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ABSTRACT It is difficult to extract small and dense objects with random state, such as grain and impurity,
in image of vehicle-mounted dynamic rice grain flow on combine harvester. Therefore, this paper improves
Deeplabv3+ by constructing MobileNetv2 in coding layer and adding ECA(Efficient Channel Attention)
to Encoder and Decoder to improve extraction accuracy of high-dimensional features in images with a
large number of objects with random state. In addition, the YOLOv4 is improved by using Mixup in
preprocessing, constructing Mish in Neck and Head, adding ECA to Neck and Prediction of BackBone
to improve training precision of small and dense objects and reducing effect of gradient disappearance.
And the impurity/breakage rates are assessed based on relationship model between pixel area and quality,
improved Deeplabv3+ and YOLOv4. The proposed method was verified by experiments with images
acquired on intelligent combine harvester. Compared with existing Deeplabv3+, YOLOv4, U-NET, BP,
the extraction accuracy by improved method increased by more than 4.01%. The average relative error and
time of impurity/breakage assessment by proposed method were 7.69% and 1.56s. The proposed method
can accurately and rapidly assess impurity/breakage rates for dynamic rice grain flow on combine harvester,
and further realize closed-loop control of intelligent harvesting operation.

INDEX TERMS Breakage rate, grain flow, impurity rate, rice harvest, vehicle vision.

I. INTRODUCTION
China is a big country of rice production. It is vital to improve
production and harvest level for ensuring national food secu-
rity and enhance agricultural quality, efficiency and competi-
tiveness [1]. With the development of rice harvesting mecha-
nization and intelligent detection technology, the harvester in
China are also gradually automated and accurate [2], [3]. The
operation condition detecting which mainly contains impu-
rity and breakage assessment is an important research direc-
tion of intelligent harvester [4], [5]. The impurity/breakage
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assessment is mainly located in the transfer and storage
parts of the combine harvester after threshing and clean-
ing of crop. Different from the static detecting consistency
on the tank for storing grains, the mode for transferring
grains mainly includes scraper-type [6] and auger-type [7].
Compared with the scraper-type used mainly for large com-
bine harvesters, the auger-type conveyer suitable for small
and medium-sized combine harvesters can better meet the
demand of agricultural machinery under moderate scale oper-
ation environment in our country. However, compared with
the static sampling on the side wall of the scraper-type con-
veyer, the dynamic grain flow in the auger-type conveyer
is faster and difficult for sampling. In addition, the objects
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in the dynamic grain flow image are small, dense and ran-
dom, which makes it more challenging to assess the impu-
rity/breakage of vehicle-mounted dynamic rice grain flow on
auger-type conveyer of combine harvester [8].

The main technologies available for grain impu-
rity/breakage assessment include human visual, hyperspec-
tral [9], terahertz [10], machine vision [11], etc. Compared
with other methods, machine vision has the advantages of
non-contact, fast speed and high accuracy, and is more suit-
able for real-time online vehicle-mounted dynamic grain flow
impurity/breakage assessment. The image processing and
neural network are the two main methods for assessing grain
impurity/breakage inmachine vision. The existing image pro-
cessing includes k-means clustering, watershed, morphology,
decision tree, Particle Swarm Optimization (PSO), Support
Vector Machine (SVM) and so on. The k-means cluster-
ing [12], watershed [13] and morphology [14] are combined
to segment impurities or broken grains in the image. It can
obtain accurate results at a faster speed, but it is easy to
be affected by light changes, dust interference, and image
edge blurring. The decision tree can obtain feasible and good
results for large data in a relatively short time, but it is difficult
to improve the processing accuracy for features with strong
correlation between broken and complete grains [15]. Both
PSO and SVM are iterative classification algorithms. The
PSO is based on iterative optimization similar to genetic
algorithm [16], and the SVM is based on iterative training
as a classifier. Considering that the initialization of PSO is
a random solution, and the calculation amount of SVM is
limited by the sample size [17], it is difficult to apply to the
case of dense objects and high real-time requirements.

Compared with image processing, neural network is bet-
ter in accuracy, adaptability, robustness and efficiency, and
mainly includes shallow BP (Back Propagation) [18] and
deep CNN (Convolutional Neural Network) [19] in impu-
rity/breakage assessment. The BP has strong recognition and
classification ability for grains and impurities, but it is easy
to fall into local minimum, which makes it impossible to find
the global optimal solution [20]. The CNN is a feedforward
neural network with deep structure and convolution calcula-
tion, which is suitable for image processing. It improves the
training efficiency of image data by local connection, weight
sharing and pooling operation, and has better adaptability
and robustness. At present, the CNNs used for impurity and
grain extraction and classification are mainly RCNN [21],
U-Net [22], YOLOv4 [23] and Deeplabv3 [24]. The one-
step YOLOv4 can convert target extraction into end-to-end
regression, and the Deeplabv3 based on DCNN and CRF can
optimize object boundary, smooth noise and divide weights.
Therefore, compared with two-step RCNN and full convolu-
tional U-Net, the YOLOv4 and Deeplabv3 are more suitable
for the impurity/breakage assessment of dynamic grain flow
with dense objects and high real-time requirements.

However, for small and medium-sized combine harvesters
with auger-type conveyer, the impurity/breakage detecting
objects located in the grain conveyer are mobile. Compared

with large grains, such as potato and corn, and regular shaped
grains, such as rapeseed and soybean, the objects in the
images of dynamic rice grain flow are small, dense and ran-
dom. They all bring difficulties for rapid and accurate impu-
rity/breakage assessment required by intelligent closed-loop
control of online harvesting operations. Additionally, the
existing Deeplabv3 with Xception without ability to change
number of channels is easy to lose high-dimensional spatial
features and has a unified attention mechanism for object
detection [25]. The ReLU is easy to cause gradient disappear-
ance, and Mosaic data enhancement for clipping and splicing
images is difficult to improve the training effect of small
and dense objects in existing YOLOv4 [26]. Therefore, it is
difficult for existing Deeplabv3 and YOLOv4 to improve the
accuracy and efficiency of impurity/breakage assessment of
dynamic grain flow.

Based on the above research and problems, this paper
improves the existing Deeplabv3+ and YOLOv4 based on
coding layer, data enhancement optimization and attention
mechanism, and proposes an impurity/breakage assessment
method based on improved Deeplabv3+ and YOLOv4 for
vehicle-mounted dynamic rice grain flow on combine har-
vester. It lays the foundation for on-line closed-loop control of
intelligent operation of combine harvester based on machine
vision [27].

II. MATERIALS AND METHODS
For the small and dense objects with random state, such
as grain and impurity, in the image of vehicle-mounted
dynamic rice grain flow on combine harvester, it is dif-
ficult to accurately extract by existing Deeplabv3+ and
YOLOv4 with unified attention. Therefore, this paper
improves existing Deeplabv3+ andYOLOv4 based oncoding
layer optimization, data enhancement and attention mecha-
nism, and proposes an impurity/breakage assessment method
of vehicle-mounted dynamic rice grain flow on combine
harvester.

A. IMPROVED DEEPLABV3+ AND YOLOv4 WITH
ATTENTION MECHANISM OPTIMIZATION
1) EXISTING DEEPLABV3+ AND YOLOv4
a: EXISTING DEEPLABV3+

Based on Deeplabv3 structure, Deeplabv3+ network adds
a decoding module for feature information refinement to
improve the efficiency of image segmentation [28]. As shown
in Fig. 1, the encoder adopts Xception model as the back-
bone network, and the depthwise separable convolution of
different channels in the Xception model is adopted to extract
multi-class feature information in image. After the 1×1 con-
volution processing in the spatial pyramid pooling module,
three parallel 3 × 3 convolution processing with void rates
of 6, 12 and 18, and global average pooling processing, a
1 × 1 convolution compression channel is used to extract
high-level semantic features. In the decoder, the low-level
semantic features extracted from the backbone network input
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FIGURE 1. Existing Deeplabv3+.

FIGURE 2. Existing YOLOv4.

layer after dimension reduction by 1 × 1 convolution are
fused with the high-level semantic features obtained by
up-sampling in encoder. The spatial information in the fea-
ture map is recovered based on 3 × 3 convolution, and the
target boundary is refined by bilinear up-sampling to achieve
semantic segmentation.

Compared with Deeplabv3, Deeplabv3 + replaces the
original maximum pooling layers and dilated convolutions in
Xception and decoder modules with the depthwise separable
convolution layers. Compared with dilated convolutions, the
depthwise convolution and pointwise convolution are com-
bined for effectively reducing the computational complexity
of model in the training process and constructing faster and
stronger codec network.

b: EXISTING YOLOv4
Compared with YOLOv4-tiny with simplified network struc-
ture, the YOLOv4 is more suitable for small object detection.
As shown in Fig. 2, the existing YOLOv4 mainly includes
three parts: BackBone, Neck and Prediction [29]. Each part is
mainly composed of five basic modules: CBM(Convolution,
Batch Normalization and Mish), CBL(Convolution, Batch
Normalization and Leaky-ReLU), Res unit(Residual units),
CSPx(Center and scale prediction) and SPP(Spatial Pyramid
Pooling). In the BackBone network, the CSPdarknet53 net-
work structure including CSP and Darknet53 is used. The
extracted feature maps are divided into X1 and X2 in CSPnet.

X1 is directly input to the next layer and X2 is input to
the next layer after Dense Block. In Neck structure, PANet
and SPPNet are adopted. The rich spatial information of the
bottom-up data flow and the rich semantic information of the
top-down data flow are connected by PANet. The SPPNet
applies maximum pooling with 5× 5, 9× 9, 13× 13 sliding
kernels for preserving space size. Then the feature maps from
different kernel sizes are concatenated as output.

2) IMPROVED DEEPLABV3+ WITH CODING LAYER AND
ATTENTION MECHANISM OPTIMIZATION
For existing Deeplabv3+ used for image segmentation,
because the Depthwise Convolution of backbone feature
extraction network Xception has no ability to change the
number of channels, feature extraction is limited by the num-
ber of channels on the upper layer of Depthwise Convolution.
It is easy to lose high-dimensional spatial features and affect
segmentation accuracy. Additionally, for the small and dense
objects with random state in the image of vehicle-mounted
dynamic rice grain flow on combine harvester, it is more
difficult to improve the accuracy and real-time of object
segmentation by existing Deeplabv3+ with unified atten-
tion. Therefore, this paper improves the existing Deeplabv3+
based on coding layer and attention mechanism optimization,
mainly as follows:

The backbone network is replaced. The Xception model
of coding layer is replaced by the MobileNetv2 model.
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FIGURE 3. Network structure of MobileNetv2.

FIGURE 4. Efficient channel attention.

Compared with Xception, MobileNetv2 contains Inverted
residual networks and Linear Bottleneck units [30], as shown
in Fig. 3. When stride =1, the input image expands the
number of channels based on 1 × 1 convolution (activa-
tion function is ReLU6), and based on 3 × 3 depthwise
convolution (activation function is ReLU6). Then based on
1 × 1 pointwise convolution, the number of channels is
compressed (activation function is linear). Finally, the two
channels are added based on shortcut. When stride = 2, there
is no shortcut because the feature map sizes of input and
output are different. The number of channels is expanded by
adding 1× 1 convolution in depthwise convolution to reduce
the limit of channel number for feature extraction, so as to
increase the dimension of feature extraction and improve the
segmentation accuracy.

ECA (Efficient Channel Attention) [31] is added in
encoder and decoder of network, respectively. As shown in
Fig. 4, the one-to-one weight update of the original chan-
nel is retained without reducing the channel dimension by
designing an efficient channel attentionmechanism for obtain
a stability effect of one-to-one weight. In addition, local
cross-channel interaction is used to reduce the increase of
computational cost caused by non dimension reduction of
channels. The coverage of cross-learning is determined by
constructed mechanism of automatically adjusting for kernel
size in ECA to improve the concentration of Deeplabv3+
model.

The improved Deeplabv3+ with coding layer and atten-
tion mechanism optimization is shown in Fig. 5. The
MobileNetv2 is adopted as the backbone network in
encoder part to extract two effective feature layers of high
and low dimensions. After ECA and a large number of
dilated convolutions in encoder, the high-dimensional fea-
ture layer with receptive field enlarged is sent to decoder.
The low-dimensional feature layer after ECA module in
decoder is fused with the high-dimensional feature layer
obtained by encoder for obtaining semantic segmentation
result.

3) IMPROVED YOLOv4 WITH DATA ENHANCEMENT AND
ATTENTION MECHANISM OPTIMIZATION
The existing YOLOv4 uses Mosaic data enhancement
which randomly clipping and splicing four images. For the
vehicle-mounted dynamic rice grain flow image with small
and dense objects on combine harvester, the clipping and
splicing does not significantly improve the network training
effect. In addition, the ReLU is easy to cause gradient disap-
pearance and unified attention. All above make the accuracy
and real-time performance of the existing YOLOv4 difficult
to meet the requirements of impurity/breakage assessment
for vehicle-mounted dynamic rice grain flow on combine
harvester. Therefore, the existing YOLOv4 is improved based
on data enhancement and attention mechanism optimization
in this paper, as shown in Fig. 6, mainly as follows:

Mosaic is replaced by Mixup for data enhancement. For
images with small and intensive objects with strong repeata-
bility, Mixup [32] is used to preprocess the training data
of YOLOv4 network in this paper, and new samples and
labels are created by linear interpolation. Two images and
labels are randomly selected for fusion according to a certain
proportion, as shown in Fig. 7. Image enhancement is carried
out based on (1), where, Bx1 and Bx2 represent batch samples
respectively, By1 and By2 represent the label of Bx1 and Bx2,
Mx and My represent the batch samples and labels after
mixing respectively, λ = Beta(α, β) is the mixing coefficient
calculated by the Beta distribution of parameters α and β.{

Mx = λBx1 + (1 − λ)Bx2
My = λBy1 + (1 − λ)By2

(1)

For ReLU function, when the input is negative, the gradient
is 0, which may cause the problem of gradient disappearing
and weakening. Therefore, the ReLU activation functions in
Neck middle layer and Head output layer are replaced by
Mish activation function. As shown in Fig. 6, CBL module
is replaced by CBM. The self-regularized non-monotonic
neural activation function Mish is shown in (2). The smooth
activation function allows better information to penetrate into
the neural network, resulting in better accuracy and general-
ization.

f (x) = x tanh(ln(1 + ex)) (2)

In BackBone, The ECA modules are added in three-layer
networks before output to Neck and Prediction. As shown in
Fig. 4, the network aggregates features of different detection
layers at different backbone layers to improve its concentra-
tion.

As shown in Fig. 6, improved YOLOv4 with data enhance-
ment and attention mechanism optimization still includes
BackBone, Neck and Prediction. In BackBone, which mainly
extracts image features, the middle layer of Neck with atten-
tion mechanism not only fuses features of various scales, but
also focuses on the main features and ignores the inessential
features. In Prediction, a bottom-up feature pyramid with two
PAN (Path Aggregation Network) structures is added behind
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FIGURE 5. Improved Deeplabv3+ with coding layer and attention mechanism optimization.

FIGURE 6. Improved YOLOv4 with data enhancement and attention mechanism optimization.

the FPN (Feature Pyramid Network) layer. The FPN layer
transfers strong semantic features from top to bottom, and
the feature pyramid transfers strong localization features from
bottom to top to fuse features of different detection layers in
different backbone layers.

B. DISCRETE ELEMENT ANALYSIS OF RICE GRAIN
MOVEMENT AND DETECTING POINT LOCATING FOR
IMPURITY/BREAKAGE ASSESSMENT ON CONVEYING
AUGER OF COMBINE HARVESTER
The impurity/breakage assessment of rice grain for opera-
tion status monitoring of combine harvester is located in
the transport and storage parts after threshing and cleaning.
Compared with stacked and shielded grain tank, the grain
conveyer with relatively separated grains at each time is more
suitable for locating the detecting point of impurity/breakage.
Therefore, the modeling and discrete element analysis of rice
grain movement on grain conveyer of harvester are carried
out to locate optimal detecting point of impurity/breakage,
which lays a foundation for the impurity/breakage assessment
of vehicle-mounted dynamic rice grain flow on combine
harvester.

FIGURE 7. Mixup for data enhancement.

1) MODELING AND DISCRETE ELEMENT ANALYSIS OF RICE
GRAIN MOVEMENT ON GRAIN CONVEYER OF COMBINE
HARVESTER
Vertical grain conveyer is mainly composed of auger cov-
ering, blade of conveying auger, shaft, grain outlet, etc.,
as shown in Fig. 8. During the field operation, the blade
drove the grains below the auger to the grain outlet. With
the high speed rotation of blade, the grains quickly left the
grain conveyer and are thrown into the grain tank with fan
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FIGURE 8. Grain conveyer of combine harvester.

FIGURE 9. Rice grain and impurity particle models. (a) Rice grain,
(b) Impurity.

shape. The grain movement speed during transportation can
reach 1.2m/s [33]. It can be seen from Fig. 8 that the grain
conveyer is a cylinder, and only has a plane at the side of grain
outlet. In addition, as the grains are driven by blade in auger
covering, if the grain status is detected at the side of auger
covering, it will be easily interfered by blade. Therefore, the
impurity/breakage detecting point is located on the side of
grain outlet in this paper. The motion of rice particles in grain
conveyer is simulated and the motion law of rice grains and
impurities at the grain outlet is analyzed by EDEM [34] for
locating optimal detecting point of impurity/breakage.

In order to reduce redundancy and improve simulation
efficiency, the auger covering model is simplified by Merge
function in Geometry. The transmission parts and power
devices at the bottom of auger covering are removed, and the
grain collecting tank is added, which is used to collect grains
and impurities from the grain outlet. Based on the previous
research results of our research group on rice discrete element
simulation [35], [36], mechanical parameters and contact
coefficient values of grains, impurities and auger covering are
set, as shown in Table 1. The non-sliding contact model is
set between grains, grains and impurities, grains and auger,
impurities and auger. The rice particles with 7.62 mm length
l1, 2.98mmheight h1 and 2.98mmmaximumdiameter d1 are
added. The cylindrical impurity particles with 32 mm length
l4 and 3 mm diameter d4, as shown in Fig. 9.
A plane in the middle of auger covering is added and its

property is set to Virtual. A particle factory on the plane is
created to produce grain and impurity particles. The total
yield and unit time yield of grain particles are 1 × 105 and
2 × 104, respectively. The total yield and unit time yield
of impurity particles are 2 × 104 and 4 × 103, respectively.

TABLE 1. Mechanical parameters and contact coefficient values of grains,
impurities and auger covering.

A circular rotation with speed of 974 r/min is added to shaft of
grain conveyer. The time step is set as 1×10−6 s, the solution
time is 5 s, the grid size is 6 mm, and the number of grids is
29,028,996. Based on the above model and optimized param-
eters, the discrete element analysis of rice grain movement on
grain conveyer of harvester is carried out.

2) DETECTING POINT LOCATING FOR IMPURITY/BREAKAGE
ASSESSMENT
The EDEMmotion simulation based on rice grains shows that
the position A outlined in the Fig. 10 is always in the state
of grain and impurity flow and full in the process of grain
transport. Considering the requirements of sampling cover-
age and single sampling amount of grains in grain conveyer
for impurity/breakage assessment, the position A is used as
the optimal detecting point for impurity/breakage assessment.
In addition, considering the space limitation and operation
smoothness of grain conveyer, the impurity/breakage assess-
ment module is constructed on the outside of grain outlet
corresponding to position A. The detection surface corre-
sponding to position A is modified to be a high-transparence
glass for realizing high-frequency sampling and assessment
of grain in the grain conveyer by external detection module.

C. IMPURITY/BREAKAGE ASSESSMENT OF
VEHICLE-MOUNTED DYNAMIC RICE GRAIN FLOW ON
COMBINE HARVESTER
At the outlet of grain conveyer, the flowing grains are dense,
and its state is random. The image of grain impacting glass of
detecting point has many small objects and high-frequency
spatial features. It is difficult to achieve high-precision
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FIGURE 10. Optimal detecting point for impurity/breakage assessment.

FIGURE 11. Image acquisition module of dynamic rice grain flow. 1 box,
2 camera, 3 lens, 4 light source, 5 light source controller, 6 embedded
processor, 7 high-transparence glass.

real-time impurity/breakage assessment based on the existing
Deeplabv3+ and YOLOv4. Therefore, an image acquisition
module of vehicle-mounted dynamic rice grain flow is con-
structed in this paper. And the improved Deeplabv3+ and
YOLOv4 with attention mechanism optimization is adopted
to extract impurities, broken and complete grains in the
dynamic grain flow. The impurity and breakage rates are
assessed based on the relationship model between pixel area
and quality.

1) IMAGE ACQUISITION AND PREPROCESSING OF
VEHICLE-MOUNTED DYNAMIC RICE GRAIN FLOW
a: IMAGE ACQUISITION OF DYNAMIC RICE GRAIN FLOW
The image acquisition module of dynamic rice grain flow
is installed at optimal detecting point of impurity/breakage,
as shown in Fig. 11, whichmainly includes box, camera, lens,
light source, light source controller, embedded processor,
and high-transparence glass. To prevent the interference of
external light, the module is encapsulated in box, and the
light is supplemented by an adjustable light source. A high-
transparence glass is constructed between lens and grains to
be detected for realizing high-frequency sampling and assess-
ment of grain in the grain conveyer by external detection
module. In order to reduce the influence of mirror imaging
caused by glass reflection and brightness difference between

two sides of glass on image quality, the low angle annular
diffuse light source is adopted.

b: PREPROCESSING OF DYNAMIC RICE GRAIN FLOW
IMAGES
For the factors of vibration, dust and reflect light, the acquired
image may have problems such as shadow, edge blur, and
noise, etc. Therefore, a nonlinear distortion model of camera
imaging is constructed in this paper. A circular ROI (region
of interest) is constructed according to the features of detect-
ing region. Based on median filtering and high-frequency
enhancement, the edge contrast of rice grains and impurities
in the image is improved.

According to (3), ignoring high order component of distor-
tion model, according to nonlinear distortions, such as radial
distortion, centrifugal distortion and thin prism distortion,
the mathematical model of total nonlinear distortion is estab-
lished by taking the main distortion parameters.{
Dx = k1xar2 + k2xar4 + p1(3x2a + y2a) + 2p2xaya + s1r2

Dy = k1yar2 + k2yar4 + 2p1xaya + p2(x2a + 3y2a) + s2r2

(3)

r2 = x2a + y2a. the radial distortion is constrained by xa
/
ya =

xr
/
yr . (xa, ya) and (xr , yr ) are the image coordinates of the

actual imaging and ideal imaging of camera, respectively.
Transform (3) to obtain the camera distortion model:

[
xar2 xar4 3x2a + y2a 2xaya r2 0
yar2 yar4 2xaya x2a + 3y2a 0 r2

]

k1
k2
p1
p2
s1
s2


=

[
xr − xa
yr − ya

]
(4)

Dk = [k1 k2 p1 p2 s1 2]T is the distortion parameter vector.
The circular illuminated region is constructed based on

the size of light source, and is segmented based on gray
histogram. The median filtering is used to smooth salt and
pepper noise and pulse noise for maintaining edge features of
image and reducing blur caused by noise reduction. Accord-
ing to (5), the filter is constructed to enhance image edges
and reduce influence of shadow and edge blur on small object
extraction. The preprocessing results are shown in Fig. 12.

P1(x, y) = round((P(x, y)

−
1

(2n+ 1)2

y+n∑
j=y−n

x+n∑
i=x−n

P(i, j))∗a) + P(x, y)

(5)

P(x, y) and P1(x, y) are the initial and enhanced pixel val-
ues at point (x, y), respectively, a is difference enhancement
multiple, n = (k − 1)/2, and k is the length and width of the
filter, where k is odd and k ≥ 3.
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FIGURE 12. Preprocessed results. (a) Original image, (b) Corrected image, (c) Preprocessed image.

FIGURE 13. Objects in the image. (a) Complete grains, (b) Broken grains, (c) Impurities.

2) IMPURITY AND BROKEN GRAIN EXTRACTION BASED ON
IMPROVED DEEPLABV3+ AND ELLIPSE ATTRIBUTES OF
OBJECT
The objects in vehicle-mounted dynamic rice grain flow
imagemainly include complete and broken grains, impurities.
The impurities mainly include branches and stalks, as shown
in Fig. 13. The complete grain shape is oval and its shell is
intact. The broken grains are incomplete elliptic and partially
exposed. In impurities, the branches are curved and the stalks
are straight. In order to improve the object extraction accuracy
for a large amount of data, different methods are adopted to
extract complete and broken grains, impurities in this paper,
and the broken grains and impurities are extracted based on
improved Deeplabv3+ and ellipse attributes.

a: EXTRACTION AND CLASSIFICATION OF IMPURITIES
BASED ON IMPROVED DEEPLABV3+

From the rice images collected from field experiment,
400 images are selected as the original dataset without dupli-
cate, consistent time and space, and omission. The origi-
nal dataset is transformed and expanded by adding noise,
data enhancement, scale change and affine transformation to
obtain a dataset containing 6400 images. Labelme is used
to label the transformed dataset, and the dataset is divided
into training dataset and testing dataset according to 7:3.
To accelerate the convergence speed of network for small
samples dataset, transfer learning is used to train. Firstly,
improve Deeplabv3+ is pre-trained based on large-scale
Coco dataset to learn general features such as edges, lines
and corners. Secondly, the training dataset of dynamic rice

grain flow images is used to retrain improve Deeplabv3+
to learn object features. The network training adopts twice
sampling freezing method. The first parameters are 5× 10−4

learning rate, 4 batch size and 50 iterations. After freezing the
weight of backbone network, the parameters are adjusted to
5 × 10−5 learning rate and 2 batch size. Finally, the network
is verified and optimized on testing dataset for obtaining
trained improved Deeplabv3+ network. It is used to extract
impurities from dynamic rice grain flow images. And the
impurities are subdivided based on features of edges and
regions to obtain branch and stalk regions.

b: EXTRACTION OF BROKEN GRAINS BASED ON ELLIPSE
ATTRIBUTES
The descriptors that can represent ellipse attributes of regions,
such as anisometry Ed , bulkiness Ef , struct factor Es of
equivalent ellipse, circumcircle radius Re, incircle radius Ri,
and roundness Rn, are designed, as shown in (6)-(9) [37].

Ed =
r1
r2

(6)

Ef =
πr1r2

α
(7)

Es = Ed · Ef − 1 (8)

Rn = 1 −
dp
da

(9)

r1, r2, α represent semi-major axis and semi-minor axis of
equivalent ellipse, and the orientation of r1 with regard to the
x-axis of image coordinate, which can be calculated based
on region geometric moments Upq according to (10)-(12). da
and dp are the average distance and distance deviation from
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the boundary to center of region, respectively.

r1 =

√
2(U20 + U02 +

√
(U20 − U02)2 + 4U2

11) (10)

r2 =

√
2(U20 + U02 −

√
(U20 − U02)2 + 4U2

11) (11)

α = −
1
2
arctan

2U11

U02 − U20
(12)

Because of the randomness of broken grain region position,
the position is independent of the region category. In order to
avoid the influence of region position on geometric moment,
the center of region is used to normalize the geometric
moment according to (13)-(15).

Npq =
1
a

∑
(x,y)∈R

xpyq (13)

Or = (N10,N01) = (
1
a

∑
(x,y)∈R

x1y0,
1
a

∑
(x,y)∈R

x0y1) (14)

Upq =
1
a

∑
(x,y)∈R

(x − N10)p(y− N01)q (15)

R is the region, (x, y) is the image coordinates of pixels
in the region, a is the area of region, Or is the center of
region, (N10,N01) is the image coordinate of Or , Npq is the
geometric moment normalized by region area, Upq is the
geometricmoment normalized by area and position. da and dp
are also calculated based on Or , according to (16)-(17). The
normalized geometric moment is adopted to define the ellipse
equivalent to the region. The center of equivalent ellipse is
the same as the center of region. Based on the constructed
feature descriptors, a multi-dimensional feature vector with
ellipse attributes is constructed for describing and classifying
exposed regions of broken grains for extracting broken grains
from images.

da =
1
a

∑
(x,y)∈R

√
(x − N10)2 + (y− N01)2 (16)

dp =

√√√√1
a

∑
(x,y)∈R

(
√
(x − N10)2 + (y− N01)2 − da)2 (17)

3) COMPLETE GRAIN EXTRACTION BASED ON IMPROVED
YOLOv4
Compared with impurities, the number of complete grains
in an image can reach up to 300. Therefore, compared
with dataset for improved Deeplabv3+, the dataset for
improved YOLOv4 is structured according to the rules
of non-duplicate, differentiation in time and space, non-
omission, and complete distribution for coverages of grains
on images. The 400 selected original images are transformed
and expanded to obtain a dataset containing 6400 images.
The transformed dataset is labelled by Labelimg based on
rectangular boxes, and is divided into training dataset and
testing dataset according to 6:4. Transfer learning is still

used to train, and the improved YOLOv4 is pre-trained based
on PASCAL VOC2012 dataset to learn general features and
retrain based on training dataset to learn object features. For
network training by twice sampling freezing method, the
first parameters are 1 × 10−3 learning rate, 1 batch size and
40 iterations. After freezing the weight of backbone network,
the parameters are adjusted to 1 × 10−4 learning rate and
1 batch size. The network is verified and optimized on testing
dataset for obtaining trained improved YOLOv4. It is used to
extract complete grains from dynamic rice grain flow images
and count the number of complete grains in an image.

4) IMPURITY/BREAKAGE ASSESSMENT BASED ON THE
RELATIONSHIP MODEL BETWEEN PIXEL AREA AND QUALITY
The impurity/breakage assessment is related to the quality
of object, but the extracted regions of complete and broken
grains, impurities in images only has pixel and quantity
information. It is necessary to construct relationship model
between pixel area and quality to accurately and rapidly
assess the impurity and breakage rates.

a: CONSTRUCTION OF RELATIONSHIP MODEL BETWEEN
PIXEL AREA AND QUALITY
For complete grains, the relationship between grain quantity
and total quality is calculated based on 1000 grain weight
obtained by precision electronics balance with 0.001g accu-
racy and manual counting. For broken grains and impurities,
the pixel area and quality are obtained by static test stand
for relationship fitting. The constructed image acquisition
module of dynamic rice grain flow is installed at static test
stand for simulating actual detecting environment, as shown
in Fig. 14. The samples of broken grains, branches and stalks
are placed on the detection plane by category for acquiring
image with single category sample. The objects in images
are extracted by proposed method in this paper to obtain a
pixel set in which each region corresponds to the sample one
by one, as shown in Fig. 15. The quality set in which each
data corresponds to the sample one by one is obtained by
electronics balance.

From Fig. 16 we can see that there is a linear relationship
between pixel and quality, so the least square method is used
to fit. The relationship model between pixel area and quality
for broken grains, branches and stalks obtained are as follows:

Mr = 1.0543 × 10−5
× Sr (18)

Ms = 3.1732 × 10−6
× Ss − 0.02859 (19)

Mb = 1.6348 × 10−6
× Sb + 0.016 (20)

The Mr , Ms and Mb are qualities of broken grains, branches
and stalks, respectively and its unit is g. The Sr, Ss and Sb are
pixel areas of broken grains, branches and stalks, respectively
and its unit is pixel.

b: ASSESSMENT OF IMPURITY AND BREAKAGE RATES
Based on the relationship model between pixel area and
quality, an assessment model of impurity and breakage rates
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FIGURE 14. Static test stand. 1 Image acquisition module, 2 brace, 3 Processor, 4 Test objects, 5 electronics balance.

FIGURE 15. Sample pixel extraction. (a) Broken grains, (b) Branches, (c) Stalks.

FIGURE 16. Fitting for pixel and quality. (a) Broken grains, (b) Branches, (c) Stalks.

is constructed. If m is 1000 grain weight of complete grains,
nt is quantity of complete grains extracted from an image at
time t during harvest operation, Srt , Sst and Sbt are pixel areas
of broken grains, branches and stalks at time t , respectively,
then the impurity rate at time t is as (21), shown at the bottom
of the page.

TheMrt ,Mst ,Mbt andMct are the total quantities of broken
grains, branches, stalks and complete grains in an image at
time t , respectively. The breakage rate at time t is:

Zdt =
Mrt

Mrt +Mct

=
1.04 × 10−5

× Srt
1.04 × 10−5 × Srt + m× nt/1000

(22)

III. RESULTS
A. EXPERIMENTAL PLATFORM
To verify the effectiveness and advantages of proposed
method, the image acquisition module of vehicle-mounted
dynamic rice grain flow was installed on the 4LZ-6A multi-
functional intelligent crawler-type combine harvester devel-
oped by our team, as shown in Fig. 17. The processor was
Jetson Xavier NXwith Ubuntu18.04 system, Python3.8 com-

Zit =
Mst +Mbt

Mrt +Mst +Mbt +Mct

=

(
3.1732 × 10−6

× Sst − 0.02859
)
+

(
1.6348 × 10−6

× Sbt + 0.016
)

1.04 × 10−5 × Srt +
(
3.1732 × 10−6 × Sst − 0.02859

)
+

(
1.6348 × 10−6 × Sbt + 0.016

)
+ m× nt/1000

(21)
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FIGURE 17. Experimental platform.

pilation environment, Opencv, PaddlePaddle, Pytorch deep
learning framework and CUDA architecture. The exper-
iments were conducted in rice fields in Picheng Town,
Zhenjiang City and Wujiang National Modern Agriculture
Demonstration Zone, Suzhou.

B. EXPERIMENTAL METHODS
Based on the images collected in the field, the comparative
experiments were conducted on the improved Deeplabv3+,
improved YOLOv4 and the existing methods. According to
trained network models, the effectiveness and advantages of
the assessment method for impurity and breakage rates were
verified in the field experiments.

1) EXPERIMENT METHOD FOR COMPARISON OF IMPROVED
DEEPLABV3+ WITH EXISTING NETWORK
The datasets of images from all experimental fields were
used for impurity and broken grain extraction by trained
existing and improved Deeplabv3+ model. The artificial
visual markers were used as the real values. The experimen-
tal results were evaluated based on MIoU (mean intersec-
tion over union) and MPA (mean pixel accuracy) indicators.
As shown in (23)-(24), MPA is the cumulative average of
proportions of the correct pixel number for each class by
detection in the total pixel number. MIoU is the cumulative
average of the ratios of intersection to union for predicted
results and real values of each class. The pij represents the
pixel number of class i detected as class j. The extraction
accuracy of impurities and broken grains is calculated based
on pixel area ratio, according to (25). The Ap and Ar are
the extracted and actual pixel areas of impurities and broken
grains, respectively.

MPA =
1

k + 1

k∑
i=0

pii
k∑
j=0

pij

(23)

MIoU =
1

k + 1

k∑
i=0

pij
k∑
j=0

pij +
k∑
j=0

pji − pii

(24)

Ae =
Ap
Ar

(25)

FIGURE 18. Training loss curves of improved DeepLabv3+.

2) EXPERIMENT METHOD FOR COMPARISON OF IMPROVED
YOLOv4 WITH EXISTING NETWORK
The improved YOLOv4 was experimentally compared with
the existing neural networks, such as YOLOv4, U-NET and
BP, and traditional image processing algorithms, such as
template matching and feature extraction. The complete grain
extraction methods based on U-NET and BP referred to ref-
erences [38] and [20]. The grain feature extraction method
based on threshold segmentation and region classification and
the grain template matching method based on edge detection
and shape matching were designed in this paper. Based on the
datasets of images from experimental fields, the experimental
results were evaluated based on Precision, Recall and mAP
indicators according to (26)- (28). TP is true positives in
confusionmatrix for network evaluation, FP is false positives,
FN is false negatives, n is the number of classification cate-
gory, and p(r) is precision-recall curve. According to (29), the
accuracy of complete grain extraction was calculated for an
image. The Ar and Ac are the actual and extracted number of
complete grains, respectively.

Precision =
TP

TP+ FP
(26)

Recall =
TP

TP+ FN
(27)

mAP =

1∫
0
p(r)dr

n
(28)

Aa = 1 −
|Ar − Ac|

Ar
(29)

3) EXPERIMENTAL METHOD FOR IMPURITY/BREAKAGE
ASSESSMENT
In the actual field operation, the experiments were carried
out with 1 m/s operation speed, 200mm cutting height and
5s beat for impurity/breakage assessment. Five groups of
experiments were conducted in five different fields. Each
experiment was at a distance of 20 m, and four detection
data were obtained in each group, with a total of 20 data
results. During 5 s beat interval of each experiment in each
group, the field operation was stopped and the samples in
grain tank were sampled manually. Manual statistical average
results of 5 samples were used as the actual value of impurity
and breakage rate in this beat. Before the next beat, the grain
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FIGURE 19. Extraction of impurities and broken grains.

TABLE 2. Comparison of impurity extraction.

tank was emptied to ensure the accuracy of the actual value in
each beat. According to (30)-(31), the assessment accuracy of
impurity and breakage rates were calculated by relative error.
The ei, Zir and Zic are the relative error, actual and detected
values of impurity rate, respectively. The ed , Zdr and Zdc are
the relative error, actual and detected values of breakage rate,
respectively.

ei =
|Zir − Zic|

Zir
(30)

ed =
|Zdr − Zdc|

Zdr
(31)

C. EXPERIMENTAL RESULTS AND DISCUSSION
1) COMPARISON OF EXISTING AND IMPROVED
DEEPLABV3+ FOR IMPURITY AND BROKEN GRAIN
EXTRACTION
The loss curve of improved Deeplabv3+ for impurity extrac-
tion on training dataset is shown in Fig. 18, and the train-
ing loss reached 0.078. The trained existing and improved
Deeplabv3+were used for impurity extraction, and theMIoU
and MPA of the networks were calculated on testing dataset
according to (23)-(24). The average time td of impurity
extraction for single frame by the two networks was calcu-
lated. The indicators are shown in Table 2.

From Table 2, we can see that, compared with existing
Deeplabv3+, the MioU and MPA of improved Deeplabv3+
for impurity extraction increased by 4.13% and 4.92%,
respectively, and average time decreased by 0.06 s. The
improved Deeplabv3+ and ellipse attributes were used to
extract impurities and broken grains. According to (25), the
extraction accuracy of all images in testing dataset were
calculated and the average accuracy for impurity and broken
grain extraction was 93.24% and 94.58%, respectively. The
extraction results are shown in Fig. 19, in which green regions
are impurities and blue regions are broken grains.

TABLE 3. Comparison of complete grain extraction.

2) COMPARISON OF IMPROVED YOLOv4 AND EXISTING
METHODS FOR COMPLETE GRAIN EXTRACTION
a: COMPARISON OF IMPROVED YOLOv4 AND EXISTING
NEURAL NETWORKS
The loss curve of improved YOLOv4 for complete grain
extraction on training dataset is shown in Fig. 20, and the
training loss reached 2.080. The trained improved YOLOv4
was analyzed by comparing with existing YOLOv4, U-Net
and BP on testing dataset. According to (26)-(29), the Preci-
sion, Recall, mAP, Aa and average computation time ty of the
networks were calculated, respectively, as shown in Table 3.

From Table 3, we can see that, compared with the exist-
ing YOLOv4, U-NET and BP, the precision of improved
YOLOv4 in complete grain extraction increased by 2.87%,
7.5% and 17.4%, the Recall increased by 5.66%, 10.79% and
16.53%, mAP increased by 5.85%, 12.58% and 25.48%, and
Aa increased by 4.01%, 9.15% and 35.1%, respectively. Com-
pared with U-Net and BP, the computation time of improved
YOLOv4 decreased by 1.81-4.03 s. Compared with existing
YOLOv4, the improved YOLOv4 is more complex, but the
increase in computation time is small, which is basically the
same as before. The existing and improved YOLOv4 both
meet the lowest beat requirement of 1s for impurity/breakage
assessment.

b: COMPARISON OF IMPROVED YOLOv4 AND TRADITIONAL
IMAGE PROCESSING ALGORITHMS
The trained improved YOLOv4 was analyzed by comparing
with template matching and feature extraction algorithms on
testing dataset. According to (29), the Aa and computation
time ty of the algorithms were calculated, respectively. The
calculation results of 100 randomly selected images were
shown in Fig. 21. The average Aa of the template matching
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TABLE 4. Assessment results of impurity and breakage rates.

FIGURE 20. Training loss curves of improved YOLOv4.

and feature extraction algorithms were 94.21% and 77.78%,
and the average ty were 0.37s and 0.024s, respectively. The
three algorithms all meet the lowest beat requirement for
impurity/breakage assessment. Compared with the template
matching and feature extraction algorithms, the average Aa of
improved YOLOv4 increased by 4.95% and 21.38%, respec-
tively.

The extraction results of complete grains by the three algo-
rithms are shown in Fig. 22, in which the red boxes/ regions
are the detection results of complete grains. From Fig. 22,
we can see that, the feature extraction algorithm was easily
affected by uneven illumination and grayscale, which made
the segmentation error larger. Compared with feature extrac-
tion algorithm, the extraction accuracy of template matching
algorithm was improved, but still was easily affected by the
changes of object scale, rotation and occlusion. Compared

FIGURE 21. Comparison of complete grain extraction. (a) Aa, (b) ty .

with other algorithms, the improved YOLOv4 had higher
detection accuracy and better robustness.

3) FIELD EXPERIMENTS FOR IMPURITY/BREAKAGE
ASSESSMENT
According to (21)-(22), the number of complete grains, the
pixel areas of broken grains and impurities in image obtained
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FIGURE 22. Extraction results of complete grains. (a) Improved YOLOv4, (b) Template matching, (c) Feature
extraction.

FIGURE 23. Assessing time and relative errors of impurity and breakage
rates.

by improved Deeplabv3+ and YOLOv4 were used to assess
impurity and breakage rates. The 20 data results are shown
in Table 4. The calculation of impurity rate was based on the
qualities of complete and broken grains, branches and stalks.
The calculation of breakage rate was based on the qualities
of complete and broken grains. The assessing time included
the time of image processing, quality fitting and calculation of
impurity and breakage rates, so the assessing time of breakage
rate was less than that of impurity rate.

According to (30)-(31), the relative errors of assessment
were calculated based on Table 4. As shown in Fig. 23, the
relative errors of impurity rates stabilized at 2.6%-9.1%, and
the average relative error was 6.20%. The relative errors of
breakage rates stabilized at 6.0%-12.8%, and the average
relative error was 9.18%. The assessing time of impurity
and breakage rates stabilized at 1.5 s-1.6 s, and the average
assessing time was 1.56s. The experimental results verified
the effectiveness and advantages of the proposed method for
impurity/breakage assessment in this paper.

IV. DISCUSSION AND CONCLUSION
For the small and dense objects with random state, such
as grain and impurity, in the image of vehicle-mounted
dynamic rice grain flow on combine harvester, it is difficult
to accurately extract by existing Deeplabv3+ and YOLOv4
with unified attention. Therefore, this paper improved exist-
ing Deeplabv3+ and YOLOv4 based on coding layer

optimization, data enhancement and attention mechanism,
and proposed an impurity/breakage assessment method of
vehicle-mounted dynamic rice grain flow on combine har-
vester. The following conclusions can be drawn:

1) An improved Deeplabv3+ model with coding layer and
attention mechanism optimization was proposed. The Xcep-
tion model of coding layer in constructed network model was
replaced by the MobileNetv2 model. The ECA was added
in encoder and decoder of network, respectively. It solved
the problems that the existing Deeplabv3 with Xception
without ability to change number of channels is easy to
lose high-dimensional spatial features, has a unified attention
mechanism for object detection, and are difficult to apply to
extract small and dense objects with random state in dynamic
rice grain flow image.

2) An improved YOLOv4 with data enhancement and
attention mechanism optimization was proposed. Mosaic was
replaced by Mixup for data enhancement in constructed net-
work. The ReLU activation functions in Neck middle layer
and Head output layer were replaced by Mish activation
function. The ECA modules were added in three-layer net-
works before output to Neck and Prediction in BackBone.
It solved the problems that the clipping and splicing does not
significantly improve the network training effect for images
with small and dense objects, and the ReLU is easy to cause
gradient disappearance.

3) The modeling and discrete element analysis of rice
grain movement on grain conveyer of harvester were carried
out to locate optimal detecting point of impurity/breakage.
The relationship model between complete grains, broken
grains, impurities and pixel area, object quantity was con-
structed. An impurity/breakage assessment method of
vehicle-mounted dynamic rice grain flow on combine har-
vester based on improved Deeplabv3+ and YOLOv4 was
proposed.

4) The proposed impurity/breakage assessment method of
vehicle-mounted dynamic rice grain flow on combine har-
vester was adopted to the 4LZ-6A multi-functional intelli-
gent crawler-type combine harvester developed by our team
for comparative experiments. The improved Deeplabv3+
and ellipse attributes were adopted to impurity and broken
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grain extraction. Compared with existing Deeplabv3+, the
MioU and MPA of improved Deeplabv3+ increased by
4.13% and 4.92%, and average time decreased by 0.06s. The
improvedYOLOv4was adopted to complete grain extraction.
Compared with the existing YOLOv4, U-NET and BP, the
accuracy increased by 4.01%, 9.15% and 35.1%, respec-
tively. Compared with the template matching and feature
extraction algorithms, the accuracy increased by 4.95% and
21.38%, respectively. Based on proposed impurity/breakage
assessment method, the average relative error of impurity
rates was 6.20%, the average relative error of breakage
rates was 9.18%, and the average assessing time was 1.56s.
The improved Deeplabv3+ and YOLOv4 can be used for
real-time impurity/breakage assessment for vehicle-mounted
dynamic rice grain flow on combine harvester in real time,
and improving the assessment accuracy to further realize
closed-loop control of intelligent harvesting operation.

The improved Deeplabv3+ and YOLOv4 with atten-
tion mechanism optimization can be used to improve the
accuracy and efficiency for impurity/breakage assessment
of vehicle-mounted dynamic rice grain flow on combine
harvester. The research in this paper focuses on impu-
rity/breakage assessment on conveying auger of combine
harvester. In the future, this method can be further extended
to other nodes in the harvester operation process to lay the
foundation for high-precision closed-loop control of intelli-
gent operation of harvesters.
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