiple neural net-
works to be trained. A single neural network is allowed to
train even after the loss has plateaued. The loss will oscillate
around the same value but the model instances at different
points in training will have varying characteristics. A certain

set of model instances is chosen out of those with losses
around the plateaued value. Then, the weights of these model
instances are averaged, and a new model is created with
the same architecture but with the averaged weight values.
Specifically, for each layer in the model architecture, the
weights of each of the chosen model instances for that layer
are averaged element wise. Then, they are assigned to the
corresponding layer of the averaged model.

Depending on the specific characteristics of the individual
model instances, different combinations of them result in
averaged models that have different loss values. Through trial
and error, the best combination of model instances from the
set of model instances with similar losses is chosen.

The advantage of this technique is that it not only produces
improved performance like in other ensembling methods but
also requires very little additional time and computation since
it requires only a single neural network to be trained for a
target device.

IV. DATASET
The NILMmodel was trained and evaluated on four datasets.
The datasets used are

• UK Domestic Appliance-Level Electricity (UK-DALE)
dataset [13].

• Reference EnergyDisaggregationData Set (REDD) [14].
• Domestic electricity demand dataset of individual appli-
ances in Germany (DEDDIAG) [15].

• Industrial Machines Dataset for Electrical Load Disag-
gregation (IMDELD) [16].

This dataset contains five 3-phase appliances (Washing
machine, air conditioner, exhaust fan and two refrigerators)
and three 1-phase appliances (Washing machine, dishwasher,
and microwave oven). The exhaust fans in this dataset are
perfect examples of large continuously operating appliances.
Such continuously operating appliances are generally very
difficult to detect since they do not have consistent repeating
activation patterns, but rather have very random ON/OFF
events. Training and testing the NILM model on such com-
plex data will determine the effectiveness and practical via-
bility of the model.

In addition to these appliances which are target appliances,
‘‘distractor loads’’ are added, which are smaller single-phase
loads such as laptops, light bulbs, chargers, and routers. These
distractor loads are obtained from real-world single-phase
datasets.

V. EVALUATION METRICES
Mean absolute error (MAE), f1-score, and estimation accu-
racy (EA) are used to evaluate the performance of the NILM
model. The mean absolute error is calculated according to
equation (2).

MAE =
1
T

T∑
t=1

|ŷt − yt | (5)
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FIGURE 2. Performance evaluation of NILM model with single phase input and 3 phase input. (a), (c) - Aggregate power consumption of
each phase. (b), (d) - Predicted and actual power consumption with washing machine as the target device.
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FIGURE 3. Performance evaluation of NILM model with and without ON-OFF classifier. (a), (c) - Aggregate power consumption of each
phase. (b), (d) - Predicted and actual power consumption with milling machine as the target device.
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where ŷt is the prediction of the model at time t, and yt is the
actual power consumption of the appliance at time t. The f1-
score is calculated according to equation (3)

f 1 =
2 ∗ precision ∗ recall
precision+ recall

(6)

The precision and recall is calculated according to
equation (4).

precision =
TP

TP+ FP
, recall =

TP
TP+ FN

(7)

here TP, FP, and FN stand for true positives, false positives,
and false negatives, respectively. When the prediction indi-
cates that the appliance is ON when the appliance is actually
ON, it is a true positive. When the prediction indicates that
the appliance is ON when the appliance was actually OFF,
it is a false positive. When the prediction indicates that the
appliance was OFF when the appliance was actually ON, it is
a false negative. We choose an appropriate threshold value,
where if the predicted value is above the threshold, it is taken
as an ON prediction, and OFF otherwise.

The F1 score combines precision and recall into a single
score and is useful for evaluating classification models, par-
ticularly for imbalanced datasets. Precision is the fraction of
true positive results among predicted positive results, while
recall is the fraction of true positive results among actual
positive results.

In the F1 score formula, precision and recall have equal
importance, and F1 score can be used to determine overall
model performance while precision and recall can be used to
diagnose specific issueswithmodel predictions. For example,
a high precision and low recall may indicate that the model is
too conservative and is missing too many positive examples,
while a high recall and low precision may indicate that the
model is too aggressive and is incorrectly classifying too
many negative examples as positive.

The estimation accuracy is calculated using equation (5)

EA = 1 −

∑T
t=1 |ŷt − yt |

2
∑T

t=1 yt
(8)

where ŷt is the prediction of the model at time t and yt is the
actual power consumption of the appliance at time t.

As mentioned in the work of Kolter and Johnson [14],
estimation accuracy denotes how correctly the energy con-
sumption of an appliance has been estimated, relative to the
actual energy consumption of the appliance. The f1-score
metric denotes the accuracy of the prediction of activeness
of the appliance. The mean absolute error is an indication of
the error of the prediction at each point in time, as mentioned
in [6].

VI. EXPERIMENTATION AND RESULTS
Three novel techniques are introduced in this research. The
first technique is to feed the power consumption data of all
three phases as input to disaggregate single-phase loads. The
second technique is to feed the ON-OFF classifier’s output

as an additional input to the Regression stage of the neural
network. The third technique is the novel ensemble learning
to obtain better predictive performance of the NILM model.
The effectiveness of each these three techniques are discussed
in this section.

This section is divided into three subsections. The first
subsection discusses the evaluation of the first technique,
which is to feed power consumption data of all three phases
to disaggregate single-phase loads. The second subsection
describes the effectiveness of the ON-OFF classifier in the
regression stage of the neural network. The third subsection
describes the performance of the novel ensemble learning.

A. DISAGGREGATION OF SINGLE PHASE LOADS
To evaluate the performance of disaggregation of single-phase
loads when all three phases are fed as input, we conducted
an experiment. In this experiment, two variations of a neural
network NILM model were trained and evaluated: one that
takes only one phase as input (the phase to which the target
single-phase appliance is connected), and one that takes all
three phases as input. Power measurements were taken with
a sampling time of 6 seconds and the results are shown in
Fig. 2.

Fig 2. (a) and (b) represents a scenario where the target
device gets switched on for a brief period of time (about
200 seconds) while the power consumption of all the other
loads remain nearly the same throughout the whole period.
It can be seen in Fig. 2 (b) that during the period when the
target device is switched on, the prediction when all three
phases are input is highly accurate compared to when only
one phase is input. Fig 2. (c) and (d) represents a scenario
where a three-phase device switched on and the aggregate
power consumption increased significantly. Even in that case,
the model was able to predict correctly when all three phases
are input while the prediction is erroneous when only single
phase is given as input.

This demonstrates that when all three phases are fed,
performance increases significantly. The reason for this is
that the model was able to successfully learn to omit all the
three phase loads by comparing the three-input phase power
consumption values.

B. ON-OFF CLASSIFIER
In order to evaluate the performance of the ON-OFF clas-
sifier, we designed an experiment with two neural network
architectures. The first neural network included the ON-OFF
classifier whereas the second one did not include it. Other
hyper parameters of the two neural networks were the same.
The IMDELD dataset [14] was utilized for this experiment.
Since it is a real-world dataset with aggregate data that is
very chaotic at times, it can validate the performance of the
ON-OFF classifier in such practical scenarios. The target
appliance for this experiment is Milling Machine 1 (there are
two milling machines in the IMDELD dataset). The results
are shown in Fig. 3.
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FIGURE 4. Performance evaluation of ensemble learning model with fridge as the target appliance. (a), (c) - Actual power consumption of
target appliance and prediction by M2000, M4000, M12000 models. (b), (d) - Actual power consumption of target appliance and prediction
by ensemble learning model.
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TABLE 1. Performance evaluation of the model with ON-OFF classifier
and without ON-OFF classifier.

TABLE 2. Performance evaluation of Wavenet model and
sequence-to-point model.

Fig. 3 (a) and (b) represents a scenario where there is a
change in the aggregate power consumption but the target
appliance remains switched off for the whole period of time.
It can be observed in Fig. 3 (b) that the model without the
ON-OFF classifier wrongly predicts a power consumption
value, while the model with the ON-OFF classifier gives a
highly accurate prediction of nearly zero power consumption
for the whole period. Fig3. (c) and (d) represents a scenario
where the target appliance is switched off but consumes a
small amount of power. In this scenario, the model with the
classifier predicts with a higher accuracy compared to the
model without the classifier. The predicted values are much
smoother as well, without any random spikes. This clearly
shows that the NILM model architecture with the ON-OFF
classifier fed as an input to the regression stage performs
significantly better. The comparison of validation loss of the
two model versions can be seen in table 1.
Since sequence-to-point models perform better than

sequence-to-sequence models [9], we conducted another
experiment to compare the performance of sequence-to-point
models with our wavenet model (including the ON-OFF clas-
sifier), which is a sequence-to-sequence model. The results
are shown in Table 2.
It can be observed from the validation losses, that the

Wavenet model is more accurate than the sequence-to-point
model. An additional advantage of this architecture is that it
can be trained much faster than the three-channel sequence-
to-point model. This is because the number of trainable
parameters in the Wavenet model is much less compared to
the sequence-to-point model and also, many of the repetitive
calculations are avoided. It must be noted that even though
the Wavenet model must be trained for hundreds of epochs
while the sequence-to-point model can be trained within
about 50 epochs, the overall time taken to train the Wavenet
model remains much lower.

C. ENSEMBLE LEARNING
The performance of ensemble learning was evaluated using
the fridge and kettle as the target appliance. Prediction by
neural networks trained for different number of epochs and

TABLE 3. Performance evaluation of ensemble learning model with
fridge as target appliance.

TABLE 4. Performance evaluation of ensemble learning model with
kettle as target appliance.

the prediction by ensemble learning model for the fridge is
shown in Fig. 4.
Fig. 4 illustrates two different scenarios where the target

device is switched on for a certain period of time. The models
M2000 and M12000 has random spikes (Fig. 4 (a)). M4000
does not have any random spikes but the error is compar-
atively high when the device is switched on (Fig. 4 (a)).
M12000 has higher error when the device is off (Fig. 4 (c)).
However, the ensemble model has higher accuracy regardless
of whether the target appliance is switched on or off. It has
some random spikes but it is comparatively smaller compared
to the spikes generated by models M2000 and M12000.
(Fig. 4 (b), (Fig. 4 (d)).
The model was trained for 2 epochs. The model weights

were saved for every 2000 batches, and the model instances
at each of these checkpoints were evaluated on the test data to
get the validation loss. Different combinations of the model
instances were evaluated and it was observed that the combi-
nation of model instances at batch 2000, 4000, and 12000 of
the second epoch resulted in the best performance. These
model instances are termed as M2000, M4000, and M12000
respectively.

It can be observed that the prediction of the averagedmodel
is a combination of the predictions of the individual models.
Each of the individual model instances chosen has unique
characteristics and perform better in certain sections of the
dataset and perform relatively worse in other sections. The
result of averaging the weights is that the erroneous predic-
tions of each of the individual models are balanced out by the
other models. For the sections where each of the individual
models performs very well, the averaged model also seems
to perform well, even though the effect of the other models
balancing out the effect of each individual model applies to
this case as well. We can also notice that the predictions of
the averaged model are less erratic and smoother.

This same process was done for the kettle model as well.
The comparison of the metrics for the model instance with
the lowest loss versus the averaged model can be seen in
Tables 3 and 4. For both target appliances, there is a notice-
able improvement in every single metric after the averaging
process is done. Especially for the models trained with kettle
as the target appliance, we can see a large improvement in
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both MAE and EA metrics after our ensembling technique is
applied. These improvements prove the effectiveness of our
proposed ensembling technique.

VII. CONCLUSION
In this research, we have developed a deep learning-based
model to perform non-intrusive load monitoring (NILM) on
industrial and commercial buildings that have a 3-phase sup-
ply. Through experimentation, and implementation of innova-
tive ideas, we were able to mitigate the following challenges
related to disaggregation of both single phase and three-phase
loads.

• Difficulty in determining the phase to which a
single-phase load is connected.

• Single phase loads being drowned out by high power
three-phase loads.

• Difficulty in detecting multiple similar loads and contin-
uously operating loads.

• High computational cost to train a custom NILM model
for each client building.

We have proven that our model can identify many appli-
ances in such buildings with high accuracy. The experiments
conducted have given promising results and proves that it can
be practically implemented. Through our efforts to reduce
the size of the neural network without compromising on
prediction accuracy, the NILM model we developed gives
many practical advantages if it is to be deployed in large real-
world buildings.

Our NILM system has the capability to enable significant
energy savings as well as intelligent data-centric algorithms
for demand side management for electricity. After extensive
testing, we believe that the model we have developed can be
deployed and make significant impacts to the world. In the
future, we plan to enhance our NILM model by integrating
non-linear single-phase and three-phase loads into our model.
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