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ABSTRACT The speech transmission index (STI) and room acoustic parameters (RAPs) are essential
metrics for assessing speech quality and predicting listening difficulty in a sound field. Although STI and
important RAPs, such as reverberation time and clarity, can be derived from the room impulse response
(RIR), measuring the RIR in regularly occupied spaces is difficult. Hence, simultaneous blind estimation
of STI and RAPs is an imperative challenge issue that must be addressed. However, most existing methods
provide only a single parameter and require a massive dataset for model training. A deterministic method
is presented for blindly estimating STI and five RAPs using a stochastic RIR model that approximates an
unknown RIR. An algorithm is formulated that uses the temporal power envelope of a reverberant speech
signal to determine the optimal parameters of the RIR model. A mathematical model of reverberation and
dereverabation process was proposed based on the temporal power envelope of the signals. This model
maps the parameters of the RIR model to the observed reverberant signal. The estimated RIR can then
be synthesized using the optimal parameters to estimate the STI and RAPs. A simulation was conducted
to evaluate the simultaneous estimation of STI and five essential RAPs from observed reverberant speech
signals, in comparison to the best existing previous work. The root-mean-square error (RMSE) and Pearson
correlation coefficient between the estimated and measured values were used as evaluation metrics. In terms
of STI, the proposed method achieves the accuracy with an RMSE of 0.037. With regard to the reverberation
time and other RAPs, the accuracy remains consistent with the previous works. The results show that the
proposed method can effectively estimate STI and RAPs simultaneously without any training.

INDEX TERMS Room impulse response, modulation transfer function, reverberation, speech transmission
index, room acoustic parameters.

I. INTRODUCTION
The clarity of music and the intelligibility of speech in a room
play essential roles in daily life [1], [2]. An auditory space in
which people are present encompasses walls, ceilings, and
furnishings. It is important for sounds to be intelligible and
easily audible in an auditory space. For example, general
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auditoriums require intelligible and easily audible sounds for
emergency announcements, public addresses, and lectures
[3, Ch. 11]. Concert halls are designed for delivering clear and
transparent music [3, Ch. 5]. The intelligibility of speech and
clarity of music can be determined by evaluating room acous-
tic characteristics (RACs) and diagnosing the degradation
of acoustical quality. Since speech intelligibility and sound
clarity are subjective perceptions, listening experiments are
typically conducted to assess them. However, listening
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experiments are expensive and time-consuming, which
makes them impractical to apply in public spaces [4]. Hence,
objective indices and room acoustic parameters (RAPs), i.e.,
the physical descriptions of room acoustics [5], [6], [7], have
been proposed for use in the subjective evaluations of audi-
tory spaces. RAPs have proved useful in various applications
such as public address systems [8], hearing aids systems [9],
and speech enhancement applications [10], [11].

Several objective indices and RAPs have been investigated
and standardized [5], [12], [13], [14]. For example, in IEC
60268-16:2020, a speech transmission index (STI) based on
the modulation transfer function (MTF), which is an objec-
tive index, is used to predict the speech intelligibility of a
sound field [12], [13], [15]. The MTF quantifies the effect
of reverberation on sound waves as they traverse an auditory
space [16], [17]. The essential RAPs and their measurements
are specified in ISO 3382-1:2009, including reverberation
time (T60), early decay time (EDT), clarity (early-to-late-
arriving sound energy ratio: C80 / C50), Deutlichkeit (early-
to-total sound energy ratio: D50), and center time (Ts) [14].
T60 is an essential parameter for representing the RACs.

The STI and RAPs can be obtained from the measured room
impulse response (RIR). An RIR fully represents the RACs
of a sound field in the time domain while MTF describes
the RACs in the frequency domain. The MTF can also be
derived from the RIR. Measuring RIR requires the use of sine
sweep signals or maximum length sequences as the excitation
signals [5], [18]. However, it is difficult to measure RIR in
spaces where people cannot be excluded, e.g., concourses and
train stations, since RIR measurement requires high-energy
sounds. RIRmeasurements are also limited to reflect changes
in the RAC caused by variations in the number, location, and
arrangements of the occupants and objects in a given space.
Hence, the RACs in public spaces can be considered a time-
varying system. The STI and RAPs measured in compliance
with the specific standards may differ from non-compliant
ones for the same auditory space. As a result, blind estimation
methods have been proposed for obtaining STI and RAPs
from an observed signal.

Blind estimation is challenging because it is an ill-posed
inverse problem that derives a system solely from the output
without prior knowledge of the input. Common methods
include modeling the system to create a mapping from the
output to the system using either mathematical derivation
or machine learning techniques. For example, some ana-
lytical approaches have been proposed for blind estimation
of the reverberation time and STI by Kendrick et al. [19],
Unoki et al. [20], and Keshavarz et al. [21]. With the
recent trend of machine learning in the field of signal
processing, artificial neural networks have been widely
applied to seek out the implicit mapping between the
observed reverberant signal and the desired RAPs. Götz et al.
combined the auditory-motivated Gammatone filterbank
and convolutional neural network (CNN) to blindly esti-
mate the reverberation time in dynamic acoustic condi-
tions [22]. Zheng et al. proposed a robust estimation

method for the reverberation time under the noisy con-
ditions using gated convolutional recurrent network [23].
Lopez-Ballester et al. proposed the CNN-based algorithm
applied in Internet of Things for blind estimation of the
reverberation time [24]. Duangpummet et al. proposed the
temporal-amplitude-envelope (TAE) based CNN for simul-
taneously estimating the STI and five essential RAPs, which
is the first approach to achieve six-parameter blind estimation
simultaneously [4]. Although many methods have been pro-
posed, they provide only a single RAP or STI and require a
massive amount of training data, which is rarely available in
spite of the fact that the environments differs from the training
data.

The aim of the work reported here was to devise a deter-
ministic method that can derive parameters of an RIR model
for estimating the STI and RAPs from an observed speech
signal without any training dataset. Our study makes four
important contributions to the contemporary knowledge fron-
tier as follows:

• The effect of reverberation on the waveform of a signal
transmitting in a sound field is clarified.

• An explicit closed-form solution is deterministically
given using temporal power envelopes (TPEs) in the
time domain.

• The TPE of an input signal is shown to be restored by
using the closed-form solution based on the concept of
the MTF.

• A deterministic estimation method for blindly estimat-
ing STI and five RAPs simultaneously is presented that
has estimation accuracy comparable to that of the state-
of-the-art method [4].

This paper is organized as follows. Section II briefly
describes the STI and five essential RAPs. Section III reviews
related works on the blind estimation of RIR, STI, and
RAPs. Section IV describes the relationship between the
RIR and observed reverberant signal to establish the corre-
sponding mathematical derivations and the proposed blind
estimation method. Section V describes the experimental
setup and presents evaluation results. SectionVI discusses the
results, limitations, findings, and remaining works. Finally,
Section VII summarizes the key points.

II. SPEECH TRANSMISSION INDEX AND ROOM
ACOUSTIC PARAMETERS
Many indices and RAPs describing the acoustic characteris-
tics of a sound field have been studied and standardized [5],
[7], [13], [14], [25], [26]. The index and RAPs widely used
by audio engineers and musicians are briefly introduced as
follows.

A. SPEECH TRANSMISSION INDEX
The speech transmission index (STI) is used to predict the
speech intelligibility and listening difficulty of a sound field.
It was originally defined by Houtgast and Steeneken on the
basis of the MTF. The MTF describes the characteristics of
a transmission channel from the speaker to the listener by
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FIGURE 1. Block diagram of STI calculation.

the attenuation level of the modulation depth as a function
of the modulation frequency [12], [15]. It is used to quantify
the reverberation level. The higher the modulation depth, the
lower the reverberation.

The MTF of a sound field can be defined as the ratio of the
modulation spectrum of the RIR of the sound field to the total
energy of the RIR:

m(fm) =

∫
∞

0 h2(t) exp(−j2π fmt)dt∫
∞

0 h2(t)dt
, (1)

where h(t) represents the RIR, and m(fm) represents the MTF
at a modulation frequency fm.

The calculation of the STI has been standardized in IEC
60268-16:2020 [13], as shown in Figure 1. First, the RIR
passes through a seven-octave filterbank to calculate theMTF
for each band using (1). Then, the modulation distortion ratio
at 14 specific modulation frequencies is calculated as:

Nk,i = 10 log10

[
mk (fm,i)

1 − mk (fm,i)

]
, (2)

where k = 1, 2, . . . , 7 and i = 1, 2, . . . , 14. The 14 spe-
cific modulation frequencies can be determined, as shown in
Table 1. Transmission index (TI) T at each octave band is
determined:

T (k, i) =


1, N (k, i) > 15,
N (k, i) + 15

30
, −15 ≤ N (k, i) ≤ 15,

0, N (k, i) < −15,

(3)

where the value of TI is limited to the range of −15 dB to
15 dB and normalized to the unit.

Next, the modulation transmission index (MTI)M for each
band is calculated by averaging all N (k, i) along with the
specific modulation frequencies:

Mk =
1
14

14∑
i=1

N (k, i). (4)

Finally, the STI is derived by summing up the MTIs for the
seven bands:

STI =

7∑
k=1

WgtkM (k), (5)

where Wgtk represents the weighting factor for each band,
as shown in Table 2. The STI is a number ranging from 0 to 1.
The higher the index, the more the speech intelligibility in the
sound field.

B. REVERBERATION PARAMETERS
The reverberation time (T60) and EDT RAPs are related to
reverberation [7]. T60 is the most essential RAP in room
acoustics as it characterizes the physical properties of a sound
field in which energy is distributed within −60 dB. EDT
characterizes the duration of the sound decay in a sound field
within an initial−10 dB, so it emphasizes the more important
contributions of direct sound and the early reflections of
perceived reverberation. Both RAPs are derived from the
energy decay curve of the RIR by using Schroeder’s back
integration method [27].
T60 is the 60-dB decay time calculated by line-fitting to

the proportion of the energy decay curve between −5 dB
and −35 dB and a linear extrapolation to −60 dB, since
directly measuring the full 60 dB of decay is a practical
limitation due to the presence of the background noise [14],
[28]. EDT is the 60-dB decay time calculated by line-fitting to
the proportion of the energy decay curve within −10 dB and
a linear extrapolation to −60 dB. Figure 2 shows an example
of deriving the reverberation parameters from curve fitting of
the energy decay curve.

C. ENERGY PARAMETERS
Clarity (C80), Deulitchkeit (D50), and center time (Ts) are
related to ratios of the RIR between the early energy provided
by the first reflections and the energy from the late reverber-
ation or the whole RIR. They are strongly correlated with the
clarity impression in a given sound field.
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TABLE 1. Fourteen specific modulation frequencies.

TABLE 2. MTI octave-band weighting factor.

FIGURE 2. Calculation of reverberation parameters calculation from
energy decay curve of RIR.

• C80 is the energy ratio of early-to-late arrival reflections,
which characterizes the perception of transparencywhen
music signal is transmitted in a sound field. It is defined
as:

C80 = 10 log10

∫ 80ms
0 h2(t)dt∫
∞

80ms h
2(t)dt

, (6)

where 80ms denotes the time boundary between early
reflections and late reverberation.

• D50 is another RAP correlated with clarity, it character-
izes the subjective response to speech intelligibility in
a sound field. It is the ratio of the sound energy in the
first 50ms after the arrival of the direct sound to the total
energy and is defined as:

D50 =

∫ 50ms
0 h2(t)dt∫

∞

0 h2(t)dt
× 100, (7)

where 50ms is the boundary of the early sound energy.
• Ts is the ‘‘center of gravity time’’ of decaying energy in a
sound field. It characterizes the balance between clarity
and reverberation and is related to speech intelligibility.
It is expressed as:

Ts =

∫
∞

0 h2(t)tdt∫
∞

0 h2(t)dt
. (8)

III. RELATED WORKS
Proposed blind estimation methods for STI and RAPs are
based on either analytical or learning-based approaches [4],
[19], [20], [21], [22], [23], [24], [29], [30], [31], [32], [33],
[34], [35], [36], [37]. Ones following the analytical approach
achieve blind estimation by creating an explicit mapping
between the observed reverberant signals and the desired
parameters. Unoki et al. proposed two schemes based on
the concept of MTF for estimating STI and T60 [20], [29].
They approximated an unknown RIR by using Schroeder’s
RIR model and then using a more precise model, namely the
generalized RIR model, modified on the basis of Schroeder’s
RIR model [20]. They utilized the relationship between the
modulation spectrum of the observed signal and the MTF
to obtain the optimal parameters of the RIR model. The
estimated STI and T60 are calculated from theMTF of the RIR
model. Keshavarz et al. [21] used the proportional mapping
between the autocorrelation of the original signal and the
observed signal to devise a blind estimation method for T60.
The model of speech sequences proposed by Couvreur et
al. [30] was combined with the maximum-likelihood estima-
tion (MLE) to estimate T60. A model of the energy decay
curve was approximated by using theMLE described in [19],
[31] to blindly estimate T60.

Deep learning has been widely used in the blind esti-
mation of STI and RAPs. Many artificial neural networks
have been used to estimate a desired parameter (e.g., T60,
C80, or STI) [32], [33], [34], [35], [36]. They proposed
the idea of successive layers of representations to learn the
relationship deeply between the output and the input with
regard to a complicated problem. Early methods used a
multi-layer perceptron (MLP) to learn the mapping between
either the STI or T60 and the observed reverberant signal [10],
[34], [35]. Santos and Folk used a recurrent neural net-
work (RNN) to estimate STI, thereby enabling the neural
network to learn more accurately the reverberant signal as
the sequence vector [32]. Unfortunately, MLP-based meth-
ods suffered from insufficient training since the number of
total parameters grows fairly high. They also need tedious
feature extraction. Subsequent methods based on a convo-
lutional neural network (CNN) are able to train a number
of reverberant speech signals for use in efficiently estimat-
ing the STI without features extraction, which is referred
to as the ‘‘end-to-end model’’ [33], [36]. With regard to
T60 estimation, many learning-based approaches have been
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FIGURE 3. Block diagram of the proposed method.

evaluated in the Acoustic Characterization of Environment
(ACE) challenge [38]. For example, Parada et al. proposed
a non-intrusive method based on extracting pre-frame fea-
tures by using an RNN [39]. Gamper and Tashev devised a
CNN with time-frequency features appearing in a spectro-
gram [40].

Recently, Duangpummet et al. proposed an MTF-based
scheme for simultaneously estimating STI and RAPs. ACNN
incorporating the concept of the MTF learns the nonlinear
mapping between the parameters of the RIR model and
the reverberant speech signal [4]. They used the CNN to
train the seven-octave bands of temporal amplitude envelopes
(TAEs) of a massive number of reverberant speech signals
synthesized using simulated RIRs. They achieved the highest
accuracy for simultaneously estimating STI and five RAPs
with real-time implementation.

However, the current methods can estimate only a single
parameter [19], [20], [21], [22], [24], [29], [30], [31], [32],
[33], [36], [40]. Although the MTF-based CNN method can
estimate multiple parameters, it is limited to the training data
used to derive the model, the same as the other learning-based
methods [4], [32], [33], [34], [35], [36], [37]. The efficiency
of the trained models is lower when the actual environments
differ from the training data. The models are also difficult
to optimize because they are untraceable implicit models
and have a vast number of trainable parameters. Therefore,
we propose using an analytical method for blindly estimating
the STI and five RAPs, T60, EDT, C80, D50, and Ts, simul-
taneously. We incorporate a stochastic RIR model, namely
an extended RIR model, into the relationships between the
temporal power envelope (TPE) of an observed signal and
the RIR model to derive the method.

IV. PROPOSED METHOD
Our proposed blind estimation method that alternates to
estimate the parameters of the RIR, namely the alternating
estimation strategy (AES), is shown in Fig. 3.
Figure 3 illustrates the signal processing flow of the pro-

posed method. The input is the observed reverberant signal
y(t). The TPE of y(t) is extracted to estimated the one param-
eter of the extended RIR model used to approximates an
unknown RIR encompassed by orange dashed lines, called
‘‘Tt estimation’’ section. Then, we pass by this estimated
parameter into the second stage to estimate another parameter

of the extended RIR model called ‘‘Th estimation’’ section
encompassed by green dashed line. Next, these two estimated
parameters are used to synthesize the estimated RIR accord-
ing to the extended RIR model. Finally, STI and RAPs can be
calculated from the estimated RIR using (1) - (8) according to
IEC 60268-16:2020 and ISO 3382:2008 standards [13], [14].

The extended RIR and TPEmodels of input and output sig-
nals in a reverberation process are introduced. The whitening
and inverse filtering and objective function that the AES is
based on are then described.

A. EXTENDED RIR MODEL
For blindly estimating STI and RAPs, we can observe only
reverberant signals. Thus, we model an observed signal in a
reverberant room as the convolution of an original signal and
RIR. Since blind estimation is an ill-posed problem, we need
to model an unknown RIR that connects the original signal
and the observed reverberant signal.

Schroeder’s RIR model is a simple decay model and
is commonly used to approximate an unknown measured
RIR [16]. Schroeder’s RIR model is defined as:

h(t) = eh(t)c(t) = a exp
(

−
6.9
T60

)
c(t), (9)

where eh is the temporal amplitude envelope (TAE) of the
RIR, c(t) is the carrier signal as the white Gaussian noise
(WGN) that acts as random variables, and a is the gain
factor. Schroeder’s RIR model is sufficient to represent the
room acoustics of a geometrically simple enclosure, such as
a vacant rectangular-shaped roomwithout furniture and occu-
pants. However, realistic spaces commonly have complicated
geometrical shapes and include different types of furnishings,
as illustrated in Fig. 4. In realistic spaces, Schroeder’s RIR
model does not match the actual RIR due to the lack of
modeling of the onset transition of the measured RIR.

Figure 4 illustrates an example of a complicated-shaped
room with furniture. In the illustration, the sound source
(loudspeakers) are placed at the main room, nearby a sofa.
Two listeners locate at two smaller rooms, connecting the
main room with two doors. The RIR measured at one of
the two listener’s locations is illustrated in Fig. 4. At some
listeners’ positions, the sound wave takes time to travel or
reflect with walls and objects. Consequently, sharp of the
RIR slightly changes depending on waves traveling in a
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FIGURE 4. Illustration of complicated-shape room and its room impulse response.

FIGURE 5. Fittings of two RIR models to measured RIR: (a) temporal
power envelope of RIRs and (b) corresponding RIR.

given room. Because Schroeder’s RIR model lacks the onset
transition of an actual RIR in a complicated-shape room, the
model mismatch occurs.

Figure 5 shows a comparison between the fits of the tem-
poral power envelope of two RIR models with the measured
RIR. The extended RIRmodel, the more accurate RIRmodel,
mitigates the limitation of Schroeder’s RIR model by adding
a parameter to control the exponential rising envelope to
approximate the onset transition of the measured RIR [4],
[41]. The extended RIR model is defined as:

hext (t) = eh(t)c(t) =

{
a exp(6.9t/Th)c(t), t < 0
a exp(−6.9t/Tt )c(t), t ≥ 0

(10)

h(t) = hext (t − t0), t0 ≥ 0 (11)

where Th and Tt denote the parameters controlling the expo-
nential rising and decaying envelopes of the RIR; t0 is
introduced to promise a casual system and stable impulse
response, i.e., h(t) = 0, t < 0. Here, t0 is assumed to be

equal to Th. Therefore, the Th and Tt parameters control the
shape of the whole RIR envelope.

Table 3 shows the results of an ablation study that evaluates
the suitability of both Schroeder’s and the extended RIR
model for realistic RIRs. We modeled realistic RIRs using
both models and calculated the STI and five RAPs from the
modeled and actual RIRs. The fitness of the RIR models was
assessed by calculating the root-mean-squared error of STI
and RAPs between the calculated and the ground-truth values
from the modeled RIRs.

B. TEMPORAL POWER ENVELOPE MODEL
We mathematically model the reverberation and
de-reverberation processes on the basis of the concept of the
MTF. This TPEmodel (TPEM) is then used to develop a blind
estimation strategy.

1) REVERBERATION PROCESS
Since we assume the sound field to be a linear time-invariant
system, a reverberant signal observed in the sound field can
be modeled as the convolution of the original signal and the
RIR:

y(t) = x(t) ∗ h(t) =

∫
∞

−∞

x(τ )h(t − τ )dτ, (12)

where y(t), x(t), and h(t) denote the reverberant signal, the
original signal, and the RIR, respectively. The symbol ‘‘∗’’
denotes the convolution operation. x(t) and h(t) are assumed
as the modulation of the TAEs and the carrier signals as:

x(t) = ex(t)cx(t), (13)

h(t) = eh(t)ch(t), (14)

δ(t) = ⟨c(t)c(t − τ )⟩, (15)

where ex(t) and eh(t) are the TAEs of x(t) and h(t), respec-
tively, δ(t) denotes the Dirac delta function, cx(t) and ch(t)
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TABLE 3. Accuracy (RMSE) of calculated STI and RAPs from the Schroeder’s and the extended RIR model regarding the actual RIRs.

are mutually independent WGN carriers that act as random
variables, and ⟨·⟩ denotes the ensemble average [42].

The ensemble average of the square of the reverberant
signal y2(t) is determined by [43]:

⟨y2(t)⟩ =

〈[ ∫
∞

−∞

x(τ )h(t − τ )dτ
]2〉

=

∫
∞

−∞

ex(τ1)eh(t − τ1)dτ1

∫
∞

−∞

ex(τ2)eh(t − τ2)dτ2

× ⟨cx(τ1)cx(τ2)⟩⟨ch(t − τ1)cx(t − τ2)⟩

=

∫
∞

−∞

e2x(t)e
2
h(t − τ )dτ = e2y(t). (16)

Hence, the temporal power envelope (TPE) of a reverberation
process can be modeled as:

e2y(t) = e2x(t) ∗ e2h(t), (17)

where e2y(t) is the TPE of the reverberant signal, e2x(t) is a TPE
of the input signal, and the asterisk symbol ‘‘∗’’ denotes the
convolution operation. The TPE of an observed reverberant
signal y(t) is extracted using:

e2y(t) = LPF
[
|y(t) + j · Hilbert(y(t))|]2, (18)

where LPF is a Butterworth low-pass filter with a cut-off fre-
quency of 30 Hz, and Hilbert denotes the Hilbert transform.
Lemma 1: We consider the TPE of the original signal e2x(t)

from the simplest case, as e2x(t) is a single-tone amplitude-
modulation (AM) signal:

e2x(t) = C cos(2π fmt + φ), t ∈ [0,T ] (19)

where C is the constant gain, fm is the modulation frequency,
φ is the phase, and T is the time interval. By using (10),
(11), (17), and (19), the corresponding TPE of the reverberant
signal can be expressed as a closed form:

e2y(t) =

Ca2Th exp
[
13.8

(
t
Th

− 1
)]

13.82 + (2π fmTh)2

{
13.8

[
exp(13.8) cos(φ)

− cos(2π fmTh + φk )
]
+2π fmTh

[
sin(2π fmTh + φ)

− exp(13.8) sin(φ)
]}
, t ∈ [0,Th) (20a)

e2y(t) =
Ca2Tt√

13.82 + (2π fmTh)2

×

[
cos(2π fmt + φ) − exp

[
−13.8

( t − Th
Tt

)]
× cos(2π fmTh + φ + θ )

]
, t ∈ [Th,T − Tt ]

(20b)

e2y(t) =

Ca2Tt exp
(
−13.8 t

Tt

)
13.82 + (2π fmTt )2

{
13.8

[
exp(13.8) cos(φ)

− cos(2π fmTt − φ)
]

+ 2π fmTt
[
sin(2π fmTt − φ)

+ exp(13.8) sin(φ)
]}
, t ∈ (T − Tt ,T ] (20c)

where θ = tan−1
(

−2π fmTt
13.8

)
.

Proof: The detailed derivation is presented in
Appendix A. □
We use the superposition principle of an LTI system to

extend (19) and (20) to model the TPEs of signals in actual
environments. Equation (19) is extended to:

e2x(t) =

K∑
k=0

Ck cos(2π fm,k t + φk ), t ∈ [0,T ] (21)

where k is the index of K components. This equation can be
used to model the TPE of a random original signal. The TPE
of a clean signal x(t) can be extracted as:

e2x(t) = LPF
[
|x(t) + j · Hilbert(x(t))|]2. (22)

Since (22) filters out the noise, we assume that the TPE of a
clean signal is affected only by reverberation. Thus, the TPE
of an observed reverberant signal e2y(t) can be determined
as:

e2y(t)

=

K∑
k=0

Cka2Th exp
[
13.8

(
t
Th

− 1
)]

13.82 + (2π fm,kTh)2

×

{
13.8

[
exp(13.8) cos(φk ) − cos(2π fm,kTh + φk )

]
+ 2π fm,kTh

×

[
sin(2π fm,kTh+φk )−exp(13.8) sin(φk )

]}
, t ∈ [0,Th)

(23a)

e2y(t)

=

K∑
k=0

Cka2Tt√
13.82 + (2π fm,kTh)2[

cos(2π fm,k t + φk ) − exp
[
−13.8

( t − Th
Tt

)]
× cos(2π fm,kTh + φk + θk )

]
, t ∈ [Th,T − Tt ] (23b)
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FIGURE 6. Illustration of concept of slope-related feature described in Section IV-B.

e2y(t)

=

K∑
k=0

Cka2Tt exp
(
−13.8 t

Tt

)
13.82 + (2π fm,kTt )2

×

{
13.8

[
e13.8 cos(φk )−cos(2π fm,kTt − φk )

]
+2π fm,kTt

×

[
sin(2π fm,kTt − φk )+e13.8 sin(φk )

]}
, t ∈ (T−Tt ,T ]

(23c)

where fm,k , Ck , and φk are the modulation frequency, gain
factor, and phase at k-th component, respectively. θk is equal
to tan−1

(
−2π fm,kTt

13.8

)
. The value 13.8 comes from 2× 6.9, the

value used in Schroeder’s RIR model and the extended RIR
model to control the exponential rate.

Equations (20a) and (23a) represent the part the reverber-
ation commences, as the modulation depth increases gradu-
ally. In this case, only Th affects the waveform of the TPE.
Equations (20b) and (23b) represent the part the reverberation
constantly impose the effect on the waveform of the TPE,
as the modulation depth keeps constant. Both Th and Tt affect
the waveform of the TPE together. Equations (20c) and (23c)
represent the part the reverberation terminates, as the modu-
lation depth declines gradually. Only Tt has the effect on this
part.

2) DEREVERBERATION PROCESS
The TPE of an observed reverberant signal e2y(t) can be
restored by inverse filtering. The restored TPE e2x(t) can be
determined in the z-domain as:

Ex(z) =
Ey(z)
Eh(z)

. (24)

Given the TPE of a reverberant signal e2y(t) expressed
by (20), the envelope of the recovered TPE from e2y(t) can
be expressed in closed form based on the concept of inverse
filtering. When e2y(t) is restored, the transition regions of the
modulation depth in the waveform, i.e., the signal modeled
by (20a) and (20c), are completely vanished. The restored
TPE e2x(t) can be constructed according to (20b), as expressed

in (24):

e2x,upr (t) =
CTt
T̃t

√√√√√1 +

(
2π fmT̃t
13.8

)
1 +

(
2π fmTt
13.8

) u(t) − ψ(t,Th,Tt )

u(t) − ψ(t, T̃h, T̃t )
, (25a)

e2x,lwr (t) =
CTt
T̃t

√√√√√1 +

(
2π fmT̃t
13.8

)
1 +

(
2π fmTt
13.8

) −u(t) − ψ(t,Th,Tt )

u(t) + ψ(t, T̃h, T̃t )
,

(25b)

where ψ(t,Th,Tt ) = exp
[

−13.8(t−Th)
Tt

]
cos(2π fmTh + φ +

θ ), u(t) is the unit-step function, and e2x,upr (t) and e
2
x,lwr (t)

are upper and lower envelopes, respectively. The T̃h and T̃t
parameters are used to carry out the restoration.

Equations (25a) and (25b) indicate that when Th = T̃h
and Tt = T̃t hold, e2x,upr (t) = C and e2y,lwr (t) = C hold.
In that case, the envelopes are invariant with time, whereas
when Th ̸= T̃h and Tt ̸= T̃t , the envelopes are time-varying.
These time-varying envelopes can be simply approximated as
a first-order polynomial:

e2x,upr (t) = Supr t + bupr , and e2x,lwr (t) = Slwr t + blwr , (26)

where Supr and Slwr are the slopes of the envelopes, and bupr
and blwr are constant factors.

We extend (25a) and (25b) by using the superposition
principle to model the envelopes of the restored TPE of any
signal. They are given as:

e2x,upr (t)

=

K∑
k=0

CkTt
T̃t

√√√√√√1 +

(
2π fm,k T̃t
13.8

)
1 +

(
2π fm,kTt
13.8

) u(t) − ψk (t,Th,Tt )

u(t) − ψk (t, T̃h, T̃t )
, (27a)

e2x,lwr (t)

=

K∑
k=0

CkTt
T̃t

√√√√√√1 +

(
2π fm,k T̃t
13.8

)
1 +

(
2π fm,kTt
13.8

) −u(t) − ψk (t,Th,Tt )

u(t) + ψk (t, T̃h, T̃t )
,

(27b)
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FIGURE 7. Estimated vs. calculated parameters of extended RIR model:
(a) Th, (b) Tt .

TABLE 4. Estimation accuracy (RMSE) of parameters of extended RIR
model by proposed and previous methods [4].

where ψk (t,Th,Tt ) = exp
[

−13.8(t−Th)
Tt

]
cos(2π fm,kTh +

φk + θk ). When using appropriate T̃h and T̃t values to carry
out the restoration, i.e., Th = T̃ ∗

h and Tt = T̃ ∗
t hold,

each single-tone component k in (27) stays constant so that
ex,upr =

∑K
k=0 Ck and ex,lwr = −

∑K
k=0 Ck hold. In this

case, the summation of the slopes for each component is
minimized; i.e.,

∑K
k=0 Sk,upr = 0 and

∑K
k=0 Sk,lwr = 0.

if inappropriate T̃h and T̃t values are used for restoration,
the summation of the slopes for each component must be
a time-varying function; i.e.,

∑K
k=0 Sk,upr = fupr (t) and∑K

k=0 Sk,lwr = flwr (t). Since a higher-order polynomial has
many degrees of freedom, which makes it difficult to opti-
mize, we use the first-order polynomials, as in (26), is used
to approximate the time-varying envelopes in (27).

We thus far have established the relationship between
the observed reverberant signal and the parameters of the
RIR. Figure 6 illustrates the concept of this relationship
and corresponding slope-related feature. A blind estimation
strategy based on the slope-related feature is presented in
Section IV-C to IV-E.

C. INVERSE FILTER
We estimate the parameters of the RIR by using the model as
described in Sec IV-B that generates a TPE of the signals. The

discrete TPE of the RIR model (Eqs. 10 and 11) is obtained
by sampling the continuous-time RIR. Then, z-transform is
applied. Thus, an infinite-impulse response (IIR) of the RIR
can be defined as:

Eh(z) =
a2(α − β)

(1 − αz−1) (1 − βz−1)
(28)

where α = exp(−13.8/Tt fs), β = exp(13.8/Thfs), and fs is
the sampling frequency. The IIR-inverse filter can be defined
as:

Eh,inv(z) = E−1
h (z). (29)

We use all possible T̃h and T̃t sets to implement the inverse
filtering. T̃h ranges from 0.01 to 0.15 s at step size 0.001 s. T̃t
ranges from 0.35 to 3.5 s at step size 0.01 s.

D. WHITENING FILTER
A whitening filter, the key of the AEM, was designed based
on linear prediction coding [44], [45]. As mentioned in
Section IV-B, we use first-order polynomials to approxi-
mate the time-varying envelopes of the restored TPE, which
requires using relatively even envelopes to calculate the
slopes. However, the complex waveform of the TPE of
an actual reverberant signal makes it difficult to meet this
requirement. Hence, we employ the whitening filter to
acquire even envelopes of the waveform. The frame-based
whitening filter whitens a restored TPEwith a complex wave-
form into a pulse train that has even envelopes suitable for
calculating the slopes from (26).

The restored TPE at each frame (frame length is n) is
regarded as autoregressive (AR) mode and rewritten as:

e2x[n] = −

p∑
i=1

σie2x[n− i] + w2
x[n], (30)

w2
x[n] =

p∑
i=0

σie2x[n− i], W (z) =

p∑
i=0

σiz−i, (31)

where σi is the optimal predictor, σ0 = 1, p is the number
of the predictor order, w2

x[n] is the whitened restored TPE,
andW (z) is the frame-based whitening filter [44], [46]. Here,
n = 128. Since (27a) and (27b) imply that the reverbera-
tion smears over all frequencies, where w2

x[n] ∈ e2x[n], the
reverberation also smears into w2

x[n]. Therefore, we assert
that whitening preserves the reverberation information, which
can be used for blind estimation.

The optimal predictor σi can be determined by using the
normal equations, as used elsewhere [47]. Re2x (p) is defined
to be the autocorrelation sequences of e2x[n] as:

Re2x (p) = E[e2x[n]e2x[n− p]], (32)

where E denotes the expectation operation, and ‘‘·̄ ’’ denotes
conjugation. The optimal predictor is given by:

Rσ = −r, and σ = −R−1r, (33)
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TABLE 5. Comparison of accuracy (RMSE) between previous and proposed methods [4], [20].

FIGURE 8. STI and RAPs from reverberant speech signals: (a) STI, (b) T60, (c) EDT, (d) C80, (e) D50, and (f) Ts.
‘‘□’’, ‘‘◦’’, and ‘‘⋆’’ denote the estimated values with proposed and two previous methods: TAE-based CNN
method (TAE-CNN) [4] and MTF-based method (MTF-based) [20], respectively. The Black dashed line
represents the ground truths calculated from the RIRs.

where R is a Toeplitz matrix of Re2x , and r is the cross-

correlation vector;
[
Re2x [1]Re2x [2] · · · Re2x [p]

]T . ‘‘ T ’’ denotes
transposition. We increase the order of the predictor to flatten
the whitened signal so that the actual signals comply with the
AR mode. Here, the order of the predictor p is set to 20. The
Levinson-Durbin algorithm is then utilized to optimize the
computation of the normal equations [44], [48].

E. OBJECTIVE FUNCTION
The optimal T̂t and T̂h are obtained by optimizing the follow-
ing functions. T̂t is determined from all possible sets of T̃h to
satisfy (34) as:

T̂t = med
Tt

{
argmin
Th,{T̃t }

[
log10

(
|Supr |

)
+ log10

(
|Slwr |

)]}
, (34)

where ‘‘med’’ denotes the median operation. Thus, T̂h is
obtained by substituting T̂t into (29) to satisfy (35) as:

T̂h = argmin
{
log10

(
|Supr |

)
+ log10

(
|Slwr |

)}
. (35)

We synthesized the estimated RIR ĥ by modulating the
WGN carrier with the extended RIR model (10) from the
optimal T̂t and T̂h. Fig. 9 shows the TPE of the reconstructed
RIR and the measured RIR. The estimated STI and five RAPs
are thus derived from the estimated RIR by using (1) - (8)
in accordance with IEC 60268-16:2020 and ISO 3382:2008
standards [13], [14].

V. EXPERIMENTS AND RESULTS
We evaluated the proposed method using reverberant speech
signals to determine whether it can estimate STI and RAPs
appropriately.
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TABLE 6. Correlation coefficients between the estimated values and ground-truths.

A. EXPERIMENTAL SETUP
We carried out simulations by using reverberant speech sig-
nals synthesized by convoluting speech signals with RIRs
from the SMILE dataset, which contains 43 measured
RIRs [49]. The measured RIRs are single-channel recorded.
Complete information about the measured RIRs is available
elsewhere [20]. The speech signals were taken from the ATR
dataset [50]. They were ten long Japanese sentences uttered
by ten speakers (five males and five females) from the ATR
dataset [50] and had been single-channel recorded with 16-bit
quantization and 20-kHz sampling frequency. The experi-
mental framework was based on the extended RIR model and
conventional signal processing techniques. The root-mean-
square error (RMSE) and Pearson correlation coefficient
were used as the evaluation metrics. The error was calculated
from the difference between the estimated results and the
ground truths. The performance of the proposed method was
compared with that of previous methods by using the same
RIR and speech datasets [4], [20].

B. EVALUATION FOR PARAMETERS OF RIR MODEL
We conducted the simulations using reverberant speech to
determine whether the proposed method can effectively esti-
mate the parameters of the RIR model. Detailed information
about evaluation conditions can be found in [20], including
various environments such as concert halls, lecture halls, and
office rooms where people occupy in daily lives.

Table 4 shows the accuracy (RMSE) of Th and Tt esti-
mated using the proposed and previous methods [4]. Fig. 7
shows the estimated versus calculated parameters (Th and
Tt ) of the extended RIR model. The horizontal axis indicates
the parameters fitted from the measured RIRs directly, and
the vertical axis indicates the parameters estimated with the
proposed method.

The results show that the proposed method can appropri-
ately estimate the parameters of the extended RIR model.
Then, estimated parameters and (10) and (11) were used to
synthesized the approximated RIR. Fig. 9 shows a compar-
ison between the approximated RIR reconstructed using the
proposedmethod and themeauredRIR in terms of their TPEs,
in which the RMSE was 0.041.

C. EVALUATION FOR ROOM ACOUSTIC PARAMETERS
Figure 8 shows the estimated STI and five room-acoustic
parameters from reverberant speech signals in realistic
reverberant environments. The horizontal axis indicates the
parameters calculated from the RIRs, and the vertical axis
indicates the parameters estimated from the speech signals.

Table 5 compares estimation accuracy between the previ-
ous and proposed methods. The RMSEs of the estimated STI

FIGURE 9. TPE of approximated RIR reconstructed using the proposed
method and measured RIR.

and T60 reveal that the proposed method outperformed the
previous methods. With regard to EDT, the estimated results
closely approach the ground-truth results calculated using
the standard method [14]. With regard to C80, D50, and Ts,
the RMSEs were 2.31 dB, 14.30 %, and 0.052, respectively.
Table 6 shows the correlation coefficient between the esti-
mated and calculated values for the previous and proposed
methods, in which correlation coefficient results keep con-
sistent with the RMSE accuracy. The proposed method had
virtually the same accuracy as the previous methods for STI,
T60, EDT, and Ts, whereas, it had lower accuracy for C80,
and D50. The just noticeable difference (JND) and standard
deviation of the RAPs are shown in Table 7. There were
noticeable outliers for C80, D50, and Ts, possibly because the
carrier signal of the measured RIRs did not strictly match
the WGN [52], [53]. Since the method proposed by Duang-
pummet [4] is considered the state-of-the-art for blindly and
simultaneously estimating STI and RAPs, we assert that the
proposed method is similarly effective.

VI. DISCUSSION
In the previous section, we described our evaluation of the
proposed method and compared its performance with that
of the previous methods [4], [20]. The results show that the
proposed method outperforms or performs at the same level
as the previous ones. In this case, we discuss the advantages
and disadvantages of the proposed method and remaining
issues concerning the scope of this work.

Our aims is to clarify the effects of the RIR on the envelope
of an original signal and to reveal the relationship between
the RIR and the observed signal by formulating closed-form
solutions for the reverberation and dereverberation processes
based on theMTF concept.We approximate an unknown RIR
and the observed signal to identify the connection between
them. We thus need to consider which model is best for
modeling the RIR and how to investigate the effects of the
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TABLE 7. Comparison between just noticeable difference (JND) of RAPs and standard deviation (SD) of estimated error [14], [51].

RIR model’s parameters on the waveform of the reverberant
signal.

We used an extended impulse response model modified
on the basis of Schroeder’s impulse response model to
represent an unknown RIR. It overcomes the limitation of
Schroeder’s model in terms of the modeling of the onset
transition of the RIR in a complicated-shape room. We for-
mulate the closed-form expression for an observed signal
using the extended model based on the basis of its TPE.
Hence, we understand how the RIR affects the waveform of
a signal transmitted in a sound field. Moreover, we found the
connection between the parameters of the RIR model and the
TPE of a restored signal restored from the reverberant signal,
i.e., the slope-related feature.

We also presented a deterministic method based on the
slope-related feature for blindly estimating STI and five
RAPs. Instead of the learning-based approach used in the
previous method [4], an analytical approach is used. The
proposed method achieved estimation accuracy comparable
to that of the best existing blind method. First, the parameters
of the RIR model, i.e., Th and Tt , were estimated from the
observed signal by extracting the TPE. The estimated results
indicate that the estimation error of Th varies more than
that of Tt , which is consistent with the previous method.
Because Th has a substantially smaller scale than Tt , it is still a
challenge to estimate the parameters at different resolutions.
Next, the estimated parameters were used to synthesize the
approximated RIR used to blindly estimate the STI andRAPs.
The results show that the proposed method is effective in
blindly estimating these acoustical parameters.

Additionally, we found that the estimated C80, D50, and
Ts deviated more than the other acoustical parameters.
We hypothesized that the carrier signal used for synthesis, i.e.,
the WGN carrier, did not completely match the temporal-fine
structure of an actual RIR, as discussed elsewhere [52], [53].

Furthermore, the computational time and complexity of the
proposed method need to be considered. Since the whiten-
ing filter was designed based on linear prediction coding,
it takes much time to compute the optimal predictors. It thus
might be inappropriate for real-time applications. Hence, the
quasi-real-time implementation of the proposed method
needs further investigation. In addition, some parameters
controlling the proposed method are scaled empirically, such
as the threshold for envelope extraction and regularization
coefficient used in slope calculation. Further investigation is
needed to determine explicit scaling rules.

Lastly, we have clarified the effects of the RIR on an
observed reverberant signal by using a mathematical model
of the temporal envelope. Since the temporal envelope plays
an important role in human auditory perception, this model

might be useful for elucidating the connection between the
characteristics of room acoustics and the subjective percep-
tion of a reverberant sound [54].

VII. CONCLUSION
We have presented an analytical method for blindly estimat-
ing the speech transmission index and five room acoustic
parameters, i.e., T60, EDT,C80,D50, and Ts. Instead of relying
on training data, a model is used to formulate the relation-
ship between a reverberant signal and an extended model
of a room impulse response. The proposed method uses the
temporal power envelope of an observed signal to estimate
the optimal parameters of the extended RIR model. The RIR
approximated from the impulse response model was used to
estimate STI and RAPs. The evaluation results demonstrate
that the proposed method can blindly and simultaneously
estimate the STI and RAPs with accuracy comparable to that
of previous work that first achieved simultaneous estimation
of six room-acoustic related parameters [4]. Future work
includes evaluating the accuracy of the proposed method
in spaces where people exist will be evaluated. A robust
estimation against background noise will also be investigated
further since the noise causes the significant effect on the
estimation accuracy [23].
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APPENDIX A
PROOF OF LEMMA 1
Using (10) and (11), the TPE of a casual RIR can be deter-
mined as:

e2h(t) =


a2 exp

(13.8t
Th

)
, t ∈ [0,Th)

a2 exp
(−13.8t

Tt

)
, t ∈ [Th,Tt ]

(36)

During the time interval t ∈ [0,Th), the corresponding
TPE of the reverberant signal can be determined by using (19)
and (17):

e2y(t) =

∫ Th

0
Ca2 exp

[13.8(t − τ )
Th

]
cos(2π fmτ + φ)dτ

= Ca2 exp
(
13.8

t
Th

) ∫ Th

0
exp

(−13.8τ
Th

)
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× cos(2π fmτ + φ)dτ

= Ca2 exp
(
13.8

t
Th

)
ℜ

{∫ Th

0
exp(

−13.8τ
Th

)

× exp
[
j(2π fmτ + φ)

]
dτ

}

=

Ca2Th exp
[
13.8

(
t
Th

− 1
)]

13.82 + (2π fmTh)2

{
13.8

[
exp(13.8) cos(φ)

− cos(2π fmTh + φk )
]
+2π fmTh

[
sin(2π fmTh + φ)

− exp(13.8) sin(φ)
]}
. (37)

Similarly, with regard to t ∈ [Th,T−Tt ], the reverberant TPE
e2y(t) can be determined:

e2y(t) =

∫ t

Th
Ca2 exp

[
−13.8(t − τ )

Tt

]
cos(2π fmτ + φ)dτ

=
Ca2Tt

13.82 + (2π fmTh)2

{
13.8 cos(2π fmt)

+ 2π fmTt sin(2π fmt + φ) − exp
[
−13.8(t − Th)

Tt

]
×

[
13.8 cos(2π fmTh + φ)2π fmTt sin(2π fmTh + φ)

]}
=

Ca2Tt√
13.82 + (2π fmTh)2[

cos(2π fmt + φ) − exp
[
−13.8

( t − Th
Tt

)]
× cos(2π fmTh + φ + θ )

]
. θ = tan−1

(
−2π fmTt
13.8

)
(38)

Lastly, in time interval t ∈ (T − Tt ,Tt ], the TPE of
the reverberant signal is terminated. e2y(t) is given by back
integration:

e2y(t) =

∫ 0

−Tt
Ca2 exp

[
−13.8(t − τ )

Tt

]
cos(2π fmτ + φ)dτ

= Ca2 exp
(
− 13.8

t
Tt

)
ℜ

{∫ 0

−Tt
exp(

13.8τ
Tt

)

× exp
[
j(2π fmτ + φ)

]
dτ

}

=

Ca2Tt exp
(
−13.8 t

Tt

)
13.82 + (2π fmTt )2

{
13.8

[
exp(13.8) cos(φ)

− cos(2π fmTt − φ)
]

+ 2π fmTt
[
sin(2π fmTt − φ)+

× exp(13.8) sin(φ)
]}

(39)
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